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Summary

Realistic modeling is a new advanced methodology for

investigating brain functions. Realistic modeling is

based on a detailed biophysical description of neurons

and synapses, which can be integrated into microcir-

cuits. The latter can, in turn, be further integrated to

form large-scale brain networks and eventually to

reconstruct complex brain systems. Here we provide a

review of the realistic simulation strategy and use the

cerebellar network as an example. This network has

been carefully investigated at molecular and cellular

level and has been the object of intense theoretical

investigation. The cerebellum is thought to lie at the

core of the forward controller operations of the brain

and to implement timing and sensory prediction func-

tions. The cerebellum is well described and provides a

challenging field in which one of the most advanced

realistic microcircuit models has been generated. We

illustrate how these models can be elaborated and

embedded into robotic control systems to gain insight

into how the cellular properties of cerebellar neurons

emerge in integrated behaviors. Realistic network

modeling opens up new perspectives for the investiga-

tion of brain pathologies and for the neurorobotic field.
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Realistic modeling of neurons and networks:
towards brain simulation

Introduction

Understanding brain functions is one of the greatest

challenges in contemporary science (Markram, 2012;

Abbott, 2013; Stix, 2013; Underwood, 2013; Wadman,

2013; Kandel et al., 2013). However, investigating

brain functions presents special problems which are

not common to other research fields. On the one hand,

the brain exploits molecular and cellular mechanisms,

which do not differ in principle from those of other cells

and tissues. On the other hand, the brain is composed

of networks connecting 1012 neurons through 1015

synapses capable of generating sensorimotor func-

tions, cognition, emotion and, eventually, behavior and

consciousness. So, what is the connection between

the psychic and biological levels? Experimental evi-

dence from physiology and neurology has taught us

that the answer must be sought through the cellular

principles of signal coding, communication, and plas-

ticity (Fig. 1). While research in specific subfields is

helping to clarify these mechanisms, an even more

complex challenge is that of elucidating the details of

neuronal connectivity and dynamics and their impact

on brain functioning. Since it is impossible, in principle,

to record all neurons simultaneously, we need new

tools to address this issue. This problem is reflected in

the duality between reductionist and holistic approach-

es, which are still incompatible in practice. The most

important scientific agencies have taken up the chal-

lenge and launched three main projects addressing,

together with the scientific issue, the development of

new techniques and the benefits that society could

derive from this research. These projects include: the

Human Brain Project (HBP) (e.g. see D'Angelo, 2012;

Markram, 2012; Stix, 2013), which is pioneering the

development of realistic large-scale computational

models, Active Brain Mapping (Alivisatos et al.,

2013a,b), which is fostering the development of new

recording techniques for cellular imaging, and the

Human Connectome Project (McNab et al., 2013),

which, based mainly on magnetic resonance imaging

(MRI) technologies, is highlighting functional and struc-

tural brain connectivity. This complex enterprise has

achieved considerable visibility in scientific and social

media.

This review focuses on the HBP (Markram, 2013) and

on realistic computational modeling. The cardinal ele-

ments of this technique can be summarized in the fol-

lowing considerations:

i) The models are constructed on the basis of solid bio-

physical principles, allowing the incorporation of rele-

vant biological details (Koch, 1999; De Schutter, 2000).
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This is a distinctive difference compared with theoreti-

cal models, in which the desired function is anticipated

and the model is designed to generate it. In realistic

modeling, the functions are the "emerging properties"

of the system (be it a molecule, a neuron or a circuit).

This difference can also be expressed by contrasting

the bottom-up nature of realistic modeling with the top-

down nature of theoretical modeling.

ii) Each modeling prediction has to be counter-tested

and confirmed by biological observations. Therefore,

biological assessment of brain function at different lev-

els (molecular, cellular, circuit) is required.

iii) Importantly, an expansion towards whole-brain func-

tions can now be envisaged thanks to the impressive

advances obtained in the field of structural and function-

al brain imaging and stimulation. These non-invasive

techniques (including MRI) can be used to analyze brain

functions in living humans and animals and they make it

possible to identify the circuits involved in complex

behaviors. This, in turn, provides critical targets for brain

modeling. It should also be noted that the generation of

models on the dimensional and complexity scale

required for investigating brain functioning is now within

reach thanks to the advances achieved in supercomput-

ing and modeling techniques. Supercomputers like

BlueGene (Markram, 2006) have enough computational

power to run brain models of unprecedented size and

complexity.

