Cerebral oxygenation and haemodynamic effects induced by nimodipine in healthy subjects

Daniela Canova, PhD
Silvistro Roatta, PhD
Giuseppe Micieli, MD
Daniele Bosone, MD

* Neurovascular Laboratory, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
* Physiology Division, Department of Neuroscience, University of Turin, Turin, Italy
* Department of Emergency Neurology, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy

Corresponding author: Daniela Canova
Lab. di Diagnostica Neurocardiovascolare
Fisiopatologia Neurovegetativa
IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino
Via Mondino 2, 27100, Pavia, Italy
E-mail: daniela.canova@unito.it

Summary

The cerebrovascular effects of nimodipine are still poorly understood even in the healthy condition; in particular, its effects on tissue oxygenation have never been investigated.

The aim of the present study was to investigate changes in cerebral oxygenation and blood volume upon oral administration of nimodipine (90 mg) in the healthy condition.

In eight subjects, changes in cerebral tissue oxygenation and blood volume were determined simultaneously with changes in blood velocity of the middle cerebral artery (V_{MCA}) by using, respectively, near infrared spectroscopy (NIRS) and transcranial Doppler ultrasonography (TCD). The subjects also underwent non-invasive assessment of arterial blood pressure (ABP) and end-tidal CO$_2$. TCD and NIRS CO$_2$ reactivity indices were also extracted.

Nimodipine significantly reduced ABP (11±13%) and increased heart rate, as well as NIRS oxygenation (6.0±4.8%) and blood volume indices (9.4±10.1%), while V_{MCA} was not significantly decreased (2.0±3.5%). Nimodipine slightly but significantly reduced the V_{MCA} response to changes in pCO$_2$, whereas the CO$_2$ reactivity of NIRS parameters was improved.

The observed changes in cerebral tissue oxygenation and blood volume indicate nimodipine-induced cerebrovascular dilation and increased perfusion, while the effect on V_{MCA} possibly results from dilation of the insonated artery. The present results cast doubt on the putative nimodipine-induced impairment of CO$_2$ reactivity.

KEY WORDS: cerebral blood flow, hyperventilation, near infrared spectroscopy, nimodipine, rebreathing

Introduction

Nimodipine is a 1,4-dihydropyridine mainly acting as an antagonist of L-type voltage sensitive calcium channels (L-VSCCs), hence its ability to dilate blood vessels. Unlike other L-VSCC antagonists, such as verapamil and nifedipine, which penetrate the blood-brain barrier poorly and are, therefore, unlikely to reach significant concentrations within the central nervous system (1), nimodipine is highly lipophilic, readily crosses the blood-brain barrier and fully diffuses into the brain and cerebrovascular fluid (2,3); thus, it demonstrates a marked specificity for the cerebrovasculature. Its vasodilatory action on cerebral vessels is considered to be preferentially exerted on arterioles with a diameter of 70-100 μm, according to both in vitro and in vivo studies (4,5).

The use of nimodipine in patients is recommended mainly in clinical conditions in which cerebral perfusion is impaired. Preclinical studies of the influence of nimodipine in various animal models of cerebral ischaemia further support its main indication as a drug with anti-ischaemic activity (6,7).

Nimodipine is used to prevent cerebral ischaemia and post-ischaemic brain damage in a range of cerebrovascular disorders, such as subarachnoid haemorrhage (SAH), acute ischaemic stroke, cerebral ischaemia without stroke, vascular dementia and migraine; however, its beneficial effects in some of the above conditions are still under discussion (6,8). Clinical investigations have shown that it is effective in preventing symptomatic vasospasm and delayed ischaemic neurological deficits following aneurysmal SAH (6,9,10), whereas the clinical efficacy of nimodipine in the treatment of acute ischaemic stroke is much more controversial and needs to be further investigated (6,11,12).

In the field of vascular cognitive impairment, the role of voltage-dependent Ca$^{2+}$ channel blockade in preventing ischaemic brain tissue death is highly debated (13,14). The short-term benefits of nimodipine demonstrated in some clinical trials do not justify its use as a long-term anti-dementia drug (15) and results obtained in elderly patients affected by subcortical vascular dementia need to be confirmed by other groups and in larger scale trials (16).

In order to better define the possible mechanisms of nimodipine in cerebral disorders and, thus, its therapeutic potential, the authors of this study felt there was a need to reinvestigate its action in healthy individuals, to establish whether nimodipine can be effective in increasing cerebral perfusion in spite of its potential hypotensive effect.

