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Summary

Transcranial magnetic stimulation (TMS) is a technique
developed to non-invasively investigate the integrity of
human motor corticospinal tracts. Over the last three
decades, the use of stimulation paradigms including sin-
gle-pulse TMS, paired-pulse TMS, repetitive TMS, and in-
tegration with EEG and functional imaging have been de-
veloped to facilitate measurement of cortical excitability.
Through the use of these protocols, TMS has evolved in-
to an excellent tool for measuring cortical excitability.
TMS has high sensitivity in detecting subtle changes in
cortical excitability, and therefore it is also a good meas-
ure of disturbances associated with brain disorders. In
this review, we appraise the current literature on cortical
excitability studies using TMS in neurological disorders.
We begin with a brief overview of current TMS measures
and then show how these have added to our understand-
ing of the underlying mechanisms of brain disorders.
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Introduction

Cortical excitability

The nervous system is a complex cellular network com-
posed of as many as 10 billion neurons and 60 trillion
synapses that mediate interneuronal communication.
Each neuron can be regarded as a component in a com-

plex system of highly specialised, distinct neural circuits.
Every aspect of behaviour, from primitive reflexes to ab-
stract thinking and emotion, relies on the precision of the
computational processes performed by these circuits,
which in turn is critically dependent on healthy excitato-
ry and inhibitory systems (1). These systems are facili-
tated by the interaction of neurotransmitters and cellular
receptors to determine the level of neuronal excitability
(excited or inhibited) either directly by controlling flow of
ions through ion channels or through a complex cas-
cade of intracellular interactions via secondary mes-
sengers. Excitation is mainly facilitated by the action
of glutamate on N-methyl-d-aspartate (NMDA), and
non-NMDA receptors, while inhibition is mainly mediat-
ed by the action of gamma-aminobutyric acid (GABA) on
GABAA and GABAB receptors. The patterns of interneu-
ronal connections and communication are not irrevoca-
bly fixed; they show variability and can be reorganized.
Normally this plays a critical role in growth and develop-
ment, and in learning and memory (2), however abnor-
mal reorganization of brain circuits can also result in dis-
turbed function and manifest as various neurological
disorders (3-5). 
Neurological disorders are associated with a high de-
gree of disability, marked psychosocial problems and in
some cases death. Despite the rapid advances made in
the field, leading to improved control of many neurolog-
ical disorders previously considered untreatable, a sig-
nificant fraction remain difficult to manage. One of the
main challenges hindering the development of more op-
timized therapeutic options for these patients is that the
pathophysiological basis of many neurological disorders
remains obscure. This is because the hypotheses devel-
oped to explain these disease rely on animal experimen-
tal studies. There is thus a huge need for a safe and
non-invasive measure of neuronal functions in vivo, in
order to achieve a better understanding of how they are
altered in neurological disorders.

Transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a non-inva-
sive, painless tool which can be used in humans to
measure parameters of cortical excitability in vivo (6-8).
TMS stimuli, delivered through a coil to selected scalp
locations overlying the primary motor cortex, mainly ac-
tivate pyramidal neurons transsynaptically. This pro-
duces indirect waves descending along the corticospinal
fibres. Applied over the motor cortex this discharge can
produce a twitch in a corresponding muscle. This mus-
cle activity, referred to as a motor evoked potential
(MEP), can be recorded on electromyography (EMG)
from many muscles, including the small muscles of the
hand (9). Similarly, stimulation over the occipital cortex
leads to the perception of ‘phosphenes’ (flashes of light)
which are reported by the subject under stimulation.
TMS evokes action potentials in a local population of
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neurons (6). Highly excitable neurons need to be stim-
ulated less than depressed neurons in order to elicit
muscle activity, or to induce the perception of
phosphenes. Measurements made using TMS are de-
pendent on small networks of interneurons (excitatory
and inhibitory) and their synaptic interactions with each
other (6). Thus, in the motor cortex, the stimulus re-
quired to produce a typical MEP reflects the global ex-
citability/conductivity of cortical interneurons, fast corti-
cospinal pathways, as well as spinal motoneurons (10).
Varying the intensity of stimulation and using different
stimulation paradigms can help probe these circuits
separately, providing a number of different measures of
cortical excitability. Hence TMS is uniquely able to ob-
tain information about the state of excitability of neu-
ronal circuits in vivo in the human brain, and has the po-
tential to link information obtained experimentally (cel-
lular, synaptic, small local networks) with clinical obser-
vations. This makes it an excellent tool for studying the
pathophysiology underlying many neurological disor-
ders (7,8). 