The biophysical models of neurons and synapses will

be used to generate realistic large-scale models of the

brain, which are expected to help explain the principles

of higher functions in cellular and molecular terms.

This experimental process is not dissimilar in principle

to that undertaken by physicists seeking to reconnect

the properties of matter to those of constituent parti-

cles. However, the brain has a complex internal con-

nectivity and is organized in multiple meta-levels,

which precludes the identification of direct links

between the molecular and behavioral processes. In

this review we will elaborate on the case of the cere-

bellar network within the framework of the HBP. The

modeling reconstruction of this network starting from

biological observations and its incorporation into cere-

bro-cerebellar loops should make it possible to explain

fundamental aspects of sensorimotor control and cog-

nition on molecular and cellular grounds (D'Angelo and

Casali, 2013). This may eventually lead to the provi-

sion of a powerful tool for elaborating pathophysiologi-
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Figure 1 - Multilevel organization of brain structure and function (modified from D’Angelo and Peres, 2007).

Brain functions are the expression of a multilayered structure, ranging from ionic mechanisms to higher brain functions via neurons

and neuronal assemblies forming circuits of varying complexity. The figure reproduces these levels starting with gene regulation of

ion channel and synaptic receptor proteins, moving on to single neurons and microcircuits and finally reaching complex circuit con-

nections forming the whole brain. The genome induces the synthesis of proteins (ion channels and receptors) that take part in the for-

mation of cells, cell membranes and synapses. The cell membrane, governing the exchange of information, largely determines the

chemical and electrical properties of neurons. Geometric organization of neuronal processes (dendrites and axons) determines the

formation of subcellular microcircuits, taking advantage of interactions between synapses. Neurons aggregate in microcircuits that, in

turn, constitute systems and neural pathways. The nervous system is a network of networks, and only at this level do highly abstrac-

ted functions emerge, giving rise to behavior.
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cal hypotheses and for conceiving and developing an

advanced generation of robotic control systems.

The biological basis of brain functioning: motiva-

tions for realistic modeling

Brain activity is based on a series of principles, which

have been largely clarified over the last two centuries.

The cellular elements of the brain, the neurons, inter-

act at the level of the synapses and form neuronal

microcircuits composed of thousands to millions of

elements. These microcircuits are then organized into

large-scale assemblies forming larger and larger net-

works and, eventually, the whole brain (Churchland

and Sejnowski, 1993; Kandel et al., 2012) (Fig. 1).

Neurons are excitable elements, which can generate

potential changes across their plasma membrane.

Neurons are polarized at rest but can be depolarized

by synaptic currents and generate action potentials

when a certain threshold is reached. The core of neu-

ronal functioning lies in the plasma membrane, in

which are embedded several kinds of molecules

including ion channels and pumps. Schematically,

pumps actively generate electrochemical gradients

for the main ions (Na+, K+, Cl¯, Ca2+) through ATP

hydrolysis and energy consumption. The balance of

these gradients determines an electrical potential

across the plasma membrane (approximated by the

Goldman-Hodgkin-Katz equation). The opening of ion

channels selective for specific ions allows current

flow along the electrochemical gradients, thereby

modifying the membrane potential. The fact that there

are multiple molecular variants of the ion channels

allows fine regulation of ion fluxes and membrane

potential. The process of ion channel gating is com-

plex and most commonly depends on sensitivity to

membrane voltage and to chemical modulators such

as neurotransmitters, calcium ions, cyclic nucleotides

and G-proteins. 

Neurons can organize spikes into specific patterns and

use them to encode information and transmit it along

the axons to other neurons (Rieke et al., 1997). At the

synapses, neurotransmitters are released through a

vesicle fusion mechanism activating receptors in the

membrane of the receiving neurons. Different neuro-

transmitters and receptors can generate a large variety

of electrical and metabolic effects on the postsynaptic

neurons. The mechanisms regulating neurotransmitter

release and receptor activation generate phenomena

of short- and long-term plasticity, controlling the tempo-

ral dynamics of signal transmission and providing cel-

lular mechanisms for learning and memory. 

