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Summary

Fluctuation is a common feature of all psychogenic gait
disorder (PGD) patterns. Whether this fluctuation in-
volves only the degree of impairment or whether it af-
fects the gait pattern itself remains an interesting ques-
tion.
We hypothesize that, on repeated measurements, both
normal and abnormal gait may present quantitative dif-
ferences while maintaining their basic underlying pat-
tern; conversely, in psychogenic gait, the basic pattern
appears not to be preserved.
Using an optoelectronic system, data acquired from 19
normal subjects and 66 patients were applied to train a
neural network (NN) and subsequently classify gait pat-
terns into four different groups (normal, ataxic, spastic-
paraparetic and parkinsonian). Five patients who ful-
filled clinical criteria for psychogenic gait and six con-
trols were then prospectively evaluated on two sepa-
rate occasions, three months apart. 
Normal controls and ataxic, parkinsonian or spastic pa-

tients were correctly identified by the NN, and catego-
rized within the corresponding groups at baseline as
well as at a three-month follow-up evaluation. NN analy-
sis showed that after three months, no PGD patient pre-
served the gait pattern detected at baseline, even
though this finding was not clinically apparent. 
Modification of gait pattern detected by repeated kine-
matic measurement and NN analysis could suggest the
presence of PGD, particularly in difficult-to-diagnose
cases.

KEY WORDS: gait analysis, neural network, psychogenic gait

Introduction

Diagnostic agreement in psychogenic movement disor-
der (PMD) cases is poor, diagnosis being based on
video review of phenomenology alone, and strongly re-
lying on clinical interpretation of historical features and
diagnostic workup. The limited value of currently avail-
able clinical criteria for PMD, and the difficulty character-
izing uncertain cases suggests that there is a need for
new diagnostic criteria (Morgante et al., 2012), or even
perhaps for the development of instrumental evaluations
with greater sensitivity and specificity.
Abnormal gait can be an isolated phenomenon in pa-
tients with PMDs, or part of a more complex psy-
chogenic condition (Baik and Lang, 2007). Psychogenic
gait disorders (PGDs), either isolated or occurring as
part of more complex generalized psychogenic syn-
dromes, are not uncommon, accounting for 1.5% to
26% of patients admitted to a neurology unit (Bhatia,
2001; Lempert et al., 1991). Some cases without bizarre
features simulating organic disorders remain obscure
despite careful workup, and are only clarified during fol-
low up.
Different classifications of PGD have been published,
some of which have established PGD categories includ-
ing ataxic, hemiparetic, spastic, dystonic, truncal my-
oclonic, stiff-legged, tabetic and camptocormic, with
most patients falling into the ataxic, hemiparetic and
spastic groups (Keane, 1989; Hayes et al.,1999). 
Although the psychogenic nature of gait is in general
quickly apparent to an experienced observer, these are
often difficult patients, and optimal diagnosis and man-
agement require extra time. Imaging studies are easily
justified and sometimes informative even when suspi-
cion of an organic disease is low. Diagnosis depends
mainly on observation of bizarre motor behavior, dis-
crepancy between obvious dysfunction and normal di-
agnostic evaluation, and evidence of psychiatric abnor-
malities. Gait fluctuation is a common feature of all PGD
patterns, but whether this fluctuation concerns only the
degree of impairment, or whether it affects the charac-
teristics or pattern of gait is an issue that has yet to be
addressed applying objective analysis methodology.

Lack of maintenance of gait pattern as measured by
instrumental methods suggests psychogenic gait
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In the present study we trained an automated neural
network (NN) analysis system to classify gait patterns
into four different groups by introducing data from pure
clinical cases with unequivocal patterns. In addition to
normal gait, we used the most common types of abnor-
mal gait patterns found in neurodegenerative disorders,
namely parkinsonian, ataxic and spastic.
We hypothesize that on repeated measurements both
normal and abnormal gait may express quantitative dif-
ferences between measurements while preserving the
same pattern, whereas in cases with a psychogenic ori-
gin, patients may be unable to maintain the same pat-
tern.

Materials and methods

The protocol was approved by the local IRB and all pa-
tients signed an informed consent form prior to study
participation.