While several animal studies rather consistently reported increased cerebral perfusion by nimodipine (4, ref.s in 17), results are more controversial in the few relevant human studies, which report either increases (18,19) or no change (1,20) in cerebral blood flow (CBF). Also controversial is the modulation of cerebrovascular CO$_2$ re-
activity, which has been found to range from totally preserved to severely impaired (see below). In addition, it is not known whether nimodipine-induced cerebrovascular changes can affect tissue oxygenation. Continuous and bedside monitoring of cerebral blood oxygenation and cerebral blood volume is non-invasively performed using near infrared spectroscopy (NIRS), a technique that is not yet employed in routine clinical practice, mainly due to the difficulty in interpreting the many different signals provided (21), as recently highlighted in the assessment of cerebrovascular responses to neurovegetative tests (22). For this reason, interpretation of NIRS monitoring in pathological conditions could be facilitated by a reference study in healthy subjects. The aim of the present study was to investigate in healthy subjects the effects of nimodipine administration on cerebral haemodynamics and oxygenation through the simultaneous use of transcranial Doppler ultrasonography (TCD) and NIRS. The possibility of detecting changes in cerebrovascular CO2 reactivity based on NIRS parameters was also investigated and the results compared with standard vascular reactivity based on changes in cerebral blood velocity.

Materials and methods

Subjects

Eight healthy volunteers, with a median age of 27 years (2 men and 6 women), were studied. All the subjects were fully informed about the procedure and signed a consent form. The study, which had local ethics committee approval, was conducted at the C. Mondino National Institute of Neurology Foundation in Pavia, Italy.

Protocol

The study sessions were performed in a quiet room at constant environmental conditions, with subjects lying in a comfortable supine position, without any visual or auditory disturbances. The subjects were not allowed to speak during the experiment and were asked to keep their eyes closed and to relax. As depicted in figure 1, after a 20-min resting period, necessary to reach stable haemodynamic levels, the subjects performed the CO2 reactivity tests, i.e., hyperventilation (HV) and rebreathing (RB), separated by a 6-min interval. After 10 min, nimodipine (Nimotop 4% solution, Bayer Health Care Pharmaceuticals Inc., Wayne, NJ, USA) 90 mg was orally administered (subjects received a dose ranging between 1.06 and 1.64 μg/kg). HV and RB were then repeated, once the haemodynamic effects of nimodipine had fully developed (15-20 min after administration).

Hyperventilation

The subjects were asked to hyperventilate to achieve and maintain for 1 min an end-tidal CO2 pressure (PETCO2) of 20 mmHg. To this end, they were provided with visual feedback from the display of the capnograph (OxiCap 4700, Ohmeda, USA), which was continuously monitoring PETCO2 from the expiratory flow collected by a nasal cannula.

Rebreathing

The subjects breathed, maintaining a spontaneous breathing frequency, through an anaesthesiology mask connected to a 5-L rebreathing bag until a stable PETCO2 was achieved and maintained for at least 20 s. The mask was also connected with a sampling line to the capnograph (see above) to allow continuous recording of the expiratory flow (PETCO2).

Monitoring and measurements

Blood velocity was measured bilaterally in the middle cerebral artery (V MCA) using 2 MHz TCD (Multi-Dop X, DWL, Singen, Germany). Cerebral tissue oxygenation and blood volume were locally detected by NIRS (NIRO 300, Hamamatsu Photonics K.K., Japan), which simultaneously provided Beer-Lambert (BL) conventional spectroscopy and spatially resolved spectroscopy (SRS) parameters. SRS measures of tissue oxygenation and blood volume are provided, respectively, by the tissue oxygenation index (TOI), expressed in %, and the tissue haemoglobin index (THI), expressed in arbitrary units, whereas the BL measures of tissue oxygenation and blood volume are provided, respectively, by concentration changes in oxyhaemoglobin (O2Hb) and total haemoglobin (tHb), expressed in μmol/L.

The NIRS probe was placed high on the left side of the forehead as described in a previous paper (22). Arterial blood pressure (ABP) was measured using a non-invasive pressure monitor (Finapres 2300, Ohmeda, USA).

Data acquisition and processing

The NIRS signals TOI, THI, O2Hb, and tHb were continuously acquired and digitally transferred to a PC by a proprietary software system (Hamamatsu Photonics), (sampling frequency = 2 Hz) throughout the whole session. These data were subsequently exported in text files for off-line analysis in Microsoft Excel. V MCA, ABP, PETCO2, tHb, THI, and TOI were continuously and simultaneously displayed and digitized on a PC (sampling frequency = 200 Hz) using the PowerLab 8/SP.

