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Summary

The autonomic nervous system (ANS) plays a

leading role in controlling visceral functions and it

is well known that the increase of sympathetic ac-

tivity underlies most of cardiovascular diseases

such as hypertension, heart failure, myocardial in-

farction and arrhythmias. On the other hand

parasympathetic activity acts as protective factor

against the above mentioned conditions. 

Sleep breathing disorders (SBD) are commonly di-

vided in three syndromes: obstructive sleep ap-

noea syndrome, central sleep apnoea syndrome

and Cheyne-Stokes breathing syndrome, the latter

two both characterized by cyclic non-obstructive

breathing patterns. Cheyne-Stokes Respiration is

a form of periodic breathing characterized by a

crescendo-decrescendo pattern of ventilation with

(CSR-CSA) or  without (CSR) central apnoea.

Obstructive sleep apnea (OSA) is significantly as-

sociated with increased cardiovascular morbidity

and mortality. 

OSA exerts strong modulatory effects on the auto-

nomic nervous system through a number of mech-

anisms including central respiratory-cardiac cou-

pling in the brain stem, chemo-reflex stimulation,

baro-reflexes, and reflexes relating to lung infla-

tion. EEG arousals, often related to apnea termina-

tion, also represent the final way of autonomic ac-

tivation. 

CSR is common among patients with congestive

heart failure, being present in 30-40% of the two

largest reported.

If CSR “per se” promotes an increase of sympa-

thetic outflow during sleep is not really known.

Several lines of argument would support the hy-

pothesis that CSR may be a compensatory mech-

anism for severe HF.

KEY WORDS: autonomic nervous system, obstructive

sleep apnea, Cheyne-Stokes Respiration.

Introduction

Obstructive sleep apnoea (OSA) is significantly asso-

ciated with increased cardiovascular morbidity and

mortality (1, 2).

However, one of the most quoted potential links be-

tween OSA and cardiovascular diseases is thought to

be the increased sympathetic drive (3).

CSA-CSR is common among patients with congestive

heart failure. 

Increased sympathetic drive

is considered of outmost

importance in heart failure

(HF) patient too, because it

was related to an increased

mortality.

The present review will

mainly focus on autonomic

neural mechanisms observed during obstructive sleep

apnea and during the crescendo-decrescendo ventila-

tory pattern of Cheyne-Stokes Respiration also in light

of new hypothesis about the role of CSR in HF. 

Autonomic Nervous System

The autonomic nervous system (ANS) plays a leading

role in controlling visceral functions and it is well

known that the increase of sympathetic activity under-

lies most of cardiovascular diseases such as hyper-

tension, heart failure, myocardial infarction and ar-

rhythmias. On the other hand parasympathetic activi-

ty acts as protective factor against the above men-

tioned conditions (4).

Some studies have recently highlighted the ANS in-

volvement in the inflamma-

tory response and in alter-

ing the endothelial function.

Therefore underlying the

key-role of ANS which acts

as interface between cen-

tral nervous system and

body (5).

On this basis, researchers

are highly interested in as-

Mini-review

Sympathovagal balance changes in sleep breathing
disorders 

The spectral analy-
sis of heart rate va-
riability is a noninva-
sive technique for
assessing the balan-
ce between sympa-
thetic and parasym-
pathetic cardiova-
scular activity.

Increased sympathe-
tic drive is related to
an increased morta-
lity in patients with
congestive heart fai-
lure and OSA.
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sessing how the sympatho-vagal balance varies

among different conditions. 

Nowadays, the spectral analysis of heart rate variabil-

ity is the most used technique for assessing the bal-

ance between sympathetic and parasympathetic car-

diovascular activity and, in addition, is a non-invasive

procedure. It quantifies low-frequency (LF; sympathet-

ic modulation marker) and high-frequency (HF; vagal

modulation marker and synchronous with respiration)

oscillation bands over short-term or long-term record-

ings.

Many studies prove how the majority of cardiovascu-

lar diseases is associated with increased LF bands

and reduced total heart rate variability and how these

parameters can be considered independent risk pre-

dictors for cardiovascular disorders (6).