This brief summary raises specific motivations for

generating and exploiting realistic models of the brain

at different levels of complexity. First of all, the models

will be fully explicit (as they are constructed by the

researchers) and will therefore be able to provide

answers regarding the intervention of low-level mech-

anisms in high-level brain processing. Second, the

fundamental elements characterizing physical sys-

tems are their structure, function and dynamics (Arbib

et al., 1998). While structure and function have been

largely investigated using anatomical and neurophysi-

ological tools, the complex spatiotemporal dynamics

of brain activity remain largely unexplored (Buzsaki,

2006). Being endowed with the molecular mecha-

nisms generating such dynamics, realistic modeling

could help to provide answers in this regard. 

Molecular and cellular modeling 

Realistic modeling allows reconstruction of neuronal

functions on a biological basis and through application

of the principles of membrane biophysics (Fig.s 2, 3; see

Box 1 for details). The primary role of these models is to

integrate membrane and cytoplasmic mechanisms in

order to explain membrane potential generation and

intracellular regulation processes (Koch, 1999; De

Schutter, 2000). Once validated, biophysical models can

be used for predicting microcircuit functions. The basis

of realistic modeling is the membrane equation, in which

the first time derivative of membrane potential is related

to the ionic conductances generated by the ion chan-

nels. These in turn are voltage- and time-dependent and

are usually represented either through variants of the

Hodgkin-Huxley formalism, through Markov chain reac-

tion models, or using stochastic models (Hodgkin and

Huxley, 1952; Connor and Stevens, 1971). All these

mechanisms can be arranged into a system of ordinary

differential equations, which are solved by numerical

methods. The model can contain as many ion channel

Brain circuit models
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Figure 2 - Elaboration of neuronal and circuit models.

The construction of neuronal models is a complex procedure

that requires a well-designed strategy. The process can be

cross-validated by repeatedly matching modeling results with

biological evidence. Once realistic models have been obtained,

it is possible to abstract the fundamental neuronal functions by

extracting the underlying dynamics to create computationally

efficient simplified models. These latter can be embedded in

control systems able to reproduce the neuronal context provi-

ding the model with input and output in a closed-loop circuit

including sensory information, commands and feedback

signals. The final step is the investigation of closed-loop circuits,

interfacing the input and output of the neural network with the

real world by means of anthropomorphic robotic devices.
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BOX 1

The principles of neuronal modeling

Neuronal modeling is based on the “parallel electrical equivalent circuit” in which electrical branches connect

the inside with the outside of the plasma membrane (Koch, 1999; De Schutter, 2000).

A capacitive branch (representing the hydrophobic non-conductive lipidic bilayer) and resistive branches (rep-

resenting ionic conductances) are arranged in parallel between the inside and outside of the membrane,

across which a potential difference, Vm, is established. Different conductances g
k
, g

Na
, and g

Cl
, are indicated

for different permeant ions: Na+, K+, and Cl¯ (others, such as Ca2+, and leakage conductances, are not shown).

E
k
, E

Na
, and E

Cl
are the equilibrium potentials for the ions. The resistive branches, because they contain a bat-

tery, can effectively operate as current generators with tunable internal resistance. Thus, when a current i
m

flows through the membrane, it divides over the capacitor C
m

and the conductances g
k
, g

Na
, and g

Cl
. In the elec-

tric equivalent scheme, it follows that the membrane equation is:

where (V
m

- E
k
), (V

m
- E

Na
), and (V

m
- E

Cl
) are the driving forces for the ions in each branch. This first order dif-

ferential equation admits an exponential solution. The mathematical problem emerges because the conduc-

tances g
k
, g

Na
, and g

Cl
are themselves a function of V

m
and t. A standard description of these voltage- and time-

dependent conductances is based on the Hodgkin-Huxley model (Hodgkin and Huxley, 1952; Connor and

Stevens, 1971), in which each ionic conductance depends on the probability that gating particles are in the

permissive state. 

There can be multiple activation and inactivation particles in each ion channel, which can redistribute between

the permissive state (y ) and the non-permissive state (1-y). Thus, the ionic conductance depends on a maxi-

mum value gmax multiplied by the probability that the m activation or n inactivation particles are in the permis-

sive state: 

The interconversion between y and (1-y) occurs at a rate determined by the gating constants, a and b, follow-

ing first order reaction kinetics and moving the reaction from the initial value y
0

to the final value y
∞
. 
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The voltage dependence of the gating particles reflects the energetic properties of the underlying electrochem-

ical conversions and can be approximated applying the Boltzmann and Arrhenius theories. 

