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the complications pertaining to pneumoperi-
toneum to solve them quickly, paying particular at-
tention to the patients at higher risk, such as elder-
ly, obese, and those with cardiopulmonary disease.
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Introduction

Laparoscopic surgery has been increasingly employed
in various surgical subspecialties because of its innu-
merous benefits. These are evident during the post-op-
erative period and result
from the less important or-
gan/tissue trauma caused
by laparoscopic approaches
than those triggered by
open surgery. The main ad-
vantages of laparoscopic
surgery are: reduction of the
inflammatory and metabolic
responses (1-3), reduced
post-operative pain and
analgesic consumption (2,
3), smaller incidence of respiratory complications (2),
faster resolution of post-operative ileum and recovery
(1). Taken together, these outcomes reduce hospital
stay, promote a quicker return to normal daily activities
(2-4), and reduce the cost of the treatment (4).
On the other hand, laparoscopic surgery presents
some challenges regarding the intra-operative anes-
thesia management, since there are respiratory and
hemodynamic changes pertaining to the general anes-
thesia itself, to the abdominal insufflation, and to the in-
tra-operative positioning of the patient (5). These is-
sues become even more evident in patients with car-
diopulmonary disease or obesity (6).
This review focuses on the intra-operative respiratory
alterations caused by laparoscopy and on the ventila-
tory strategies that are prone to minimize the modifica-
tions evoked by the technique.

Alterations of the respiratory system

In order to allow an adequate observation of the surgi-
cal field, laparoscopic surgery requires controlled gas
insufflation into the peritoneal cavity (pneumoperi-
toneum). For this purpose, carbon dioxide is regularly
used under a pressure of 10-15 mmHg. Naturally, res-
piratory issues related to mechanics and CO2 overload
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Summary

Laparoscopic surgery has been increasingly used
in many surgical subspecialties, due to its various
post-operative benefits. On the other hand, it pres-
ents intra-operative challenges to the anesthesia
management. The inflation of the abdominal cavity
with carbon dioxide leads to hemodynamic
changes, mechanical respiratory system derange-
ments (increased elastance, resistance and airway
pressure), augmented V’CO2, and alterations of the
V’/Q’ ratio and of the PaCO2-PetCO2 gradient. All
these changes may be influenced by other factors,
such as body position and baseline characteristics
of the patient. To minimize the negative conse-
quences of these modifications a protective venti-
lation strategy with the use of low tidal volumes
and PEEP, eventually associated with recruitment
maneuvers, is suggested. No ventilatory mode or
anesthetic drug has been proven better than the
others. It has been suggested that the use of
supraglotic devices may be a safe alternative to
endotracheal intubation during laparoscopic sur-
gery. It is important that the anesthetist be aware of

Laparoscopic sur-
gery reduces the in-
flammatory and me-
tabolic responses,
post-operative pain
and analgesic con-
sumption, incidence
of respiratory compli-
cations, and time to
recovery.
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owing to the absorption of the gas into the circulation
ensue. 

Respiratory system mechanics

Pneumoperitoneum distends the abdominal wall and
cranially displaces the diaphragm, which diminishes
lung volumes, including the functional residual capaci-
ty (FRC) (7, 8), and, thus, increases the amount of at-
electasis. Computed tomography scanning has also
registered these alterations, showing a 1-3 cm cepha-
lad diaphragmatic displacement and a higher inci-
dence of atelectasis, especially in the dependent
zones of the lung (9).  
Furthermore, the high intra-abdominal pressure (Pab)
increases respiratory resistance and elastance (i.e.,
reduces compliance). As a result, airway pressure aug-
ments (6, 7, 10, 12-16).
One should bear in mind that respiratory system elas-
tance (Ers) equals the sum of lung (EL) and chest wall
(Ew) elastances, that are both increased by pneu-
moperitoneum. The higher EL results from the reduced

lung volumes, the more im-
portant degree of atelecta-
sis, the shift of blood from
the abdomen into the thorax
(17) and the surfactant al-
terations (7). Ew augments
because of the stiffer di-
aphragm (7) and chest wall
conformational changes (6,
12).