System hardware for kinematic analysis and
walking paradigm

SYSTEM HARDWARE

Controls and patients were supplied with comfortable
clothing, and asked to perform tests barefooted. A six-
camera optoelectronic ELITE system (BTS Bioengineer-
ing, Milan, Italy) was used to determine time and space
coordinates of seventeen separate wireless markers.
Recordings were conducted in a quiet, artificially illumi-
nated room, in the presence of two investigators and a
relative of the patient. Evaluations were conducted on a
non-patterned solid light blue treadmill. The room was
empty except for the treadmill in order to avoid potential
visual cues.

WALKING PARADIGM

Subjects performed five trials, walking ten meters along
a straight line. Patients and controls were allowed three
to five minutes’ rest between tests; patients were in-
structed to walk at a comfortable, self-paced speed, sim-
ilar to one they might use at home during unhurried
everyday activities. Cycles corresponding to the first and
last step were excluded from the analysis.

Variables included in the neural network

All data obtained were processed using software creat-
ed specifically for this study by calculating the spa-
tiotemporal position of the corporeal center of mass
(COM: geometric point corresponding to ideal location
for body weight application) as well as the spatiotempo-
ral position of the center of pressure (COP: point of dy-
namic support). By positioning the markers and applying
previously calculated variables, absolute and normal-
ized values were determined according to subject height
and weight for an additional 42 gait kinematic variables.

Development and characterization of a neural
network

To classify gait disorders on the basis of kinematic pa-
rameters and using a NN, it is first necessary to deter-

mine relevant kinematic variables critical to each of the
conditions to be tested, then normalize value differences
and variations depending on measurements, subject
gender, height or weight, and finally analyze magnitude
and deviations of critical variables between cases stud-
ied and normal controls, as well as typical pathologies.
In order to determine whether the variables selected
were truly meaningful for characterizing kinematics of gait
patterns, a cluster analysis was performed prior to the im-
plementation of the network. Cluster analysis is a multi-
variate statistical analysis technique applied to divide a
set of objects into groups (clusters) in which the profiles
of objects in the same group are very similar (property of
internal cohesion) and very different from those from dif-
ferent clusters (external isolation). Essentially, cluster
analysis considers each subject as a point, in a space of
n dimensions; the coordinates of the point in that n-di-
mensional space are the values of the variables chosen.
For this study, an algorithm grouping subjects according
to the n-dimensional Euclidean distance between them
was implemented using an ad hoc computer program.
We were then able to measure the 42 variables men-
tioned in the previous section, excluding non-statistically
significant differences between gait patterns. Neverthe-
less, the number of possible combinations was still in the
order of 200 million. Therefore we calculated the different
possible combinations generating clusters, and assigned
a score for each combination of variables according to
the clinical classification groups, which resulted in a
promising set of 16 variables (Table I).
An artificial NN is a computer algorithm that allows the
classification of elements in different groups from a se-
ries of input variables. This consists of an input layer
(the number of nodes in this layer is equal to the num-
ber of input variables), an output layer and an undeter-
mined number of intermediate layers (or hidden layers).
The number of nodes in the output layer is chosen ac-
cording to the responses expected of the network, which
in this case was four, equal to the number of gait pat-
terns selected. Values of variables in the input layer
were subjected to a threshold function, a nonlinear sig-
moid type function (f (x) = 1 / (1 + exp (-x)), which deter-
mined the intensity needed to transfer to the next layer.
Values were transferred entirely to each of the nodes of
the next layer, where weighted summation of these val-
ues was performed, i.e., they were subjected to a linear
hyperplane-type function. 
The network used was perceptron, with one hidden lay-
er and supervised learning with a back propagation al-
gorithm. Network training was performed using a group
of subjects whose gait pattern had been established
clinically. Initially the network was programmed with ran-
dom weights per node. Introducing variable values from
these subjects in the input layer, we assumed the values
of all four nodes in the output layer were 1 for the node
of the subject’s gait pattern, and 0 for the others. Nor-
mally this condition is not met, causing the algorithm to
transfer the values obtained in the output to the input, in
order to adjust appropriately for node weight (feedback)
based on a calculated error. If the variables chosen
were correct, then for a given number of feedback loop
outputs (in the order of tens of thousands), all cases
would be sufficiently close to expected results. When
this occurred the network was said to be trained, with
values of weights considered the result of such training,
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a result later verified in an independent group of sub-
jects with known gait patterns. 