Measures of cortical excitability probed using TMS

TMS was initially used in evaluation of the integrity of
the corticospinal tract in humans through conductivity
studies (11). It was then progressively applied to the
measurement of the excitatory and inhibitory properties
of the primary motor cortex itself. There are several
physiological protocols utilizing the two broad classes of
TMS paradigms: single- or paired-pulse TMS and repet-
itive TMS (rTMS). The stimulation paradigms used in
neurological disorders to date and their pathophysiolog-
ical significance are summarized in table 1 and figure 1
(over). These parameters have disclosed various de-
fects in cortical excitability associated with these disor-
ders as discussed below.

Safety

The only absolute contraindication for TMS/rTMS is the
presence of metallic hardware (such as cochlear im-
plants, an internal pulse generator or medication
pumps) in close contact with the discharging coil. In
such instances there is a risk of inducing malfunction of
such implanted devices (45). Single- and paired-pulse
TMS are generally considered to be safe even in pa-
tients with epilepsy (46), where the crude risk of a TMS-
associated seizure ranges from 0.0 to 2.8% for single-
pulse TMS and from 0.0 to 3.6% for paired-pulse TMS.
With respect to rTMS, the current safety guidelines stip-
ulate that in high risk patients the risk/benefit ratio
should be weighed for the patient before each study
(45). These include patients with conditions like epilep-
sy or stroke and those receiving medications that lower
seizure threshold.

Cortical excitability in neurological disorders

Epilepsy

The epilepsies are a complex group of syndromes char-
acterized by episodic brain dysfunction manifesting as

the occurrence of recurrent seizures (47). Epilepsy syn-
dromes can be broadly classified into two main types:
generalized, which mainly include idiopathic generalized
epilepsy (IGE), and focal. IGE, as a group, is believed to
have a strong underlying genetic basis (48), while focal
epilepsies are mostly considered to be due to an under-
lying focal pathology, such as hippocampal sclerosis or
an area of cortical dysgenesis (48), although a genetic
basis is thought to underlie some focal epilepsy syn-
dromes (49). Regardless of the type or cause, the pro-
posed underlying mechanism for the epileptic process
(based on animal and experimental data) is that it is me-
diated by a disturbance in the neuronal excitatory/in-
hibitory balance leading to the formation of hyperex-
citable seizure networks (50). How this disturbance
comes about (increased excitation, decreased inhibition
or both) remains elusive. From this perspective, TMS
studies in epilepsy have been very helpful. Results of
TMS studies in epilepsy are summarized in table 2
(over). While findings vary somewhat between studies,
and likely reflect subject and methodology differences,
predominantly in terms of medication and timing of stud-
ies, overall, cortical hyperexcitability resulting from de-
fective inhibitory mechanisms seems to be a common
feature in most types of epilepsy. It also seems that the
alterations occurring within intracortical inhibitory cir-
cuits depend on the type of epilepsy, the underlying ae-
tiology, and the site of the epileptic focus. Furthermore,
these changes have been found to vary with menstrual
cycle (51,52), time of day (53), sleep (54) and sleep
deprivation (55,56), suggesting that neuromodulatory
transmitters and hormones act at the level of local neu-
ronal network interactions. Alterations in cortical ex-
citability have also been observed for 24 (57) and even
up to 48 hours (58) before and after (59) seizures, pro-
viding direct evidence of prolonged peri-ictal changes
within intracortical circuits.
Cortical excitability changes associated with epilepsy
are also influenced by treatment, with reports of reduc-
tion of the baseline hyperexcitability after starting
antiepileptic medication (60-65). One study also noted
that reduction in cortical excitability to normal or near
normal values only occurs in patients who become
seizure-free, but not those who continue to have
seizures (66). Effects were similar irrespective of the
specific antiepileptic drug used. This suggests that de-
spite what is known about the mechanisms of action of
each drug, i.e. whether it works on specific channels or
receptors, a common effect of anticonvulsants possibly
occurs at the level of interneuronal interactions, and
these interactions are complex. Patients who contin-
ued to have seizures showed evidence of progressive
changes in hyperexcitability onset (67). These
changes possibly reflect altered receptor properties or
disturbed receptor interactions within the inhibitory in-
tracortical circuits, which could be the result of the
seizures or may reflect the course of other undefined
epiphenomena contributing to the development of
pharmaco-resistance. This was reversed with success-
ful epilepsy surgery (68-70), treatment with vagal
nerve stimulation (71), continuous anterior thalamic
deep brain stimulation (72), and after multiple subpial
transection in a single patient with unilateral cortical
dysgenesis (73).
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Table 1 - Summary of TMS paradigms used to date in neurological disorders with their pathophysiological significance.

Measure Parameter Definition Pathophysiology

Abbreviations: EEG=electroencephaolography; GABA=gamma (γ)-aminobutyric acid; ISI=interstimulus interval; MEP=motor evoked
potential; NMDA=N-methyl-d-aspartate; TMS=transcranial magnetic stimulation.