Figure 1- Schematic representation of the experimental protocol. HV = hyperventilation, RB = rebreathing. Time intervals are expressed in minutes. Nimodipine oral administration is indicated by the arrow.
data acquisition system and Chart 5.0 software (ML 785, ADInstruments).

The same software was used to extract mean values and relative changes in the different signals throughout the different tests. It also allowed for off-line calculation of heart rate (HR), end-diastolic \(V_{\text{MCAD}} \) \((V_{\text{MCAD}}) \) and peak systolic \(V_{\text{MCAS}} \) \((V_{\text{MCAS}}) \), as well as cerebrovascular resistance and CO₂ reactivity indices.

The pulsatility index (PI) was calculated by subtracting the \(V_{\text{MCAD}} \) from the \(V_{\text{MCAS}} \) and then dividing by the mean \(V_{\text{MCAS}} \).

The cerebrovascular resistance index (CVR) was calculated as \(\text{CVR} = \text{ABP}/V_{\text{MCAD}} \).

\(\text{CO}_2 \) reactivity values both for TCD and NIRS variables were computed. For \(V_{\text{MCAD}} \) and THI, the \(\text{CO}_2 \) vascular reactivity value was calculated as the percentage change in the variable divided by the absolute change in \(\text{PETCO}_2 \), according to the following formula:

\[
\text{CO}_2 \text{ reactivity} \text{Var} = \frac{\text{Var}_{\text{test}} - \text{Var}_{\text{Baseline}}}{\text{Var}_{\text{Baseline}}} \times 100/\Delta \text{PETCO}_2
\]

For TOI, \(\text{tHb} \) and \(\text{O}_2\text{Hb} \), we calculated \(\text{CO}_2 \) vascular reactivity as the absolute change in the variable divided by the absolute change in \(\text{PETCO}_2 \), according to the following formula:

\[
\text{CO}_2 \text{ reactivity} \text{Var} = \frac{|\text{Var}_{\text{test}} - \text{Var}_{\text{Baseline}}|}{\Delta \text{PETCO}_2}
\]

where \(\text{Var}_{\text{test}} \) is the value of the variable averaged over the last 20-s period of the respiratory manoeuvre (HV or RB) and \(\text{Var}_{\text{Baseline}} \) is the value of the variable averaged over the 60-s period preceding the start of the manoeuvre (23-25).

Systemic and cerebrovascular effects of nimodipine were evaluated by assessing changes exhibited by the different variables at 15-20 min after oral administration (post-) with respect to the control (pre-administration) value. Both values were averaged in reference to a 1 min interval.

The effects of the drug on cerebrovascular reactivity to altered \(\text{PETCO}_2 \) were also evaluated by comparing \(\text{CO}_2 \) reactivity before with \(\text{CO}_2 \) reactivity after drug administration.

Statistical analysis

Statistical analysis was performed using SAS version 9.1 for Windows® software (SAS Institute Inc., Cary, North Carolina).

Statistical comparisons between pre- and post-nimodipine measurements were performed using a Student’s paired sample t-test, for normally distributed data, or the Wilcoxon signed-rank test, for non-normally distributed data. The normality of within-pair difference was assessed by means of the Shapiro-Wilk test.

P values less than 0.05 were considered statistically significant.

Data are expressed as mean±SD in the tables and text and as mean±SEM in the graphs.

Results

The effects of nimodipine on systemic and cerebrovascular variables

No adverse reaction to the drug was reported and the examination was well tolerated by all the subjects.
3.8±2.7%), whereas VMCASys increased non-significantly (by 3.9±5.3%). As a consequence, mean VMCAdia only slightly decreased (by 2.0±3.5%). The cerebrovascular resistance indices showed an opposite trend, i.e. CVR was reduced in 6 out of 8 subjects (overall reduction: 9.4±13.7%) while PI was sharply increased (by 33±15%). Nevertheless, a significant correlation was found between the two indices (r = -0.72, p<0.05).

The two NIRS blood volume indices, THI and tHb, concurrently increased (THI by 9.4±10.1%; tHb by 4.4±3.9 μM), as did the two NIRS oxygenation indices, TOI and \(\text{O}_2\text{Hb}\) (TOI by 6.0±4.8%; \(\text{O}_2\text{Hb}\) by 5.1±3.7 μM).