Gait patterns included for neural network training

In order to feed the NN we assessed gait in 19 normal
subjects (9 males and 10 females; mean age 54.2
years), in 24 presenting spastic gait (11 males and 13
females; mean age 56.7 years; 10 due to stroke and 14
to cervical myelopathy), in 10 with pure ataxic gait (6
males and 4 females; mean age 61.3 years; with ac-
quired progressive ataxia), and in 32 subjects with
parkinsonian gait due to Parkinson´s disease (all with
stable response to L-dopa without dyskinesias; 18
males and 14 females; mean age 60.4 years). All pa-
tients were under prospective follow-up at the neurology
outpatient clinic. Two neurologists separately confirmed
specific gait patterns in each subject, both clinically, as
well as after ancillary workup including: brain and spine
MRI scans, motor and somatosensory evoked poten-
tials, and peripheral nerve conduction velocity. Com-
plete orthopedic evaluation ruled out hip, knee or foot
pathology. Patients with a history of hip or knee replace-
ment, or MMSE scores below 26 were excluded. 

Application of the neural network for PGD
diagnosis

PATIENTS

Patients were prospectively selected from our move-
ment disorders clinic during 2010. Five patients fulfilled
clinical criteria for psychogenic gait and underwent ex-

tensive workup to rule out other underlying physical con-
ditions. The diagnostic classification of Fahn and
Williams (1988) was followed, requiring confirmation of
abrupt onset, inconsistent, incongruent gait pattern, and
prior history of minor injury. 
Psychogenic features were assessed in these patients
using techniques such as suggestion, repeated at-
tempts at triggering abnormal movement, distraction,
and administration of placebo in one case. All patients
presented a history of prior psychiatric illness and fluc-
tuation of impairment. None had additional psychogenic
neurological symptoms other than psychogenic gait. Al-
though consensus on final diagnosis was always
reached, it took several visits to confirm. Table II (over)
shows demographics and clinical characteristics of all
five patients.
A group of six controls, not belonging to the group used
to feed the NN, were prospectively selected from the
movement disorders clinic: one male patient 60 years
old suffering from pure ataxic gait, one male 62 years
old with Parkinson’s disease, one female 67 years old
with spastic gait, one normal control 65 years old, and
one female 63 years old with myopathy. The myopathic
patient was also analyzed to show that NN can exclude
other gait patterns (data not shown).

METHODS

Patients and controls were evaluated prospectively us-
ing the system hardware and walking paradigm previ-
ously described, on two separate occasions three
months apart, in accordance with the usual evaluation
period at our clinic. Data obtained were then incorporat-
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Table I - Values of the variables used in training the network to classify the four gait patterns analyzed

Gait Pattern (mean ± SD)

Normal Spastic Ataxic Parkinsonian

Stance time (**) .68 ± .02 .77 ± .05 .77 ± .09 .72 ± .04

Swing time (**) .91 ± .05 .74 ± .10 .74 ± .17 .83 ± .09

Double stance time (**) .23 ± .06 .43 ± .12 .44 ± .21 .32 ± .11

Cycle length (*) .81 ± .08 .56 ± .13 .57 ± .20 .64 ± .15

Average swing speed (*) .78 ± .09 .54 ± .12 .61 ± .18 .63 ± .14

Maximum swing speed (*) .79 ± .09 .56 ± .11 .64 ± .17 .64 ± .14

Average gait speed (*) .72 ± .11 .41 ± .14 .48 ± .21 .54 ± .16

Step width (*) .43 ± .11 .46 ± .10 .71 ± .20 .47 ± .14

Swing time (*) .77 ± .03 .77 ± .08 .69 ± .09 .75 ± .06

Average longitudinal position of CM (*) .41 ± .16 .43 ± .23 .27 ± .24 .31 ± .23

Average vertical position of CM (*) .75 ± .10 .77 ± .11 .84 ± .11 .80 ± .12

Vertical excursion of CM (*) .54 ± .10 .43 ± .11 .47 ± .12 .48 ± .17

Maximum position of CM (*) .54 ± .15 .35 ± .09 .36 ± .16 .38 ± .15

Lateral excursion of CM (*) .36 ± .09 .37 ± .09 .58 ± .17 .40 ± .08

Foot rotation/ Knee flex.-ext. .25 ± .13 .24 ± .15 .45 ± .28 .19 ± .14

Knee flex.-ext./ Pelvis rotation .48 ± .13 .45 ± .10 .41 ± .13 .57 ± .16

Values of the variables used in training the network and their average values and standard deviation in the four gait patterns ana-
lyzed. The average values of the variables in each column represent the position of the centroid of each gait pattern in the 16 D space.
Abbreviations and symbols: (*)=as a percentage of the gait cycle; (**)=normalized according to height and weight; (***)=calculated
relative to the center of pressure; CM=center of mass.