A non-invasive approach based on the spectral analy-

sis of heart rate variability (HRV), able to provide se-

mi-quantitative information on the cardiovascular bal-

ance between sympathetic and parasympathetic mod-

ulations, has allowed to provide important information

on autonomic control mechanisms both in pathophys-

iological (7) and clinical studies (8) mostly in sleep

studies.

The oscillatory pattern, which characterizes the spec-

tral profile of HRV, consists of two major components,

at low (LF, 0.04-0.15 Hz) and high (HF, synchronous

with respiratory rate) frequency, respectively related to

sympathetic and respiratory vagal modulation, when

expressed in normalized units (nu). LF/HF ratio can be

used as a synthetic measure of the sympathovagal

balance. 

In general spectral methodologies should be applied

only to relatively stationary conditions (9). When tran-

sitory (i.e. non stationary) states have to be analyzed,

specific time-frequency domain algorithms are re-

quired (10-12).

Sleep and ANS

Sleep is characterized by two distinct neurophysiolog-

ical states: non-rapid eye movements (NREM) and

rapid eye movements (REM) (13). Recently (14)

NREM sleep was classified into three different stages

(1,2 and SWS). 

During non-REM sleep stages, the ANS undergoes

cyclic alterations characterized by the progressive re-

duction of sympathetic activity and, consequently, of

heart rate and blood pressure (15).

On the other hand, during REM sleep stage the in-

creased cortical activity is associated with rapid

boosts in blood pressure, heart rate and sympathetic

activity, the latter even reaching thought-like mental

activity levels (15).

Physiological changes in the nervous control of circu-

lation occurring during sleep have been recently con-

firmed thanks to the spectral analysis of heart rate

variability which identified alterations of sympathetic-

vagal balance even in sleep microstructure (CAP and

non-CAP cycles) (16). Sleep can be interrupted by

brief arousals, either spontaneously or in response to

Sympathovagal balance changes in sleep breathing disorders 
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sleep-disordered breathing or other stimuli. Arousals

are associated with abrupt increases in the respirato-

ry drive; indeed, the augmented ventilation accompa-

nying arousals exceeds that expected for the prevail-

ing PaCO2. 

Abrupt increases in BP and HR, because of sudden

increases in sympathetic nervous activity and with-

drawal of cardiac vagal activity, also exceed waking

levels (17) indicating that arousal is a transient but

distinct state of heightened respiratory and cardiovas-

cular activity (18, 19).

Sleep breathing disorders and ANS

Sleep breathing disorders (SBD) are commonly divid-

ed into three syndromes (14): obstructive sleep ap-

noea syndrome, central sleep apnoea-hypopnoea

syndrome and Cheyne-Stokes breathing syndrome,

the latter two both characterized by cyclic non-ob-

structive breathing patterns. CSR is a form of periodic

breathing in which apneas/hypopneas alternate with

ventilatory periods having a crescendo-decrescendo

pattern of tidal volume. OSA has an estimated preva-

lence of 9-24% in middle-aged population (20, 21) and

has emerged as an important cardiovascular risk fac-

tor. In recent years, OSA has been linked to a higher

relative risk for cardiovascular diseases, such as arte-

rial hypertension, congestive heart failure, arrhyth-

mias, and sudden cardiac

death (22, 23). 

One of the most relevant

pathophysiological factors

detected in OSA patients is

an heightened sympathetic

activity. During the obstruc-

tive episodes, important

fluctuations in heart rate,

blood pressure and muscle

sympathetic nerve activity

were first described by Somers et al. (3). A cascade of

consecutive events may explain the autonomic

changes observed during nighttime. First, the lack of

the normal sympathoinhibition induced by lung infla-

tion reflexes and the exaggerated central respiratory

drive due to an inefficient respiratory effort leave an

unbalanced sympathetic drive. Chronic intermittent

chemoreceptor activation induced by hypoxia and hy-

percapnia are associated with a coactivation of sym-

pathetic and parasympathetic

drive (24) inducing brady-

cardic-tachycardic heart

rate responses, peripheral

vasoconstriction and pro-

gressive increase in pe-

ripheral sympathetic drive.