A. Membrane
excitability

Motor threshold Minimum level of a given stimulus
required to produce a defined
response (12). 

Membrane excitability of cortical
interneurons and reflects conductivity of ion
(predominantly sodium) channels (13-15). 

D. Neuroplasticity
changes

RepetitiveTMS Can be used to induce sustained
changes in excitability (synaptic
efficacy) that significantly outlast the
stimulation period. 

Low-frequency stimulation results in
depression of the target brain area,
while high-frequency stimulation
induces facilitation of the region (38).
Theta burst stimulation is a high-
frequency stimulation paradigm that
can produce either inhibitory (if
applied continuously) or facilitatory (if
applied intermittently) effects (39). 

Effects are due to mechanisms similar to
the long-term potentiation and long-term
depression effects elicited in animal
models by low- and high-frequency
electrical stimulation, respectively (38).
These effects are thought to be
predominantly mediated by NMDA
receptors (39,40) as well as by modulation
of GABA receptor functions (41). 

E. Corticocortical
connectivity

I. TMS and EEG TMS-evoked surface potentials from any cortical region can be recorded with
scalp EEG electrodes and used to estimate regional excitability of the extra-motor
cortex (42,43). 

This increases spatial benefits and also the very high temporal resolution of EEG
makes it possible to detect differential effects of brain disturbance on TMS-induced
responses.

II. TMS and fMRI Combining TMS and fMRI makes it possible to exploit both the good spatial
resolution (can identify changes that occur in both cortical and subcortical
structures) and the good temporal resolution of TMS. 

Such data can provide information on connectivity patterns. These patterns reflect
the propagation of activity in the stimulated area to distal areas via neural
connections (44).

B. Corticospinal
projections

MEP recruitment
curves

Stimulus/response curves obtained by
recording the size of MEP produced
with TMS at a single site using a
range of intensities. 

Reflects changes in the GABA-ergic and
monoaminergic systems as well as sodium
and calcium channel properties (16).

C. Intracortical
circuits

I. Cortical silent
period

II. Paired-pulse paradigms are used to investigate the cellular mechanisms underlying different forms
of intracortical inhibition and facilitation (22). They involve a conditioning stimulus which precedes a
test stimulus by a number of interstimulus intervals. 

Period of electromyographic silence
that occurs after the MEP when TMS
is delivered to the motor cortex during
a forceful muscle contraction.

Later part most likely mediated by GABAB

inhibitory mechanisms (17-21). 

1. Intracortical
inhibition and
facilitation

• Short-interval intracortical
inhibition: at ISIs of 1-6 ms. 

• Intracortical facilitation: at ISIs of
8-30 ms. 

• Long-interval intracortical
inhibition: at ISIs of about 100-400
ms.

• Most likely GABAA receptor-mediated
inhibition (23-26). 

• Possibly via excitatory glutamate-
mediated interneuronal circuits (24,
26-28), although a role for GABAA has
also been suggested (29). 

• Most likely mediated by slow inhibitory
post-synaptic potentials activated via
GABAB circuits (15, 30-32).

2. Transcallosal
inhibition

The relationship between the two
motor cortices can be studied by
paired-pulse TMS at both motor
cortices (33,34). 

Inter-hemispheric inhibition thought to be
mediated through excitatory axons that
cross the corpus callosum to act on local
inhibitory (mainly GABAB-mediated)
neurons in the contralateral motor cortex (35).

3. Short-latency
afferent
inhibition

Afferent sensory input through
stimulation of the median nerve at the
wrist or cutaneous fibres at the index
finger can modify the excitability of
the motor cortex with a complex time
course (36). 

Thought to be regulated by muscarinic and
cholinergic cerebral circuits (36,37). 



Stroke

Ipsilateral MEPs are rarely recorded in healthy subjects
at rest. It is thus intriguing that one of the early findings
in stroke patients was the presence of ipsilateral MEPs
in the paretic limb (95-98). This finding also seemed to
correlate with other measures of increased excitability in
the unaffected hemisphere (99-101). Cortical silent peri-
od (CSP) duration was prolonged in the affected hemi-
sphere after subcortical stroke (102,103), except in pa-
tients with post-stroke movement disorder or epilepsy
(104). In contrast, short interval intracortical inhibition
(SICI) was reduced in the affected hemisphere in the
acute phase of a motor cortical stroke (103,105-107)
and remained decreased thereafter, regardless of func-
tional recovery. SICI was also reduced in parietal-motor
circuits in the intact hemisphere in patients with neglect
following stroke compared to patients without neglect
and normal controls (108). Also in the unaffected hemi-
sphere, SICI was usually initially reduced, but subse-
quently returned to normal values (109,110) or even be-
came enhanced compared to the affected hemisphere
in patients with good recovery (106,111). This suggests
that in the early phases following a stroke, increased in-
tracortical inhibition leads to reduced activity in the unaf-
fected hemisphere, resulting in increased activity of the
affected hemisphere, thereby promoting recovery. Fur-
ther support for this comes from reports of loss of tran-
scallosal inhibition from the affected to the unaffected