ed into the NN. Clinical evaluation of patients and of the
control group was performed at baseline and after three
months’ follow-up by the same two neurologists. Gait
pattern was classified during each visit and rated at fol-
low-up as unchanged, slightly changed or presenting a
different pattern altogether from baseline. Neurologists
were blind to NN classification on both occasions; how-
ever, at the follow-up visit they were not blind to the ini-
tial clinical diagnosis.

Results

Neural network

The NN developed categorized four quite different gait
patterns: normal, ataxic, parkinsonian and spastic-para-
paretic, based on the combination of 16 variables. Each
group presented a centroid (a point calculated on the
basis of the average of the 16 coordinates) and a radius
(equivalent to twice the average distance from the cen-
troid). The groups were found to be distributed without
overlapping in a 16-dimension space (Fig. 1). The val-
ues   for each variable in the different groups are detailed
in Table I.

Controls 

The normal control, as well as the controls with ataxic,
parkinsonian or spastic gait was adequately identified by
the NN at baseline evaluation. At the three-month follow-
up visit, the normal control as well the patients with de-
fined gait patterns remained in the same groups. The
myopathic patient did not fit any of the NN-defined gait
patterns, as expected (Fig. 2).

Psychogenic patients

None of the PGD patients showed changes in gait pat-
tern on clinical evaluations performed after an interval of

three months by the same two neurologists; however,
kinematic evaluation and NN analysis indicated the op-
posite, namely that no PGD patient, at the three month
follow-up visit, was able to maintain the same gait pat-
tern detected during the first evaluation. Patient 1 was
classified by the NN as ataxic during the baseline eval-
uation but as paraparetic at three months; patient 2 was
classified by the NN as paraparetic at baseline, but as
ataxic after three months; patient 3 was classified by the
NN as parkinsonian initially but as ataxic after three
months; patient 4 was first classified by the NN as ataxic
but after three months as parkinsonian, while patient 5
was intially classified by the NN as ataxic, but as para-
paretic three months later. 
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Figure 1 - Schematic representation of the clusters in a 3D
graphic (the true clusters are distributed in a 16-dimension
space).

Table II - Demographic and clinical characteristics of patients with psychogenic gait disorders

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Age (years) 52 62 45 62 63

Sex F M F M F

Clinical pattern at basal evaluation ataxic paraparetic parkinsonian ataxic ataxic

Clinical pattern at 3-mth evaluation ataxic paraparetic parkinsonian ataxic ataxic

Neurologist’s impression of change no change no change slight change no change slight change

Fluctuation of impairment yes yes yes yes yes

Duration (months) 12 3 36 12 40

Type of onset insidious abrupt abrupt abrupt abrupt

Psychiatric illness anxiety anxiety depression depression depression

Spontaneous remissions no yes no no no

Paroxysmal symptoms no no no yes yes

Distractibility no yes no yes no

Abbreviations: Values of the variables used in training the network and their average values and standard deviation in the four gait
patterns analyzed. The average values of the variables in each column represent the position of the centroid of each gait pattern in
the 16 D space. Abbreviations and symbols: (*)=as a percentage of the gait cycle; (**)=normalized according to height and weight;
(***)=calculated relative to the center of pressure; CM=center of mass.



Figure 3 (over) depicts changes in gait patterns between
first and second evaluation, while clinical and demo-
graphic characteristics are given in Table II.
The likelihood of belonging to a given group, calculated
by the network for normal controls, patients with organ-
ic disorders, and psychogenic patients, is shown in
Table III (over).