Some authors found that Ew
increases more than EL (7, 12, 15, 16). Pneumoperi-
toneum rises respiratory system resistance (Rrs) (6, 7,
10-13) mainly due to lung and chest wall viscoelastic
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properties and mechanical heterogeneities (12). Air-
way resistance (Raw) remains unaltered (7, 12).
Hence, the increase in elastance represents the main
component of the larger respiratory system impedance
(which depends on both Ers and Rrs) triggered by
pneumoperitoneum (10).
According to Eq. 1, the increased Ers and Rrs induce
larger Paw: 

Paw(t) = Ers.V(t) + Rrs.V’(t) (Eq.1)

where V, V’ and t are volume, flow and time, respec-
tively.
It has been demonstrated that both peak and plateau
Paw are higher during pneumoperitoneum (13, 15, 16),
as shown in Figure 1. It should be stressed that Paw
does not allow the identification of which respiratory
system mechanical component is altered. It reflects
both pulmonary and chest wall phenomena, which are
measured using transpulmonary (PL) and transtho-
racic pressures (Pw), respectively. To pinpoint these
components, one should use the intrapleural pressure,
which is more easily and safely represented by the
esophageal pressure (18). 
Taking into consideration that the increased Ew gener-
ates most of the additional mechanical load generated
by pneumoperitoneum, most of the increased Paw is
spent to overcome it (higher Pw). This additional pres-
sure is not transmitted to the lungs (PL does not
change appreciably) and, thus, does not harm them.
Consequently, right after the beginning of abdominal
insufflation the anesthetist should establish a new set
point to monitor Paw (19).
Clinically, an increase in intrathoracic pressure can di-
minish cardiac output (6) and trigger ventilator-induced

Pneumoperitoneum
r ises  resp i ra tory
system resistance
mainly due to lung
and chest wall viscoe-
lastic properties and
mechanical heteroge-
neities.

Figure 1 - Airway pressure (Paw) as a function of time in an anesthetized human being. Volume-controlled artificial ventilation was applied with

a positive end-expiratory pressure of 6 cmH2O. At the point indicated by the arrow, CO2 was injected into the peritoneal cavity to produce a

15-cmH2O intra-abdominal pressure (pneumoperitoneum). Note that both peak and plateau Paw increase afterwards.
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lung injury (VILI) (20). Although most patients can well
tolerate these changes, clinically important conse-
quences concerning the respiratory system may result
in those with deranged baseline respiratory mechan-
ics, e.g., with pneumopathies or obese (6).
The deflation of the abdominal cavity can revert all the
mechanical alterations. However, there is no consen-
sus about the timeline that describes the normalization
of the parameters. Indeed, some studies state that
elastance and resistance return to control values si-
multaneously and right after the removal of the pneu-
moperitoneum (7, 14), whereas others found that the
alterations, particularly elastance, last longer (10).

V’/Q’ ratio and gas exchange

Oxygen

During general anesthesia a progressive impairment 
of gas exchange occurs, which may be explained by a
few mechanisms, such as small airways collapse (21)
and atelectasis. These phenomena may jeopardize
ventilation/perfusion relationship (V’/Q’) and create
shunt (22), thus reducing oxygenation mainly in elder-
ly (23) and obese patients (7, 11). As aforementioned,
atelectasis is even worse in the presence of pneu-

moperitoneum and one
would expect a more impor-
tant impairment of oxygena-
tion than during general
anesthesia (24, 25). How-
ever, some studies indeed
demonstrate that the fall in
arterial partial pressure of
oxygen (PaO2) is correlated
solely with body mass and

not with the mechanical alterations induced by pneu-
moperitoneum (7, 8, 11) or decubitus (11). Further-
more, a transient increase in oxygenation and a fall in
shunt (16, 26, 27) without any change in dead space or
V’/Q’ have been reported (28, 29). Additionally, two
studies in pigs using single-positron emission comput-
ed tomography (SPECT) and electrical impedance to-
mography (EIT) demonstrated that the insufflation of
the abdominal cavity shifts ventilation (27, 30) and per-
fusion (27) from the dependent to the non-dependent
region of the lungs. Moreover, the change of the latter
is more important than that of the former, thus improv-
ing V’/Q’ (27). These findings could possibly be ex-
plained by an increase in arterial blood pressure result-
ing from the higher Pab (16), a more efficient hyper-
capnia-induced hypoxic pulmonary vasoconstriction
(27), or a reduced perfusion of the atelectatic areas in-
duced by the increased intrathoracic pressure (26). 