By considering each ith gating particle for activation and inactivation, this entire description can be summarized

in the following ordinary differential equation (ODE) system: 

There can be as many as hundreds of gating particles describing the many ion channel types of a single neu-

ron. This results in a very large ODE system, which is usually solved using numerical methods (Carnevale and

Hines, 2009). Once implemented with all the different ion channels of a given cell, the solution of this ODE sys-

tem gives the membrane potential time course reported, as an example, in figure 3 (D’Angelo et al., 2001;

Solinas et al., 2010). 

A variant of this approach can be applied to describe the synaptic vesicle cycle causing neurotransmitter

release (Tsodyks and Markram, 1997). 

Examples of how these theoretical aspects have been implemented are reported in several papers like those

listed in table I.
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species as are needed in order to match the experimen-

tal data (from a few to thousands). With these channels,

neurons can generate the firing patterns observed in

real cells, thereby providing a major validation criterion

for the model itself. Models generated in this way col-

lapse all neuronal properties and intracellular state

memory and dynamics into a single equivalent electrical

compartment. In several cases, the properties of a neu-

ron cannot be explained by a single electrical compart-

ment, and multiple compartments (representing soma,

dendrites and axons) have to be included thus generat-

ing multicompartment models. 

As well as membrane excitation mechanisms, synap-

tic transmission mechanisms can also be modeled.

Differential equations are used to describe the vesicle

cycle, neurotransmitter diffusion and receptor activa-

tion (Tsodyks and Markram, 1997). This last step con-

sists of neurotransmitter binding to receptors, opening

of connected ion channels or modulation of intracellu-

lar cascades and it is often accounted for by stochas-

tic receptor models. The synapses can also be

endowed with mechanisms generating various forms

of short- and long-term plasticity (Migliore et al.,

1995).

Figure 3 - Single cell modeling.

(A) Confocal image of a neuron loaded with neurobiotin (Golgi cell in a parasagittal brain slice; courtesy of B. Barbour). The dendri-

tic arbor (upper left corner) starts from the soma and extends into the molecular layer. The axon originates from the soma opposite

the dendrite and abundantly ramifies in the granular layer. (B) Whole-cell patch clamp recordings from a Golgi cell in current clamp

mode (modified from Forti et al., 2006). Golgi cells show spontaneous auto-rhythmic firing in the absence of synaptic input (upper

trace). When depolarized by step current injection, Golgi cells respond with sustained firing with slow adaptation, which is followed

by a prolonged pause at the end of the current injection. In the lower trace, a negative current injection reveals the sagging profile

caused by slow activation of the hyperpolarization-activated mixed cationic current (Ih). At the end of current injection, the rapid rise

of membrane potential activates a low threshold Ca2+ current driving a rebound burst of spiking activity. (C) Golgi cell electrophysio-

logical behavior was reconstructed in a conductance-based computational model (Lüthi and McCormick, 1998; Solinas et al.,

2007a,b). In order to faithfully rebuild the richness of firing patterns the model was endowed with a total of 12 voltage-dependent and

Ca2+-concentration dependent ion channels. The panel shows the contribution of these ionic currents along the different phases of the

action potential regenerative firing. IDr=non-inactivating delayed rectifier K+ current; IA=A-type inactivating K+ current; IBK=voltage-

gated and Ca2+-dependent K+ current; ISK=Ca2+-dependent K+ current; Ih=hyperpolarization-activated mixed cation current; INaP=per-

sistent Na+ current; IM-like=slow non-inactivating M-like K+ current. (D) The panel shows the response of the Golgi cell model inside

the granular layer (modified from Solinas et al., 2010). In this configuration, the Golgi cell model was activated by mossy fibers (ran-

dom activity at 3.9 Hz, Rancz et al., 2007) and inhibitory synapses from stellate cells (random activity at 10 Hz). During the simula-

tion, the Golgi cell model was driven by current injections to enhance its firing rate (200 pA for 100 ms), to elicit sagging responses

during hyperpolarization (-400 pA) and to elicit rebound. Ina=inactivating Na+ current
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Circuit modeling