Discussion

A diagnosis of PMD should not be an exclusion diag-
nosis. Careful clinical assessment is critical, and imag-
ing or electrophysiology studies may provide important
insights and diagnostic confirmation, even though
some cases remain challenging, with current assess-
ments failing to provide the necessary clarification
(Gupta and Lang, 2009). At present, there is only one
scale available to describe, assess and quantify PMDs

(Fahn and Williams, 1988), and no tool exists for diag-
nosing PGD.
We found that unlike patients with gait disturbance of or-
ganic origin, patients with PGD failed to maintain the
same gait pattern after repeated evaluations, which
could represent an important finding for PGD diagnosis.
Different types of bizarre psychogenic gait patterns have
been described including buckling of the knee, astasia-
abasia, waddling, tightrope gait, excessive retropulsion,
walking on ice and penguin gait (Lempert et al., 1991;
Keane, 1989). In general, careful patient examination by
trained observers readily clarifies cases; however, the
fact remains that even for the expert, a substantial pro-
portion of PGD patterns may mimic organic disorders
and remain a diagnostic challenge. Keane (1989) found
that 24 of 60 cases with PGD presented ataxic, para-
paretic and trembling slowness patterns, mimicking gait
disturbances associated with the most common neu-
rodegenerative disorders. It is on this last group of pa-
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Figure 2. Normal control and patients with defined gait patterns measured three months apart. The radial lines represent the 16 vari-
ables. The gray areas represent the different groups showing the average value and standard deviation recorded for each variable.
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Figure 3. Psychogenic patients measured three months apart. The radial lines represent the 16 variables. The gray areas depict the
different groups showing the average value and standard deviation recorded for each variable. It is possible to observe the change
in gait pattern on the second measurement.



tients, which constitutes about 10% of all PGD cases
(Lempert et al., 1991) that we focused our analysis.
Fluctuation of gait may occur in neurological disorders,
as in the case of Parkinson’s disease, normal pressure
hydrocephalus, myasthenia gravis, episodic ataxias or
ion channel myopathies, among others. However, since
modification of gait implies fluctuation of the degree of
impairment, not of the pattern of gait, fluctuations are
difficult to capture during short video recordings or dur-
ing consultations as they may not be apparent from sim-
ple clinical observation, and can only be detected using
an instrumental intervention with greater diagnostic
sensitivity, such as the one presented here (Morgante et
al., 2012).
Many authors have attempted to identify walking pat-
terns using electromyography or kinematic analysis
(Mulroy et al., 2003; O’Byrne et al., 1998; Kinsella and
Moran, 2008; Wong et al., 2004; Olney and Richards,
1996). Neural network analysis (NNA) is a tool widely
used in biomedical research, including neuroscience,
but few papers have shown it to be useful in distinguish-
ing gait patterns (Holzreiter and Köhle, 1993; Lafuente
et al., 1998), and so far its utility in psychogenic gait di-
agnosis has not been tested.
Neural network analysis uses artificial NNs, inspired by
natural NNs (Rosenblatt, 1958; Widrow and Lehr, 1990),
offering an alternative to conventional signal and data
processing algorithms based on linear models. Since
NNA manages complex non-linear association data, it
functions especially well in cases such as those investi-
gated in this study. Non-linear mapping of complex data
is often required in the field of neurology, and NNA pro-
vides an excellent framework for this type of analysis
(Freeman and Skapura, 1991).
On this occasion it was applied to movement pattern
recognition and gait analysis, and provided a method for
identifying patients at risk of, or presenting non-function-
al gait disorders (Begg et al., 2006). 
Neural networks can be trained to detect all existing gait
patterns, however because our interest is in movement
disorders in particular, we decided to incorporate into

the network only those abnormal gait patterns (such as
paraparetic, ataxic and parkinsonian gait) that are ob-
served in the majority of degenerative central nervous
system disorders, and excluded those linked to orthope-
dic, peripheral nerve or muscle pathology. Furthermore,
the exclusion of other difficult overlaps, such as patients
who are both dystonic-myoclonic and stiff-legged and
who should be taken into account, could be considered
a limitation of the current study. 
The decision to use a perceptron (supervised training)
NNA system for this purpose creates the possibility that
the universe analyzed is not entirely occupied by the pat-
terns described, and that some patients might not qualify
and therefore go undetected. Bizarre PGD would certain-
ly fall into this category of undefined patterns. Therefore,
the idea behind the present study was not to study easy-
to-diagnose bizarre gait patterns, but cases with hard-to-
define clinical characteristics where the algorithm might
prove useful. In conclusion, in certain difficult-to-diagnose
PGD cases, absence of specific gait pattern preservation
on repeated evaluations conducted using more sensitive
instrumental methods may help identify patients not de-
tected through clinical observation.
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