Carbon dioxide

Pneumoperitoneum elevates both the CO2 level in the
organism and the CO2 production (V’CO2). These alter-
ations may lead to hypercapnia and respiratory acido-
sis (7, 28, 29) that are more commonly found in pa-
tients with cardiopulmonary impairment (31). 
The increase in V’CO2 results solely from the higher
peritoneal absorption of CO2 and not from either a
higher metabolic rate (28, 29, 32) or an increased dead

space (26, 27). The higher CO2 absorption is time-lim-
ited, generally reaching a steady-state 15-30 minutes
post-insufflation (28, 33). It is also restrained by Pab:
when it reaches about 10 mmHg CO2 absorption stabi-
lizes, probably owing to compression of the peritoneal
capillaries (32). In practice, the changes in V’CO2

found after the steady-state is reached probably result
from other causes, e.g., V’/Q’ mismatch, hypoventila-
tion, or CO2 absorption by other tissues, as in subcuta-
neous emphysema (32) or carbothorax (34), which are
complications of the pneumoperitoneum.
It should be noted that CO2 absorption is more impor-
tant (40-60% vs 10-15%) (29) and does not reach a
plateau in extraperitoneal laparoscopic procedures, as
pelviscopy or urologic surgery (28, 29).  Possibly, the
higher density of blood vessels in these areas and the
continuous dissection of the extraperitoneal space
could explain these findings (28, 29).
Carbon dioxide output remains elevated and is well tol-
erated even after the resolution of the pneumoperi-
toneum in patients with normal cardiorespiratory func-
tion (35). However, it can cause post-operative hyper-
capnia in sedated subjects or in those with cardiopul-
monary disease (31, 36). 
Clinically, the partial pressure of end-tidal CO2 (Pet-
CO2) is used to monitor the arterial partial pressure of
CO2 (PaCO2). Even though a correlation between
these two parameters has been reported during la-
paroscopy (7, 11), there is evidence that PetCO2 does
not properly estimates PaCO2, especially in patients
with cardiorespiratory disease (31, 37) and in elderly
subjects (23). In both cases, the PaCO2-PetCO2 gradi-
ent increases unpredictably. This gradient varies inter-
and intra-individually, since it increases with time in the
same patient (5). The origin of this variation is not
clear, though. Putative candidates to explain this phe-
nomenon are: redistribution of the V’/Q’ ratios through-
out the lung (that occurs during anesthesia), decubitus,
and the variable efficiency of the hypoxic pulmonary
vasoconstriction produced by the anesthetic drugs (5,
38-40). Interestingly, the degree of atelectasis during
pneumoperitoneum is associated with the PaCO2-Pet-
CO2 gradient, but not with the PaO2/FiO2 ratio (41). In
conclusion, one should repeatedly monitor PaCO2 by
blood gas analysis, at least in patients with compro-
mised cardiopulmonary function (37) and eventually in
the elderly. 

Body position

The aforementioned parameters can undergo varia-
tions according to the intra-
operative positioning of the
patient. The literature pres-
ents diverging results, thou -
gh. Some studies state that
elastance does not vary
among supine, Trendelen-
burg and anti-Trendelen-
burg positions (10, 11, 14),
which represent body pos-
tures frequently used in la-
paroscopic surgery, even in
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The fall in arterial
partial pressure of
oxygen correlates
with body mass, and
not with the mecha-
nical alterations in-
duced by pneumo-
peritoneum.

Elastance does not
vary among supine,
Trendelenburg and
anti-Trendelenburg
positions, which re-
present body postu-
res frequently used
in laparoscopy sur-
gery, even in obese
patients.
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obese patients (11). A putative explanation for this find-
ing stems from the fact that the diaphragm is overdis-
tended by CO2 to a degree impossible to be modified
by simply changing body position (11, 14). On the oth-
er hand, lung elastance and resistance may increase
in Trendelenburg position (6), the  beach chair position
improves lung volumes, resistance and oxygenation in
obese patients (16), and in obese hypertensive pa-
tients with chronic obstructive pulmonary disease sim-
ilar results have been reported in anti-Trendelenburg
position (42). 

Obese patients

Laparoscopic bariatric surgery has been increasingly
performed. In this condition, besides the challenges
presented by laparoscopy itself, there are anesthesio-
logical issues characteristic of obese patients. Under
baseline conditions they present increased chest wall
(43) and, possibly, pulmonary elastances (44, 45), re-
duced lung volumes (including FRC), and higher clos-
ing capacity. As a result, V’/Q’ mismatch, impaired oxy-
genation and increased shunt (46) can be found.
These pathologic conditions worsen during general
anesthesia (47). 
Pneumoperitoneum adds an extra burden to those pro-

moted by general anesthesia.
The increase in Rrs is rela-
tively larger than that dis-
played by non-obese sub-
jects, possibly because of
the narrower airways sec-
ondary to the lower lung
volumes (11). Elastance al-

