INTRODUCTION

Long and mid term success of osseointegrated implants, is generally evaluated following osseointegration rate during time measured on radiographic and instrumental (ISQ) analysis. In recent years, several authors focused their investigation on factors affecting the achievement and maintenance of correct osseointegration. Their conclusion indicate different conditions:

- implant type;
- surgical technique;
- implant surface;
- implant connection.

No significant differences in mid or long implant success and survival have been reported in literature between submerged and non-submerged implant (1).

Several surgical techniques have been examined, and any kind of technique showed an initial crestal bone resorption, as evidenced by Albrektsson, with a range value between 1 mm during healing period and 0.1 mm per year in the following years (2, 3).

Other studies demonstrated, by means of radiographic analysis, that bone resorption starts at peri-implant crestal bone after abutment insertion, independently from the surgical technique used (4).

More recent papers focused on the individuation of the best mid-long term osseointegration related to implant connection and surface.

The aim of this work is to assess clinical and radiographic parameters of dental implants characterized by a new kind of implant surface (Synthegra®, GEASS, Udine) (Fig. 1). The selected parameters have been measured during healing period follow-
The surgical protocol was performed respecting the indications provided by the manufacturer (GEASS®, Udine, Italy). Dental implants used in our study have been constituted by Geass Way Milano Synthegra surface with diameter 3.4 - 3.8 - 4.5 - 5.5 mm. The surgical procedure of soft and hard tissues was based on minimal invasive approach, then the two dental implants for patient have been inserted the first with submerged technique and the second one with non-submerged technique.

In case of submerged procedure the reentry has been performed six weeks after the insertion, with further two weeks in case of healing screw application. The functional loading has been performed 8 weeks from the insertion.

The clinical parameters examined were:
- suppuration;
- mPII;
- mBII;
- peri-implant probing depth;
- attachment level;
- mucosal cheratinization;
- cortical bone loss (CBL).

Crestal bone loss has been measured by means of individualized digital periapical x-rays on Digora® software. The measure selected was the distance between the implant shoulder and the most coronal bone contact point on mesial and distal surface.

Clinical measurements have been performed by 6 points probing using PCP15UNC probes by two different operators in two different times. Radiographic measurements have been examined at the implant insertion (T0) and at a distance of 1, 3, 6, and 12 months; clinical measurements have been performed at 2 (to favor a correct gingival attachment), 6 and 12 months.

The results obtained were analyzed by means of SPSS® 17 for Mac OS statistical software and then subjected to meta-analysis in order to find possible significant differences.

Results

No implants failures have been reported during observation period with a survival rate of 100%
at 3 years follow-up; 180 measures of the implant/cortical marginal bone distance have been collected while 432 measures of per-implant probing have been collected. The measurements achieved evidenced moderate peri-implant bone resorption both during healing phase both during loading phase. The highest resorption value was 1 mm in just one implant (Fig. 2) while the mean value detected was 0.25 ± 0.16 mm. The probing performed after temporary crowns insertion were always in the limit of biological width, the mean value was 2.05 ± 0.56 mm; the highest value was 4 mm (6, 7) (Tab. 1).

Table 1 - Probing and radiographic measures.

<table>
<thead>
<tr>
<th>Number of Dental Implant</th>
<th>Measurement</th>
<th>Number of Samples</th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Implant</td>
<td>6 Point Probing</td>
<td>432</td>
<td>2.05 mm</td>
<td>0.56 mm</td>
</tr>
<tr>
<td>18 Implant</td>
<td>RX bone Measurement</td>
<td>108</td>
<td>0.24 mm</td>
<td>0.16 mm</td>
</tr>
</tbody>
</table>

Figure 2
Periapical x-ray at 12 months; notice the 1 mm bone resorption.

Figure 3
Implants inserted with submerged and non-submerged technique.

Discussion

The innovative Syntheegra® surface, based on the use of laser source properly directed, allows the realization of implant surfaces with micro-geometry predetermined avoiding the need of contaminants. Through the laser titan ablation millions micrometrical holes are produced perfectly symmetrical in dimension (20μm), shape (circular concave), and distribution (30μm from the center of adjacent holes). The implant surface obtained is contaminants free differently from other type of implant surface (8-12).

In our study, within the limit of the number of implants observed, we found minimal bone resorption in implants flash to the bone inserted both with submerged technique, both with non-submerged technique (Fig. 3). The implant insertion following non-submerged technique permits the increase of intra-sulcular space, reestablishing correct biological width clinical visible through increased muco-gengival tunnel.

Further investigations should be focalized on the cause of peri-implant tissues loss morphology and on long term stability control of peri-implant/muco-gengival complex (Figs. 4, 5).
It’s highly probable that a micro-roughened controlled and uniform surface, without chemical alterations, could favor adhesion, proliferation and differentiation of osteoblasts on the implant surface. As a conclusive consideration, non submerged technique proved to be more reliable allowing wider peri-implant attached gingiva and avoiding the need of a second surgical procedure to substitute the cover screw with the healing screw.

References

7. Lee DW, Park KH, Moon IS. Dimension of interproximal soft tissue between adjacent implants in two distinctive implant systems. J of Periodontology. 2006;77: 1080-84.
9. Behneke A, Behneke N, d’Hoedt B. A 5-year longitudinal study of the clinical effectiveness of ITI solid-screw implants in the treatment of mandibular eden-