hemisphere in acute cortical stroke (107,109,112),
which would increase the excitability of the unaffected
hemisphere. There are also reports of increased tran-
scallosal inhibition from the unaffected to the affected
hemisphere just before movement onset in the paretic
limb in patients with chronic stroke (113,114). A recent
study used dynamic causal modelling to assess effec-
tive connectivity in the motor system before and after
rTMS of the contralesional motor area in stroke patients
(115). The authors reported reduced transcallosal con-
nectivity between homologous parts of the motor area
during motor task performance and enhanced intrinsic
connectivity between the motor area in the affected
hemisphere and the supplementary motor area. These
changes in connectivity were accompanied by, and pos-
sibly responsible for, an improvement in motor perform-
ance, providing evidence of cerebral reorganization fol-
lowing stroke. Thus, the changes in cortical excitability
following stroke appear to occur bilaterally, although the
pattern seems to correlate with lesion location and stage
of recovery. 

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disorder of the motor neurons that
results in progressive paresis of limb, bulbar and respi-
ratory muscles (116). The mechanisms underlying motor
neuron degeneration in ALS remain elusive, although
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Figure 1 - Schematic representation of the different parameters measured using TMS.
a) Motor cortical excitability showing (I) motor evoked potential (MEP) recorded with a single pulse. Latency is measured from stim-
ulus artefact to initial deflection in baseline; amplitude is measured peak to peak. Examples of (II) short-interval intracortical inhibition
at the 2 ms interstimulus interval (ISI), (III)  intracortical facilitation at the 10 ms ISI and (IV) long-interval intracortical inhibition at the
250 ms ISI. 
b) Averaged EEG responses evoked by TMS. The signals are arranged according to the layout of the electrodes. The amplitudes of
the responses are highest in the vicinity of the stimulated site (highlighted) and attenuate with increasing distance from stimulation. 
c) Sample of a connectivity map obtained after rTMS of the right motor area on fMRI. SPMs are thresholded for corrected clusters
(p<0.05 corrected for multiple comparisons) and are superimposed on the mean EPI image. M1=motor area; SMA=supplementary
motor area.

a) Motor cortical excitability

b) TMS-EEG

c) TMS-fMRI
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Table 2 - Summary of interictal TMS findings in patients with epilepsy.

TMS measure Generalized epilepsy Focal epilepsy

Abbreviations: EEG=electroencephaolography; IGE=idiopathic generalized epilepsy; ICF=intracortical facilitation; LICI=long-interval
intracortical inhibition; SICI=short-interval intracortical inhibition; TMS=transcranial magnetic stimulation.

Motor threshold

• Decreased in subsets of untreated patients
(63,74) 

• Normal in drug-naive patients (56,66,75-78)
and those on medication (79-81). 

• Decreased in patients on the side
contralateral to the side of version in treated
IGE patients with versive seizures (all taking
medication). 

• Increased in the hemisphere with the
epileptic focus compared to the non-affected
hemisphere in untreated patients with focal
epilepsy originating outside the primary
motor area (66,75).

• Inter-hemispheric difference in a patient with
motor focal epilepsy and cortical myoclonus
originating from the motor cortex (82).

• No difference compared to controls in drug
naïve patients (75,83) or those who
discontinued medication at least 48 hours
before the TMS study (84). 

• Increased in patients with chronic epilepsy
on multiple anticonvulsants (85-88).

Intracortical inhibition
and facilitation

• Reduced SICI compared to controls both
drug-naïve (75,80,92) and on treatment
(80); most marked with progressive
myoclonic epilepsy (79,92). 

• Increased SICI in two treated patients (93). 

• Marked reduction in LICI in different cohorts
with untreated IGE (56,66,75,76) as well as
treated progressive myoclonic epilepsy
(79,81). 

• No difference in LICI compared to controls
in a cohort with juvenile myoclonic epilepsy
(majority on medication) (80). 

• No changes in ICF in any of the studies.

• Reduced SICI in the affected compared to
non-affected hemisphere and controls in
patients with untreated focal epilepsy not
involving the primary motor area
(56,66,75,83). 

• No change in SICI in treated patients (84,85).

• Substantially defective SICI and excess ICF
in patients with cryptogenic focal epilepsy on
medication with a higher seizure frequency
and a higher proportion of interictal
generalized epileptic discharges on EEG (86).

• Decreased LICI only in the affected
hemisphere in patients with untreated focal
epilepsy (56,66,75). 

• Reduced ICF in both hemispheres (84).