so increases (16, 48, 49), but to a lesser extent than in
normal weight individuals (11). Indeed, the higher
baseline Pab renders the additional load generated by
pneumoperitoneum a small fraction of the overall pres-
sure (48). 
Oxygenation is inversely correlated with body mass
(47), and remains unaltered or improves in the pres-
ence of pneumoperitoneum (11, 16, 48, 49). Carbon
dioxide elimination is not as efficient as in normal
weight subjects, which requires a higher minute venti-
lation to reach and maintain a given PaCO2. Conse-
quently, the control of hypercapnia poses an extra dif-
ficulty to the physician (11, 49).

Mechanical ventilation

Protective ventilation and hypercapnia

Protective ventilation (small tidal volumes and positive
end-expiratory pressure, PEEP) has been claimed to
reduce pulmonary inflammation and mortality in pa-
tients with acute respiratory distress syndrome (ARDS)
(50). Protective ventilation would avoid as much as
possible lung injury. In fact, it has been already proven
that artificial ventilation may worsen (50) or cause VILI
(51), which triggers lung inflammation (biotrauma), pro-
duction of pro-inflammatory mediators, systemic inflam-
mation, and, possibly, injures other organs (50). High
tidal volumes, since they can overdistend alveoli (volu-

trauma) (52), and the ab-
sence of adequate PEEP
levels, which leads to cyclic
alveolar opening-closing (at-
electrauma) (53) constitute
the probable main culprits of
VILI.
A ventilatory strategy with a
tidal volume of 6-8 ml/kg
BW and a PEEP amounting
to 6-8 cmH2O used in either
open or laparoscopic surgery improves post-operative
respiratory function, reduces the incidence of pul-
monary and extra-pulmonary complications and hospi-
tal stay in comparison with a strategy with high tidal
volume and no PEEP (54). Additionally, a tidal volume
of 7 ml/kg BW plus a 10-cmH2O PEEP employed per-
operatively (open surgery) produced a better post-op-
erative respiratory function than a non-protective ven-
tilation (55). A recent meta-analysis, which includes
these studies, confirms that a protective ventilation
strategy can decrease the development of ARDS, pul-
monary infection and atelectasis, but not mortality, in
previously non-injured lungs in the peri-operative peri-
od and in the intensive care unit (56). It would be inter-
esting to perform similar studies in laparoscopic sur-
gery.
The use of low tidal volumes predisposes to the devel-
opment of hypercapnia, which is commonly present
during laparoscopy. Minute ventilation must be aug-
mented to maintain normocapnia (33, 57). To accom-
plish such goal, one should increase respiratory rate
instead of tidal volume. Such setting increases the risk
of developing intrinsic PEEP (PEEPi), which demands
a closer control by the anesthetist. Such risk is further
increased by pneumoperitoneum that elevates Rrs (6,
7, 10-13) especially in obese (11), COPD, and elderly
patients, who present a higher closing capacity. How-
ever, the quest for normocapnia is still debatable, since
hypercapnia possibly plays a protective role against
the development of VILI (58-60). 

Ventilatory modes

There are two modes of controlled ventilation: volume-
controlled ventilation (VCV), in which the ventilator de-
livers a chosen tidal volume with a constant flow, and
pressure-controlled ventilation (PCV), where a con-
stant set pressure is applied with a pre-established du-
ration. In the former and latter cases pressure and vol-
ume vary, respectively, as a function of the respiratory
system mechanical properties.

During laparoscopy, PCV re-
duces peak pressure, keeps
(61) or slightly diminishes
(62) mean Paw, increases
respiratory system dynamic
compliance, and does not
modify gas exchange and
cardiac function (61, 62).
One study states that in
obese patients oxygenation
and Paw are not influenced
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Carbon dioxide elimi-
nation in obese sub-
jects requires a higher
minute ventilation to
reach and maintain a
given PaCO₂.

A tidal volume of 7
ml/kg BW plus a 10-
cmH₂O PEEP emplo-
yed per-operatively
produced a better
post-operative respi-
ratory function than
a non-protective ven-
tilation.