Once all neuronal and synaptic models are constructed

and validated against a wide spectrum of experimental

data, these same models can be used as building ele-

ments, which can be multiplied and connected to obtain

functional microcircuits (Fig.s 2, 3) (Gerstner and Kistler,

2002). The connections can be reconstructed according

to anatomical and physiological criteria. The construc-

tion and analysis of microcircuits is one of the most crit-

ical steps in the modeling process. Microcircuits can

generate complex spatiotemporal dynamics making it

possible to perform signal processing and recoding and

to store information through long-term synaptic plasticity.

As a result the microcircuits display a variety of emerg-

ing properties ranging from learning to pattern recogni-

tion, categorization and generalization, reflecting

abstraction and the formation of the concept of objects.

All these features have previously been reproduced

using various ad hoc simplified neural networks, but

none was able to perform all these tasks (Spitzer,

1998).1 Clearly, validating these properties requires com-

plex procedures and the parallel development of power-

ful experimental recoding techniques allowing local net-

work investigation. Lastly, by passing from the single

neuron to microcircuit level, the computational demand

explodes and supercomputers are usually required. 

The last step in the reconstruction of integrated brain

subsystems is to connect microcircuits together in

order to generate closed-loop models alimented by

the senses and generating cognitive processing and

movement (Fig.s 4-6). To do this, several different

Brain circuit models
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1 In classical artificial networks, neurons are represented as mathematical functions (probabilistic functions generating an all-or-none

output), synapses are simply “weights” (i.e. represent the strength of connections), and connectivity is stereotyped and usually far

from real microcircuit structures. Artificial networks are based on layers connected according to various rules, forming simple percep-

trons, recurrent networks (Hopfield), self-organizing networks (Kohonen), hidden-layer networks (Sejinowski) and context-layer net-

works (Elman). The artificial network can be described by a matrix product (actually the output matrix is the product of the input matrix

by the weight matrix) and can usually be treated analytically. Clearly, these networks are non-spiking and do not contain any of the

biological properties of neurons and synapses but rather implement abstract computational principles. These abstract networks have

been useful for proving basic principles of circuit functioning (for references see Spitzer, 1998).

Figure 4 - Simplified real-time spiking model of the granular layer network.

(A) Schematic representation of the cerebellar granular layer model. The network includes 350 mossy fibers (MF), 4500 granule cells

(GrC) and parallel fibers, 300 stellate cells, and 27 Golgi cells (GoCs). The basic network (black lines) includes the excitatory pathway

(MF-GrC), feedforward inhibitory loop (MF-GoC-GrC) and the feedback inhibitory loop (GrC-GoC-GrC). Additional extended versions stu-

died the influence of the GrC-SC-GoC-GrC loop (green line) and the GoC-GoC inhibitory connection (blue lines). (B) Effect of different

weight configurations in the GrC response. In these simulations, synaptic weights were set according to four arbitrary configurations

determining the following effects: increasing transmission (green), filtering (blue), maximization of time precision (red) and maximization

of bursting (black). (top) Raster plots of the network responses to the same MF stimulation (left) with each weight configuration. Raster

plots of activity recorded in the GrC (center) and GoC (right) populations with the hypothesized weight configurations (one per row),

respectively. (bottom left) Peristimulus time histogram (PSTH) of the GrC response to the first spike in the burst. (bottom right) Relative

number of GrCs generating 0, 1, 2, or 3 spikes in response to the stimulation burst. (Modified with permission from Garrido et al., 2013).

(C) Probability of output burst responses composed of 1, 2, 3, 4 spikes in the different network weight configurations.
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microcircuits need to be available and interconnected.

The biological results used as targets for validation

are the emerging behaviors and the functional imag-

ing data obtained with MRI and other advanced imag-

ing techniques. 