TMS-EEG

• TMS-induced activation at various scalp sites
elicited a late phase response in a majority of
patients that was absent in healthy subjects
(94). Abnormalities were detected in some
epilepsy patients where interictal EEG
records were normal. 

Cortical silent period

• Prolonged in some untreated patients with
IGE (77,89). 

• Normal in other groups of untreated patients
with IGE (75,78) as well as in treated
patients with juvenile and progressive
myoclonic epilepsy (80,81).

• Shortened on the affected side in patients
with focal motor epilepsy and cortical
myoclonus originating from the motor cortex
(82) and primary motor cortical dysgenesis
(73). 

• Prolonged on the affected side in patients
with focal epilepsy associated with cortical
dysgenesis outside the primary motor cortex
(90) and another group with different focal
epilepsy syndromes taking medication (88).

• Shortened in the hemisphere with the focus
compared to the non-affected side in a study
including patients with focal epilepsy outside
the motor cortex (on medication) (85). 

• Ipsilesionally shortened in patients with
primary motor area lesions; prolonged in
non-motor cortical lesions (91). 

• Bilaterally prolonged in treated patients with
focal epilepsy associated with unilateral
clonic movements (87).

• No changes between the affected and non-
affected in un-medicated patients with
temporal and extra-temporal epilepsy (75,84)
or compared to controls (75,78,84). 



cortical hyperexcitability has been proposed as a possi-
ble mechanism (117). One of the hypotheses linked to
this concept is a “dying forward” hypothesis whereby
corticomotoneurons mediate anterograde degeneration
of anterior horn cells via glutamate-mediated excitotoxi-
city (118). Many TMS studies reported an increased mo-
tor threshold (MT) in patients with ALS (119-128). Some
found that MEPs could not even be elicited in some of
their patients. Conversely, many other studies found a
decreased MT (129-132). The reason for this discrepan-
cy is not entirely clear. Because some investigators
(133), but not others (134), have observed that MT cor-
relates with disease duration and increases with disease
progression (122,124,135,136), it has been suggested
that a normal (or even reduced) MT early in the course
of illness is consistent with an early phase of cortical hy-
perexcitability and glutamate-induced excitatory neuro-
toxicity (130,133). In support of this, several studies re-
port reduction in the duration of the CSP (122,124,136-
139), particularly early in the course of the illness
(136,137). In addition, decreased SICI has also been
demonstrated in ALS using conventional paired-pulse
TMS (139-142) as well as using the threshold tracking
paired-pulse paradigm. This paradigm in particular con-
sistently showed reduced SICI across different levels of
conditioning stimuli (143-146). The change was more
prominent in patients with less severe symptoms stud-
ied early on but was also seen in advanced cases (143).
It was also frequently accompanied by reduced MT, in-
creased MEP recruitment, and shortened CSP
(143,145). These findings all indicate increased cortical
excitability. The authors postulated that SICI reduction in
ALS represents degeneration of inhibitory intracortical
circuits, combined with excessive excitation of high-
threshold excitatory pathways (146). Interestingly, simi-
lar TMS paradigms were all found to be normal in spin-
obulbar muscular atrophy (Kennedy’s disease), a disor-
der that clinically may ‘‘mimic” ALS, suggesting a lack of
significant cortical involvement in this disease (144).

Dementia

Dementia is defined as a serious loss of cognitive abili-
ty in a previously unimpaired person, beyond what might
be expected from normal aging. Alzheimer’s disease
(AD) is the most common form of dementia (147). One
of the prevailing theories regarding the cause of AD-re-
lated brain degeneration is the amyloid hypothesis,
which suggests that accumulation of beta amyloid pep-
tides triggers neuron degeneration through disruption of
calcium ion homeostasis (148). The MT was reported to
decrease in patients with AD (149) and also a slight and
variable reduction in SICI has been observed in some
studies (149-151), suggesting hyperexcitability, which in
turn suggests reduced inhibition. This seems to be con-
tradicted by the reportedly normal SICI in another study
(152), however, TMS-evoked P30 amplitude was re-
duced in AD subjects in a combined TMS-EEG study
(153). This reduction was prominent in the temporo-pari-
etal area, ipsilateral to the stimulation side as well as in
the contralateral fronto-central cortex corresponding to
the sensorimotor area. P30 is also thought to reflect
GABAA mediated activity (154), and thus reduction in its
amplitude would support defective inhibition. TMS stud-
ies also suggest a cholinergic deficit in AD given that the

abnormality most commonly reported in these patients
is found in short latency afferent inhibition (SAI)
(149,150,155). This is supported by the report of abnor-
mal SAI in dementia with Lewy bodies (a form of demen-
tia that responds to cholinergic medications) (156) and
normal SAI in frontotemporal dementia (157), a non-
cholinergic form of dementia. 