Discussion

In the present work we analysed the response to oral nimodipine administration (effects on cerebral haemodynamics and oxygenation) by integrating Doppler velocimetry with NIRS. As regards the general action of the drug, we observed a slight but significant hypotensive effect, partially counteracted by a compensatory increase in HR with no significant effects on VMCAdia. An increase in cerebral blood volume was detected by NIRS parameters, along with an increase in cerebral oxygenation indices, TOI and \(\text{O}_2\text{Hb}\).
Nimodipine appeared to reduce CO₂ reactivity of VMCA while producing an opposite trend in CO₂ reactivity of NIRS variables.

Nimodipine effect on cerebral blood flow

The literature contains controversial data on CBF response to nimodipine administration. In numerous *in vitro* studies, nimodipine was found to inhibit contractions of cerebral arteries both in animals and in humans (ref.s in 4, 26-28). Furthermore, dilation of cerebral arterioles has been demonstrated *in situ* in a number of animal studies and in a few studies in humans. The technique widely used to study cerebrovascular reactivity *in situ* is direct observation of pial vessels through a cranial window, following intravenous or topical nimodipine administration; in humans this is possible in patients undergoing cranial surgery (4,5).

Despite the above evidence, *in vivo* studies evaluating the effect on CBF changes have produced quite heterogeneous results. With a few exceptions (29-31), nimodipine has been shown to increase CBF in the majority of animal studies (ref.s in 4,17); however, the few available studies in healthy humans provide non-homogeneous results.

Table II - Cerebral CO₂ reactivities of TCD and NIRS parameters in response to hyperventilation, before and after nimodipine administration.

<table>
<thead>
<tr>
<th>Variable</th>
<th>before nimodipine</th>
<th>after nimodipine</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMCA (%/mmHg)</td>
<td>0.65±0.25 *</td>
<td>0.54±0.21 * †</td>
</tr>
<tr>
<td>THI (%/mmHg)</td>
<td>0.13±0.42</td>
<td>0.20±0.20 *</td>
</tr>
<tr>
<td>TOI (%/mmHg)</td>
<td>0.12±0.14</td>
<td>0.16±0.11 *</td>
</tr>
<tr>
<td>tHb (µM/mmHg)</td>
<td>0.017±0.12</td>
<td>0.033±0.035 *</td>
</tr>
<tr>
<td>O₂Hb (µM/mmHg)</td>
<td>0.028±0.10</td>
<td>0.039±0.046 *</td>
</tr>
</tbody>
</table>

Table III - Cerebral CO₂ reactivities of TCD and NIRS parameters in response to rebreathing, before and after nimodipine administration.

<table>
<thead>
<tr>
<th>Variable</th>
<th>before nimodipine</th>
<th>after nimodipine</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMCA (%/mmHg)</td>
<td>1.7±0.5 *</td>
<td>1.4±0.8 *</td>
</tr>
<tr>
<td>THI (%/mmHg)</td>
<td>0.59±0.67</td>
<td>0.77±0.48 *</td>
</tr>
<tr>
<td>TOI (%/mmHg)</td>
<td>-0.012±0.21</td>
<td>-0.024±0.21</td>
</tr>
<tr>
<td>tHb (µM/mmHg)</td>
<td>0.21±0.12 *</td>
<td>0.36±0.36 *</td>
</tr>
<tr>
<td>O₂Hb (µM/mmHg)</td>
<td>0.071±0.10</td>
<td>0.17±0.22</td>
</tr>
</tbody>
</table>

Abbreviations: VMCA=cerebral blood velocity; THI=tissue haemoglobin index; TOI=tissue oxygenation index; tHb=Beer-Lambert total haemoglobin concentration; O₂Hb= Beer-Lambert oxyhaemoglobin concentration. *=significantly different from 0 (p<0.05); †=significantly different from before nimodipine (p<0.05).

at a dose of 0.5 μg·kg⁻¹·min⁻¹ failed to find significant differences in CBF (32). More recently, effects on CBF were inferred from changes in CBF (32).

In a previous study by Kraaijer et al. (33), VMCA was also slightly lowered (by 4.7%) by nimodipine, administered orally in two different doses of 30 mg and 60 mg t.i.d. for four days. The non-significant effect on VMCA observed in the present study is in agreement with previous reports (1,33). Since constriction of large cerebral vessels has never been reported in the literature, the possibility of a reduction in MCA diameter in response to nimodipine should be excluded a priori. Thus, we are left with the possibility that CBF (=VMCA*cross sectional area of MCA) was either unchanged or increased, depending on whether the vessel diameter was unchanged or increased, respectively.