The cerebellum as a prototype of realistic network

simulation

Due to its stereotyped and regular structure, the limit-

ed number of neuronal types, and the extensive

experimental investigations carried out on it at sever-

al levels, the cerebellum lends itself perfectly to imple-

mentation of the realistic modeling process. Recent

years have seen the generation of highly precise bio-

physical models of neurons and synapses, followed by

the connecting and testing of microcircuits. Most

remarkably, these sub-networks have been precisely

validated against experimental data and are now almost

ready to be assembled into the first realistic whole-cere-

bellum model (Fig.s 2, 3). This approach, pioneered by

two European projects led by the University of Pavia,

namely REALNET (http://www.realnet-fp7.eu/) and

CEREBNET (http://www.cerebnet.eu/), have provided

a prototype for the multilevel modeling of the

rat/mouse brain, which is now being applied on a larg-

er and more integrated scale in the HBP (“brain simu-

lation platform”, http://www.humanbrainproject.eu/). 

Table I lists the main neuronal models of the cerebel-

lar network. These models present certain differences

and raise specific scientific issues. The granule cell

model is among the most characterized and best

reconstructed models in the whole brain. A pivotal

point was the discovery and description of all the crit-

ical ion channels and their characterization; this

indeed led to a highly detailed model characterized by

accurate description of the spike-generating mecha-

nisms down to axonal transmission and dendritic inte-

gration (D’Angelo et al., 2001; Nieus et al., 2006;

Diwakar et al., 2009). This model has allowed field

potential reconstruction, explaining the granular layer

function in vivo (Diwakar et al., 2011). Furthermore, it

has allowed precise calculation of the information

transferred through the synaptic relay and has been

implemented with stochastic neurotransmission mech-

anisms (Arleo et al., 2010). Another of the best char-

acterized neurons is the Golgi cell (Solinas et al.,

2007a,b), which has subsequently been implemented

with gap junctions to form an oscillating interneuron

network. The Purkinje cell is outstanding for its com-

plexity and it is one of the best characterized proto-

types of multicompartment neurons in the brain (De

Schutter and Bower, 1994a,b). These neurons have

been embedded into the first realistic cerebellar net-

work (Solinas et al., 2010) and integrated into high-

performance computing schemes (Garrido et al.,

2013). 

E. D’Angelo et al.
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Figure 5 - Distributed neuromotor control system embedding the cerebellum model.

The scheme includes the main neural structures and functional interconnections taken into account for the brain-inspired controller.

This scheme couples internal models and an adaptive cerebellar neural network, in order to obtain human-like behavior with learning

skills in closed-loop sensorimotor tasks (modified from Casellato et al., 2012).
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It is important to note that the cerebellum plays a key

role in timing, learning and sensory prediction (Ivry

and Baldo, 1992; Ivry et al., 2002; Ivry and Spencer,

2004) (see Box 2 for details). Simulating all these

functions requires a closed-loop circuit integrating the

motor cortex, several motor nuclei and motor struc-

tures. In order to proceed in this direction, simplified

models have been generated and adapted from the

realistic models (Fig. 4). These simplified models can

be either analogical or spiking and can run in real

time. They are suitable for integration into a robotic

simulator or into a real robot (Fig.s 5, 6), and can

Brain circuit models

Functional Neurology 2013; 28(3): 153-166 161

Figure 6 - Control system with the cerebellar model running on a real-time robotic platform.

Tests on a vestibular-ocular reflex (VOR) protocol. A head turn is imposed moving the robotic platform (joint 2). The eye movement

(joint 3) is controlled through the cerebellar model output. (A) stable condition. (B) Head turn leading to an image slip. (C) Head turn

and compensatory eye movement. (D) The set-up: Phantom Premium (SensaAbleTM)with the optical tool on the end-effector; Phantom

Omni with the object-tool. The green laser is attached parallel to the second link, to highlight the gaze point on the environmental

scene. (E) An example of the VOR protocol implementation, with 110 task repetitions. First, only the head turn is imposed. Then, in

the other two conditions, object motion is added, for 20 repetitions in the same direction as the head turn, then, in the opposite direc-

tion to the head turn. The first row reports the head angle (from encoder of joint 2); the second row depicts the object motion, and the

third row represents the eye compensatory motion (joint 3 angle). The cerebellar network provides eye-movement compensation

(modified from Casellato et al., 2013). 