The forced inspiration with

closed glottis (Muller ma-

neuver), drastically modify-

ing intrathoracic pressures,

induces relevant changes

in heart chamber size, re-

OSA has been linked
to a higher relative risk
for cardiovascular dis-
eases, such as arterial
hypertension, conge-
stive hearth failure,
arrhythmias, and sud-
den cardiac death.

One of the most re-
markable characteri-
stics of OSA is the
presence of an
heightened sympa-
thetic activity also
during wakefulness,
as demonstrated by
MSNA recordings
and spectral analysis
of HRV.
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duction in blood pressure and an initial inhibition of

sympathetic drive, likely to and due to a mechanical

stretching effect on cardiac vagal afferent fibers (Fig-

ure 1). Immediately after the cessation of the obstruc-

tive event, upper airways patency is associated with

an increase in cardiac output which, superimposed to

the preceding sympathetic vasoconstriction, deter-

mines a considerable increase in blood pressure, a

consequent activation of baroreceptor and lung pul-

monary inflation reflexes thus inducing a transient

shutdown of sympathetic drive (25) (Figure 2).

Arousals  appearing at the end of apneas increase the

nighttime sympathetic-excitation even more.

This cycle may repeat itself hundreds of time during

sleep, thus inducing an overall effect of nighttime sym-

pathetic-excitation and surges of blood pressure, re-

sponsible for the “non-dipping” profile of blood pres-

sure.  

However, one of the most remarkable characteristics

of OSA is the presence of an heightened sympathetic

activity also during wakefulness, as demonstrated by

MSNA recordings (3, 26) and spectral analysis of HRV

(27). The mechanisms implicated in this phenomenon

are still unclear. Firstly, it has been hypothesized that

the effect of sympathetic excitation induced by hypox-

ia might persist for a long time, also during normo-oxy-

genation conditions (28, 29). Secondly, a potentiation

of peripheral chemo-reflex responses has been de-

tected in OSA subjects, possibly contributing to main-

tain a tonic sympathetic excitation during wakefulness

(27, 30). Lastly, a depressed baro-reflex sensitivity

(BRS) was reported, although most studies assessed

baroreceptor responses only during sleep (31-34)

while those reporting wakefulness data concluded that

BRS was unchanged (35, 36) (Figure 3). 

Available evidence (37) indicates that chronic intermit-

tent hypoxia (CHI) exerts two major effects on the

chemoreceptor reflex: (a) augmentation of the carotid

body and sympathetic effector responses to acute hy-

poxia; and (b) induction of long-lasting activation of

both the sensor and the effector that persists several

hours after the cease of CIH. Moreover, other non-

neural factors that have recently been proposed to

participate as intermediate mechanisms in linking

OSA and cardiovascular disorders, such as systemic

inflammation and endothelial dysfunction (38) might

contribute to maintaining an elevated sympathetic ac-

tivation during wakefulness. However, sympathetic ac-

tivation per se might sustain an increased oxidative

stress, an altered endothelial dysfunction and a chron-

ic activation of the inflammatory cascade. Thus a “vi-

cious circle” between systemic inflammation and over-

sympathetic activity is likely to be sustained. 

Central sleep apnea (CSA) differs from OSA in that

central apneas are associated with absent respiratory

effort. Cheyne-Stokes Respiration (CSR) is a form of

CSA in which an apneic phase alternates with ventila-

tory periods (hyperpneic phase) having a crescendo-

decrescendo pattern of tidal volume. Although less

common than OSA overall, CSR is very common in

V. Patruno et al.
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Figure 1 - Increase of symphathetic outflow, bradicardia and stability of blood pressure during the obstructive apnea. (See

text for details).
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subjects exposed to high altitude (39) and among pa-

tients with CHF (24). It is not yet known whether CSR

is an epiphenomenon in the setting of heart failure or

whether it may itself lead to increased risk or progres-

sion of heart failure (40). 