Other parameters taken into consideration in order to infer changes in cerebrovascular resistance are CVR and PI. Paradoxically, an increase of cerebrovascular resistance in response to nimodipine was reported on the basis of the observation of a PI increase (34). However, the PI is known to be affected by several confounding factors. In particular, the pulsatility of blood flow is known to increase with compliance of the vascular bed, which in turn decreases with increasing blood pressure (35). On this basis, the nimodipine-induced increase in PI probably indicates increased compliance of the vascular bed, which could be secondary to the concomitant decrease in ABP as well as to a direct action of the drug on the myogenic tone of the vessels. For this reason, PI should not be considered a reliable index of cerebrovascular resistance. Conversely, a non-significant 9% decrease in cerebrovascular resistance is provided by CBF; however, a hypothetical dilatation of MCA would lead to underestimation of blood flow in the MCA and consequently to underestimation of the decrease in CBF.

Cerebrovascular reactivity

Several studies have investigated the possible effects of nimodipine on cerebrovascular reactivity to changes in pCO₂, by monitoring changes in CBF, diameter of pial vessels, or VMCA, in both animals and humans. The literature presents results ranging from no effect (33,41) to strong impairment of CO₂ reactivity (20,39).

VMCA monitoring constitutes a sensitive tool to investigate vasoreactivity that, being non-invasive, is widely used (23). VMCA responses to HV and RB in the control (pre-administration) condition are compatible with those reported in other studies (42) and both are slightly reduced by nimodipine, thus supporting previous reports of nimodipine-induced reduction of vasoreactivity (see above).

Near infrared spectroscopy has occasionally been used to assess cerebrovascular responses to CO₂ challenges (22-25) but not to assess the modulatory action of Ca²⁺ channel blockers. NIRS parameters, as compared to VMCA, were here found to have lower sensitivity to changes in pCO₂, in agreement with previous studies (23,24). For this reason, and also due to the small number of investigated subjects, CO₂ reactivity of SRS parameters failed to reach statistical significance in the control condition. A particularly low reactivity was exhibited by TOI during RB. In the literature, TOI, as well as THI, is reported to decrease in response to hypocapnia (43) and to increase in response to normoxic hypercapnia (24,25), suggesting cerebral vasoconstriction and vasodilation, respectively. However, RB also includes a hypoxic stimulus which can result in partial arterial haemoglobin desaturation. The combination of these two opposite effects, i.e., vasodilation and haemoglobin desaturation, probably explains the minimal TOI response to RB.

With this exception, it is however interesting to observe that the extent and significance of CO₂ reactivity increased after nimodipine during both HV and RB, sug-
gesting increased potential to constrict and to vasodilate. This apparent contrast with the indication provided by V_{MCA} can partly be attributed to the fact that TCD and NIRS monitored different brain areas that may have been differently affected by nimodipine (44).

Limitations of the study

One limitation of this study is that it was not designed as a randomised, double-blind, placebo-controlled study. In a pilot study, secondary effects, including headache and dizziness, were consistently observed in volunteers following nimodipine administration at these doses. For this reason, we assumed that the subjects taking part in the present study could not really have been kept blind with respect to the given drug.

In addition, the measurements were not repeated after the drug effect wore off. This was because we needed to limit the overall duration of the experimental protocol (already lasting over two hours, including the initial preparation).

Concluding remarks

In conclusion, the combined measurement of TCD and NIRS parameters provided complementary information in assessing the cerebrovascular effects of nimodipine. The present data showed increased blood volume and oxygenation at cerebral level, supporting the idea of cerebrovascular dilation and increase in CBF, respectively. Incidentally, this would imply a nimodipine-induced dilation of the middle cerebral artery to account for the observed (non-significant) decrease in V_{MCA}. Although NIRS parameters exhibited lower sensitivity to CO$_2$ reactivity tests, they challenge the concept that cerebrovascular reactivity is impaired by nimodipine.

Acknowledgements

The authors thank Dr D. Nucera (Department of Animal Pathology, Faculty of Veterinary Medicine, University of Turin, Italy) for his advice on the statistics, Luisella Milano (Dept of Neuroscience, Physiology Division, University of Turin, Italy) for her help in the preparation of the figures, and Dr Piera Tosi for support provided in the experimental procedures. This study was funded by the C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy and by the Istituto Nazionale Ricerche Cardiovascolari - Consorzio Interuniversitario (INRC).

References

23. Cummings KJ, Swart M, Ainslie PN. Morning attenuation in cerebrovascular CO$_2$ reactivity in healthy humans is associated with a lowered cerebral oxygenation and an aug-