Table I - The state of the art in cerebellar single cell models: publications dealing with cerebellum-related neuronal models

Neuron References

Granule cell D'Angelo et al., 2001; Roggeri et al., 2008; Diwakar et al., 2009; Dover et al., 2010 
Golgi cell Solinas et al., 2007a,b 
Purkinje cell De Schutter and Bower, 1994a,b; Miyasho et al., 2001
Deep cerebellar nucleus cell Steuber et al., 2011
Inferior olive cell Jacobson et al., 2008 
Granular layer Maex and De Schutter, 1998; Medina and Mauk, 2000; Solinas et al., 2010 
Inferior olive Jacobson et al., 2009 
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BOX 2

The cerebellum: circuit properties and system integration

Schematic representation of the cerebellar circuit. The cerebel-

lar circuit consists of cortical and subcortical sections. At subcor-

tical level, the afferent fibers activate deep cerebellar nucleus

cells (DCN-C) and inferior olive cells (IO-C). The deep cerebel-

lar nucleus emits the output and at the same time inhibits the

inferior olive. In the cerebellar cortex, there are different types of

neurons including granule cells (GrC), Golgi cells (GoC),

Purkinje cells (PC), stellate and basket cells (SC, BC), Lugaro

cells, and unipolar brush cells (not shown). The two main inputs

are represented by mossy fibers (mf) originating in various brain

stem and spinal cord nuclei, and by climbing fibers (cf) originat-

ing from the inferior olive. Signals conveyed through the mf

diverge to deep cerebellar nuclei and activate the granular layer

(containing GrC and GoC). The ascending axon of the GrC bifur-

cates in the molecular layer (containing PC, SC, and BC) form-

ing the parallel fibers (pf). The cerebellar cortical circuit is organ-

ized as a feedforward excitatory chain assisted by inhibitory

loops: mf excite GrC, which activate all the other cortical ele-

ments. In the granular layer, inhibition is provided by GoC, in the

molecular layer by SC and BC. Finally, PC inhibit deep cerebel-

lar nuclei. The inferior olive, which is also activated by brain stem

and spinal cord nuclei, controls PC activity though a single pow-

erful synapse. Thus, the whole system can be seen as a com-

plex mechanism controlling deep cerebellar nucleus output.

(From D'Angelo and Casali, 2013).

The cerebellar circuit is organized into modules (zones), micro-

zones and multizonal microcomplexes. A microzone is defined

as a group of the order of 1000 PC all having the same somato-

topic receptive field. These PC are arranged in a long, narrow strip, oriented perpendicular to the cortical folds

and are crossed by pf. The branches of the cf (about 10) usually innervate PC belonging to the same micro-

zone and the olivary neurons generating such cf tend to be coupled by gap junctions. All the PC belonging to

a microzone send their axons to the same small cluster of output cells within the deep cerebellar nuclei. Finally,

the axons of BC are much longer in the longitudinal direction than in the mediolateral direction. Thus, cellular

interactions within a microzone are much stronger than those between different microzones (From D'Angelo

and Casali, 2013).

The cerebellum is classically thought to control movement coordination (Flourens, 1824; Luciani, 1891) and

motor learning (Marr, 1969; Albus, 1971) but recent experimental evidence suggests that it may also play a

key role in cognition and emotion (Schmahmann, 2004; Schmahmann and Caplan, 2006; Ito, 2008). This clear-

ly raises broader questions: how can the same circuit cope with so many different tasks? Is signal processing

in the cerebellar circuits always based on the same computational scheme? Is it conceivable that what under-

lies the different roles of the cerebellum is the specific connectivity of cerebellar modules, rather than specific

microcircuit properties? In order to address these questions, a “meta-levels hypothesis” operating over four

levels was proposed: 1) cellular/molecular, 2) network, primitives of circuit processing, 3) high-level

cognitive/emotional processing, and 4) mental processing (D'Angelo and Casali, 2013).