CSR is associated with heart rate and blood pressure

oscillations, in phase with respiration (40). However

the precise mechanism linking CSR-CSA with BP and

HR oscillations remains to be determined. 

HR and BP oscillations associated with CSR- CSA are

more tightly linked to oscillations in ventilation than to

fluctuations in SaO2. Data from Leung et al. (41)

demonstrate that periodic oscillations in BP and HR

are not dependent on episodic hypoxia. When inter-

mittent hypoxia was eliminated by O2 inhalation, oscil-

lations in HR and BP remained associated with oscil-

lations in ventilation. These oscillations are coupled to

similar increases in sympathetic activity and are not

due to chemo- or baroreceptor sympathetic activation.

Also arousals have been shown to have little effect on

BP during CSR-CSA (18) (Figure 4).

A more likely explanation for the simultaneous in-

creases in HR and BP is a parallel increase in sympa-

thetic drive to the heart and peripheral vasculature

(42). Since vagal tone is markedly impaired in patients

with heart failure (43), this sympathetically mediated

rise in BP cannot be buffered by baroreflex-mediated

parasympathetic withdrawal.

Recently Ueno et al. (44) reported that heart failure

Sympathovagal balance changes in sleep breathing disorders 
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patients with central sleep apnea have an impaired

HRV and BRS, with blunted 24-hours changes, in

comparison with heart failure patients without sleep

apnea. 

On the other hand, deep breaths of periodic breathing

and lung inflation promote vagal and reduce sympa-

thetic activity in normal subjects (45) and large tidal

breaths (similar to CSA-CSR) were shown to attenu-

ate MSNA in a group of HF patients during wakeful-

ness (46).

During sleep, periods of CSA-CSR were associated

with a small rise in overall MSNA; however, attenua-

tion of the MSNA occurred during the hyperventilation

phase (47) consistent with the hypothesis that large

swings in tidal volume attenuate sympathetic activity.

Finally, CSA-CSR has been observed to be associat-

ed with greater sympathetic activity compared with

control groups without sleep apneas (48). However,

when controlled for the severity of HF (i.e., with pul-

monary artery pressure) the additional effect of apnea

type (either CSA-CSR or OSA) on sympathetic activi-

ty seems to be negligible (46, 49).

Conclusions

Most of patients with recurrent obstructive apnoea ex-

hibit autonomic abnormalities, including persistent el-

evations in sympathetic nerve activity, which can be

explained with respiratory mechanisms related to ap-

noea duration or with the cortical mechanisms related

Figure 2 - Increase of blood pressure, tachicardia and inhibition of sympathetic drive at the apnea-termination. (See text for

details).
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to apnoea termination.

Obstructive sleep apneas exert strong modulatory ef-

fects on the autonomic nervous system through a

number of mechanisms including central respiratory-

cardiac coupling in the brain stem, chemo-reflex stim-

ulation, baro-reflexes, and reflexes related to lung in-

flation. EEG arousals, often related to apnea termina-

tion, also represent the final way of autonomic activa-

tion. 

Central apneas are mostly

associated to heart failure

and expressed in the con-

text of CSR. CSA-CSR in-

creases oscillation of HR

and BP during sleep but

have no effect on chemo

and baro-reflex sensitivity

during sleep and have no

V. Patruno et al.
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Several lines of ar-
gument would sup-
port the hypothe-
sis that CSA-CSR
may be a compen-
satory mechanism
for severe heart fai-
lure.

Figure 3 - Schematically representation of relationship between OSA and ANS during sleep and wakefulness. (See text for

details).

Figure 4 - Schematically representation of relationship between CSA-CSR and ANS during sleep and wakefulness. (See text

for details).
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effect on MSNA activity during wakefulness in HF pa-

tient when well matched for HF severity.

If CSR-CSA “per se” promotes an increase of sympa-

thetic outflow during sleep is not really known. Sever-

al lines of argument would support the hypothesis that

CSA-CSR may be a compensatory mechanism for se-

vere HF. 
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