The beneficial effect
of PSV probably re-
sults from the diaph-
ragmatic contrac-
tions that better dis-
tribute ventilation,
even to normally
less ventilated re-
gions.
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by the ventilatory mode (63), whereas another found
better oxygenation, pH and PaCO2 in obese patients
ventilated in PCV, remaining mean and plateau Paw’s
similar in both modes. The authors suggest that an im-
proved V’/Q’ could respond for a better gas exchange
in PCV (64). 
One disadvantage of PCV rests on the tidal volume
variability and, hence, the impossibility of assuring a
constant minute ventilation. However, some recently
introduced operating room ventilators incorporate a
pressure-controlled volume-assured ventilatory mode.
In this case, the anesthetist sets tidal volume that is
delivered under decelerating airflow and constant
pressure. The ventilator automatically regulates the
latter. 
Increasing inspiratory duration can improve V’/Q’. A
study demonstrated that the ventilation in VCV mode
with an inspiratory/expiratory ratio (I:E) of 1:1 or 2:1
rises mean Paw and maintains oxygenation during
pneumoperitoneum (65). A 5-cmH2O PEEP with
I:E=1:2 produces the same outcomes, but increases
peak and plateau pressures. PEEPi was detected in
some patients with augmented I:E, which could explain
the better oxygenation. Furthermore, CO2 removal is
improved in patients with I:E=2:1 (65), suggesting that
PEEP can increase dead space (66). It should be
stressed that a high inspiratory duration should be cau-
tiously used in patients with a slow alveolar emptying,
as those with COPD.
A better oxygenation in pressure-support ventilation
(PSV, in which the patient triggers tidal volume deliv-
ery) than in PCV was found in pigs with pneumoperi-
toneum (67). The beneficial effect of PSV probably re-
sults from the diaphragmatic contractions that better
distribute ventilation, even to normally less ventilated
regions (68).
Briefly, there is no net superiority among ventilatory
modes. The anesthetist should in fact choose the
mode that suits her/him, based on personal experi-
ence.

Alveolar recruitment and PEEP

Applied PEEP increases lung volume (8) and avoids
end-expiratory airway closure (69), thus reducing at-
electrauma (70). A 5-cmH2O PEEP diminishes intrapul-
monary shunt and improves oxygenation in the pres-
ence of pneumoperitoneum (71). EIT confirmed that
PEEP augments ventilation in the dependent lung
zones during pneumoperitoneum (30, 72). Further-
more, the improved V’ distribution may indicate that
there is a less intense alveolar stretching in the non-
dependent lung regions (72). On the other hand, PEEP

can excessively distend the
alveoli, increasing the risk of
barotrauma and decreasing
cardiac output, especially in
hypovolemic patients, im-
pairing V’/Q’ and oxygena-
tion (73, 74). 
It is quite possible that the
individual response to PEEP
results from the balance be-

tween its positive and negative outcomes. For instance,
a 10-cmH2O PEEP improves oxygenation in obese sub-
jects but not in normal weight individuals, possibly be-
cause in the former its beneficial effects overcome their
negative counterparts (47). 
Recruitment maneuvers (RM), which require a high
Paw, aim at the reopening of atelectatic alveoli (75)
that are maintained open by the subsequent use of
PEEP. In normal weight and obese patients, a 10-
cmH2O PEEP partially overcomes the negative conse-
quences of pneumoperitoneum because it increases
FRC and diminishes Ers. Oxygenation also improves
when PEEP is associated with a RM of 40 cmH2O dur-
ing 40 s (8). The fall in Ers, which is due mainly to EL
(15), possibly indicates that the higher FRC results
from alveolar recruitment and not from overdistension
(8). These findings have been recently confirmed by
the use of a RM generated by a progressive increase
in the PEEP level (under PCV) until peak pressure
equaled 40 cmH2O, followed by a 5-cmH2O PEEP. Fur-
thermore, even Ew decreases, probably because of
the higher pulmonary expansion that resembles to a
better extent the physiological conformation not only of
the lung, but also of the chest wall (13). Additionally,
PEEP can reduce Rrs because it opens and stabilizes
air spaces (13, 15).
PEEP associated with repeated RM’s improves oxy-
genation (76, 77) and respiratory mechanics in obese
patients with pneumoperitoneum (77). It should be
mentioned that in one study the patients required more
vasopressor agents (76).  Interestingly, repeated RM
associated with a PEEP of 10 cmH2O or the beach
chair position could improve respiratory mechanics
and oxygenation in the absence of pneumoperi-
toneum; however, the association of these maneuvers
was wanted during abdominal inflation (16).
The possible reduction of central nervous system per-
fusion and oxygenation owing to PEEP in the presence
of pneumoperitoneum raises an important issue. PEEP
by itself increases central venous pressure (CVP) and
reduces mean arterial pressure (MAP), whereas pneu-
moperitoneum alone triggers vasodilation of the en-
cephalic blood vessels, as a result of hypercapnia, and
may, thus, increase intracranial pressure (78), espe-
cially in Trendelenburg position (79). Recently, howev-
er, it has been reported that a 10-cmH2O PEEP and
Trendelenburg position maintain cerebral oxygenation
even in the presence of reduced perfusion pressure
(calculated as the difference between PAM and PVC)
during pneumoperitoneum (80).
In summary, it seems that PEEP represents a valid tool
to maintain oxygenation during pneumoperitoneum.
Particularly in obese patients, it should be associated
with recruitment maneuvers.