Migraine

Migraine is a common medical disorder that has multiple
phenotypes with complex and poorly understood under-
lying mechanisms (158,159). Many hypotheses exist.
Among these, disturbances in neurotransmitters, espe-
cially calcitonin gene-related peptide and serotonin
(160), channelopathies (familial hemiplegic migraine)
(161), and cortical spreading depression with subse-
quent release of inflammatory mediators (162) are the
most widely accepted, however, the nature of the under-
lying pathogenesis remains to be clarified. An increased
MT was reported in some migraine studies (163-167) but
not in others (168,169), a discrepancy that could be due
to differences within the cohorts studied. In patients with
migraine with or without aura, shortened CSP was found
in the hand muscles (170) as well as facial muscles (171)
suggesting defective inhibition. But other studies found a
normal CSP (163,167,168,172) and one study even
found a prolonged CSP in patients with chronic migraine
(172). In patients with migraine with or without aura, SICI
tested between attacks was normal in one study (163)
and ICF was increased in another (165), whereas in an-
other group of migraineurs with aura SICI was decreased
with normal intracortical facilitation (ICF) (173). Long-in-
terval intracortical inhibition (LICI) was investigated in on-
ly one study that compared patients with and without au-
ra to controls and patients with new-onset epilepsy (174).
The authors found that the pattern of reduced LICI in mi-
graine was very similar to that seen in epilepsy, although
of much smaller magnitude. This provides more evi-
dence supporting an overlap between the two paroxys-
mal disorders. Nevertheless, there is a marked variabili-
ty in the overall results, which seems to suggest that mo-
tor cortical excitability measures are highly dependent on
the type of migraine studied and on the stage of illness.
In view of this and because of the high prevalence of vi-
sual symptoms associated with migraine, many authors
chose to study occipital cortical excitability instead.
Some of these studies found evidence of occipital corti-
cal hyperexcitability, in particular in migraine with aura,
as suggested by reduced threshold for occipital TMS to
induce phosphenes in migraineurs (168,175-178) using
single or paired pulses. However, other authors found
that this threshold was increased in the interictal period
(169) or showed increased variability over time (179).
Therefore, while there is some evidence to support mo-
tor and visual hyperexcitability probably due to de-
creased inhibition, this remains to be confirmed. 

Movement disorders

DYSTONIA

Dystonia is a disorder characterized by sustained mus-
cle contractions causing twisting and repetitive move-
ments or abnormal postures. The disorder may be ge-
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netically determined (primary dystonia) or caused by
other factors such as birth-related or other physical trau-
ma, infection, or reaction to pharmaceutical drugs, par-
ticularly neuroleptics. It can be localized to a certain
group of muscles or can be generalized (180). The pre-
cise mechanism is not known, although primary dysto-
nia is suspected to be caused by decreased activity
within GABA-ergic circuits including those in the basal
ganglia and Purkinje neurons (181). An interplay with
environmental conditions is also thought to play a role
especially in focal dystonia brought on after trauma, or
induced by certain movements or drugs. 
A shortened CSP was observed in patients with dysto-
nia involving hand (182) and facial muscles (183). This
did not normalize with botulinum toxin injection (184).
The CSP was even shorter when the dystonia affected
upper and lower facial muscles concurrently than when
it affected either alone (183). These findings are consis-
tent with cortical hyperexcitability due to decreased GA-
BA-ergic inhibition. Further evidence of decreased inhi-
bition comes from the reports of reduction in both task-
specific (185) and rest (186,187) SICI in patients with
upper limb dystonia. SICI was also decreased in DOPA-
responsive dystonia (188) and in asymptomatic carriers
of the DYT1 gene mutation (one of the genetic abnor-
malities associated with dystonia) (189). There was also
a report of decreased active LICI in patients with writer’s
cramp (190), although in another study increased LICI
was found using a slightly different paradigm in patients
with different types of dystonia (191). Intracortical facili-
tation on the other hand was found to be normal or
slightly increased in patients with dystonia (192). More-
over, decreased SICI was not site-specific and was ob-
served on both the affected and unaffected sides in pa-
tients with focal arm dystonia (186), as well as in hand
muscles in patients with cervical dystonia (193) and ble-
pharospasm (192). This suggests that the disturbance
of inhibitory circuits and the resultant hyperexcitability is
not restricted to the circuits clinically affected by the dis-
order. Support for this comes from evidence of en-
hanced TMS-induced plasticity changes in focal dysto-
nia even in patients who show no dystonic symptoms in
the hand on paired associative studies (194,195) and in
patients compared to controls in a continuous theta
burst stimulation study (196). There is evidence that this
abnormality in SICI is transiently restored with botulinum
toxin injection in the dystonic muscles (187), but this
was not found in another study in patients with pure
writer’s cramp (197).

PARKINSONIAN DISORDERS

Parkinsonism refers to a group of neurological disor-
ders chararacterized by tremor, hypokinesia, rigidity,
and postural instability (198). While the neurodegener-
ative condition Parkinson’s disease (PD) is the most
common cause of parkinsonism, a wide range of other
aetiologies can lead to a similar set of symptoms (199).
PD is a degenerative disorder that results from the
death of dopaminergic cells in the substantia nigra
(midbrain) for an unknown reason. One of the theories
proposed to explain the symptoms associated with PD
relates to the brainstem-basal ganglia-motor systems
(200). Dopaminergic circuits are important for the action
of the basal ganglia, which normally exert a constant in-

hibitory influence on the motor systems. This prevents
the motor systems from becoming active at inappropri-
ate times. When a decision is made to perform a partic-
ular action, inhibition of the required motor system is re-
duced, thereby releasing it for activation. Dopamine acts
to facilitate this release of inhibition, and thus the net ef-
fect of dopamine depletion is to produce hypokinesia.
Progressive supra-nuclear palsy is also a degenerative
disorder which in its early stages can be mistaken for
PD, however later on patients develop difficulty swallow-
ing, ophthalmoparesis especially with vertical gaze, and
dementia (201). Multiple system atrophy is another de-
generative disorder associated with parkinsonian symp-
toms together with disturbances in balance and auto-
nomic functions (202). Decreased MT and increased
MEP recruitment were found in early- and late-stage pa-
tients with PD (203). When these patients were re-stud-
ied after proper therapy, the MT was found to have in-
creased in early-stage patients but still remained lower
than in normal controls. The CSP was also found to be
shorter in patients with PD (203,204) especially at high
stimulation intensities (205,206); while this finding sup-
ports disturbances within inhibitory circuits, it could also
reflect defective dopaminergic circuits, as the CSP was
shown to become prolonged following dopaminergic
medications (207) as well as surgical lesions of the in-
ternal globus pallidus (208,209). In addition, the CSP
became longer in early-stage patients after therapy
(203) and was found to be more prolonged in patients
with PD studied while on dopaminergic medications,
compared to controls (210,211). Trains of subthreshold
5-Hz rTMS over the primary motor hand area resulted in
prolongation of the CSP (206). This effect could be influ-
enced by dopaminergic circuits as rTMS of the motor
area has been shown to induce dopamine release in the
striate nucleus (212). Furthermore, the fact that the ab-
sence of this effect was not seen in controls suggests
that PD patients may be particularly susceptible to mod-
ulatory effects of rTMS on intracortical inhibition. Paired-
pulse TMS also provides evidence of defective intracor-
tical inhibition. SICI decreased when measured during
rest, showing a subsequent improvement with dopamin-
ergic medications (210), deep brain stimulation of the
subthalamic nucleus (213) or low-frequency rTMS over
the motor cortex (214). Of note, active SICI remained
unchanged (211,215), which is interesting considering
the static nature of tremor associated with PD. LICI was
reported to increase, with subsequent normalization fol-
lowing dopaminergic medications in one study (215).
Conversely, decreased LICI, which also normalized in
response to dopaminergic medications, was reported in
another (216). Some studies observed decreased ICF in
advanced PD patients denoting hypo-activity within ex-
citatory circuits (214,217,218). These data suggest im-
pairment of intracortical inhibitory and perhaps even
faciltatory circuits. The pattern of this, however, seems
to be strongly modulated by the dopaminergic system.
There is also a suggestion of changes in cholinergic cir-
cuits, whose pattern varies between the different pakin-
sonian disorders. In PD, SAI was found to be normal in
patients off medications but administration of dopamin-
ergic medication led to reduced SAI (219). In a study
that included PD patients with dementia, SAI was found
to be increased whereas patients with progressive
supra-nuclear palsy showed normal SAI (220). In con-
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trast, patients with multiple system atrophy with parkin-
sonian features showed reduced SAI (221).

HUNTINGTON DISEASE

Huntington disease (HD) is a neurodegenerative genet-
ic disorder that affects muscle coordination and leads to
cognitive decline and dementia. It is the most common
genetic cause of chorea. Damage mainly occurs in the
striatum, but as the disease progresses, other areas of
the brain are also significantly affected (222). One of the
proposed mechanisms underlying this is increased exci-
tatory output. The CSP was slightly shortened in one
study on patients with HD (223) and found to be pro-
longed and variable in two others (224,225). This differ-
ence may be partly explained by the clinical form of HD
(224) and the technique used to collect CSP traces
(225). The results of the small number of studies that
used paired-pulse TMS in HD were also inconsistent:
whereas some studies found reduced SICI and LICI
(224,226), others did not find any abnormalities
(227,228). ICF was found to be normal or slightly in-
creased in patients with HD (226). Thus the limited data
available point to disturbances within excitatory circuits
leading to minimal hyperexcitability; however this needs
to be confirmed in further studies and larger cohorts. 