Inspiratory oxygen fraction (FiO2)

It is well known that a FiO2 equal to 1 is associated
with the quick installation of atelectasis and a worsen-
ing of intrapulmonary shunt during general anesthesia
in patients with normal lungs (81). Additionally, an ex-
perimental study demonstrated an exacerbation of
lung damage when high tidal volumes are associated
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PEEP associated
with recruitment ma-
neuvers improves
oxygenation and re-
spiratory mechanics
in obese patients
with pneumoperito-
neum.
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with a FiO2 equal to 0.5 (82). Thus, low levels of FiO2

and low tidal volumes are recommended during sur-
gery to avoid such undesired outcomes. This rationale
can possibly be cautiously extended to laparoscopic
surgery for the time being, since no report was found
in the literature dealing with this issue.

Supraglotic devices

Commonly, laparoscopic surgery demands muscle re-
laxation, intubation, and controlled ventilation. Howev-
er, this surgery can also be performed with supraglotic
devices under spontaneous (83), assisted (84) or con-
trolled ventilation (85-88). Laryngeal mask airway
(LMA) was proven efficient during cholecystectomy
(85, 87) and gynecological interventions (83, 84, 86,

88). LMA’s, particularly those
with a conduit to allow the
placement of a nasogastric
tube, have a high oropha-
ryngeal leak pressure and
can, hence, provide ade-
quate ventilation during la-
paroscopy (85, 87, 89). Ad-
ditionally, they induce less

important upper airways po -
st-operative pharyngolaryngeal discomfort than the
tracheal tube (89), and present a very low risk of regur-
gitation in patients without any other risk factors under
controlled ventilation (88). The latter observation rais-
es an important issue, since it is generally accepted
(90) that laparoscopy, especially in the Trendelenburg
position, increases the risk of regurgitation and that
LMA does not protect the airway against aspiration.
Noteworthy, surgery with LMA results shorter than with
tracheal tube (83, 84). 

Anesthesia

The choice of the anesthesia procedure is undoubted-
ly reserved to the anesthetist. Nevertheless, isoflurane
leads to a smaller PaO2 and higher PaCO2 than propo-
fol during laparoscopic cholecystectomy (38). Possibly,
the maintenance of the hypoxic pulmonary vasocon-
striction by propofol may explain this finding (91). Des-
flurane and sevoflurane seem to exhibit the same
pharmacological property of propofol (40).
Studies dealing with the role of anesthetic agents on
lung inflammation produced conflicting results. Indeed,
propofol yields a pro-inflammatory effect, contrasting
with the halogenated anesthetics (92, 93). A recent
work on pigs reports just the opposite (94), whereas no
difference has also been described (95). In the ab-
sence of more precise data, it thus seem more appro-
priate that the anesthetist chooses the pharmacologi-
cal agent to be used, carefully considering  the hemo-
dynamic changes produced by the anesthetics.
The neuromuscular blockers, commonly considered
essential for the laparoscopic surgery, do not impor-
tantly change respiratory mechanics during pneu-
moperitoneum in intubated patients (15). The insertion
of the trocar in spontaneously breathing patients with
LMA seems to be more difficult than in intubated para-
lyzed subjects; however, after the placement of the tro-

car, both approaches allowed a good observation of
the surgical field (83).
In conclusion, laparoscopic surgery presents evident
pre-operative risks besides the beneficial outcomes
observed after surgery. It is imperative that the anes-
thetist be thoroughly aware of the possible respirato-
ry and hemodynamic impairments and of the compli-
cations pertaining to the pneumoperitoneum to solve
the undesired outcomes adequately and quickly. Fi-
nally, one must bear in mind that there are patients
presenting a more important risk to develop complica-
tions and deserving a closer observation, as the eld-
erly or obese, and those with cardiopulmonary dis-
ease.
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