TOURETTE SYNDROME

Tourette syndrome is a childhood-onset neuropsychi-
atric disorder characterized by involuntary movements
or vocalizations known as tics. Tics are typically reduced
during task performance and concentration. Genetic
and environmental factors play a role in the aetiology
but the exact causes and pathophysiology are unknown.
Cortical disinhibition has been proposed as a possible
mechanism specifically within basal ganglia-thalamo-
cortical circuits (229). The MT was reportedly similar in
patients and in controls while in the resting state, where-
as MEP recruitment was found to be more gradual in pa-
tients compared to controls (230). With pre-activation,
similar recruitment of MEPs and CSP were found in pa-
tients and controls. This suggests that the distribution of
excitability in the corticospinal system in patients at rest
is different to that in healthy individuals (230). In addi-
tion, SICI was reduced with no difference in MEP ampli-
tude and ICF at rest, while there was a subsequent in-
crease in MEP amplitude in the pre-movement phase
(231). SICI was reduced in these patients in the early
phase of movement preparation (similar to rest) followed
by a transition towards more inhibition. Subsequently
modulation of SICI was comparable to controls, while
MEP recruitment was reduced in later phases of move-
ment preparation. These data suggest defective inhibi-
tion in Tourette syndrome. It also appears that early dur-
ing movement preparation, patients start from an abnor-
mally decreased level of SICI and show a subsequent
modulation of inhibitory activity to become similar to
healthy controls. This suggests that reduced cortical in-
hibition is one of the factors contributing to the difficulty
that patients have in suppressing involuntary tics. Then,
during motor performance, motor cortical excitability
most likely underlies top-down control from higher motor
areas and the prefrontal cortex, which overrides these
abnormal subcortical inputs to guarantee adequate be-

havioural performance (231). SAI was also reduced in
patients suggesting impaired activity within cholinergic
circuits. This is supported by the report of a single dose
of nicotine abolishing the difference between patients
and controls in SICI and SAI, with no effect on MT (232).

TREMOR

Essential tremor (ET) is a slowly progressive neurologi-
cal disorder whose most recognizable feature is a
tremor of the arms that is apparent during voluntary
movements (233). The underlying mechanism is not
clear but there is some suggestion that it may be relat-
ed to defective inhibition particularly in cerebellar cells
(234). SICI was reduced in patients with ET and this cor-
related with motor hyperactivity (235). On the other
hand, patients with primary writing tremor were found to
have normal SICI and LICI (236). The CSP was normal
in all types of tremor, but shortened in cortical my-
oclonus (82,237). Thus while further studies are need-
ed, there seems to be some evidence supporting defec-
tive inhibition in ET but not other forms of tremor. 

CEREBELLAR DISEASES

While the cerebellum does not serve to initiate most
movement, it does interact with areas of the brain that
do (238). In doing so, the cerebellum promotes the syn-
chronicity and accuracy of movement required for pur-
poseful motor activity. The main clinical features of cere-
bellar disorders include incoordination and imbalance.
The MT was increased in the contralateral motor cortex
in patients with cerebellar damage (239-241). SICI was
found to be either normal (242) or increased together
with reduced ICF (243-246) in cerebellar ataxia. Inter-
estingly, reduced ICF was also found in patients with in-
herited spinocerebellar ataxia, specifically types 2 and 3
(244), suggesting a role for genetic properties in influ-
encing the pattern of change in cortical excitability. In-
creased SICI and reduced ICF were also observed in
patients with cerebellar stroke of the superior or the in-
ferior cerebellar artery territories (247). In addition, the
CSP was found to be prolonged in patients with cerebel-
lar disease (248-250). Taken together, these results
suggest that cerebellar diseases are associated with ex-
cessive inhibition and possibly also defective excitation
within intracortical motor circuits resulting in reduction in
motor cortical excitability.

Concluding remarks 

A variety of TMS methods are now available to study
cortical excitability changes associated with various
neurological disorders. While the yield of these methods
is much greater in disorders such as epilepsy, ALS, dys-
tonia and stroke, than in others, TMS has provided
some important and insightful in vivo inferences on the
mechanisms underlying many neurological disorders. It
is likely that studies including more homogenous co-
horts and implementing more rigorous study designs
and standardized stimulation paradigms will overcome
the controversial findings in some of the reports and
thus provide more conclusive inferences into even more
neurological disorders. Neurophysiological interactions

R.A.B. Badawy et al.

138 Functional Neurology 2012; 27(3): 131-145 



within complex interconnected neuronal networks will al-
so be amenable to further testing with the integration of
TMS with EEG and neuroimaging techniques.This holds
great promise for addressing more research questions
and eventually for the translation of this knowledge into
clinical practice. 
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