A key observation is that the cerebellum carries out basic computational functions, timing and learning, appli-

cable in different cases. The cerebellum has been reported to assist brain operations by providing accurate

timing of multiple series of signals coming from the cerebral cortex and the sensory systems [reviewed in

(Bower, 1997, 2002; Jacobson et al., 2008, 2009; D'Angelo and De Zeeuw, 2009; D'Angelo et al., 2009;

D'Angelo, 2010a,b; D'Angelo et al., 2011; De Zeeuw et al., 2011)]. This could underlie the implementation of

processes like sensory prediction, novelty detection, error detection, time matching, and sequence ordering

(Ivry and Baldo, 1992; Ivry et al., 2002; Ghajar and Ivry, 2009). This multidimensional computation would allow

the same circuit to contribute to functions as diverse as voluntary movement (a cognitive process, after all) and

thought, provided that appropriate connections with different cortical and subcortical centers were established

and that communication between these centers occurred over the appropriate frequency bands and using

compatible codes (Ito, 1993, 2008; D'Angelo, 2011). Therefore, the cerebellum may operate as a general co-

processor, whose effect depends on the centers to which different modules are connected, affecting cognitive

functions as well as sensorimotor processing. 
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In system theory terms, the cerebellum is thought to lie at the core of the forward controller operation set up

by cerebello-cerebrocortical loops. It is well documented that motor planning means predicting the sensory

consequences of a motor act: a motor plan is coded in terms of an anticipated sensory state (Blakemore et al.,

1998). This is akin to the general hypothesis of the “prediction imperative” that needs to be satisfied in order

to allow brain processing (Llinás and Roy, 2009). Prediction processes are normally performed by “forward

controllers,” which use internal memory to represent the system state (Diedrichsen et al., 2010; Shadmehr and

Mussa-Ivaldi, 2012). On the basis of studies of the vestibulo-ocular reflex, eye-blink conditioning, and saccadic

eye movements, and the fundamental theoretical concepts of motor learning (Marr, 1969), the cerebellum has

been suggested to provide forward models of the motor system. These forward models can predict the pos-

ture or motion of body parts following a motor command and, by a further transformation, predict the sensory

consequences of actions (Miall and Reckess, 2002). More precisely, a copy of motor commands generated by

the motor cortex (efference copy) is sent to the cerebellum, which uses its internal forward model to predict

their sensory consequences (corollary discharge). The sensory predictions are then compared to actual sen-

sory feedback (Wolpert et al., 1998): in the presence of errors (or novelty, i.e., deviations from prediction), the

cerebellum emits corrective signals. A fully characterized example of generation of predictions by cerebellar

circuits is provided by electro-perception in weakly electric fishes, in which a cerebellar-like structure compares

the expected electric field generated by the fish with the actual electric field sensed by the electroreceptors,

thus gaining information on the structure of the environment through the changes that this latter has caused in

the field itself (Bell et al., 2008). 

In the presence of persistent deviations from prediction the cerebellum learns to modify the forward model

itself. Learning appears to occur through two distinct processes, one faster and more labile, involving the cere-

bellar forward controller, the other, which may at least partly reside outside the cerebellum, slower and consol-

idated (Shadmehr and Mussa-Ivaldi, 2012). In fact, the cerebellar cortex is thought to process the faster com-

ponent of memory, while the deep cerebellar nuclei may elaborate its slower component (Medina and Mauk,

2000). Given the anatomical connections of the cerebellum with associative areas and the similarity of motor

planning and cognitive processing, it seems logical to generalize the forward controller role of the cerebellum

to cognition. Indeed, Ito (2008) hypothesized that the cerebellum could operate as a generalized forward con-

troller regulating cognition as well as sensorimotor control.

There are thus four open questions about cerebellar functioning, and it is here that computational modeling

could come into its own:

1) How does the cerebellar network process incoming signals?

2) How does the cerebellum perform the forward controller operation? 

3) How does the cerebellum contribute to sensory prediction and timing?

4) How might the cerebellum contribute to different aspects of motion and cognition?

Clearly, a realistic cerebellar network model embedded into an appropriate system control loop, and eventual-

ly into a simulated brain, could help to answer these questions.
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therefore allow the cerebellar network to be studied in

closed-loop conditions. In this manner, the impact of

the salient network parameters (including ion chan-

nels, synaptic receptors, network connections, neu-

ronal types and plasticity rules) on network computa-

tions and behavior can be tested. 

Concluding remarks

Realistic modeling is a new methodology for investi-

gating brain functions. Being based on biology, realis-

tic models:

- are not constrained into a rigid scheme but can be

updated as new biological information becomes avail-

able;

- can embed multilevel information ranging from

molecular properties to system organization;

- can be expanded, in ever greater detail, toward spe-

cific properties, considered relevant for function;

- do not reflect a predetermined design but rather

account for the many evolutionary stratifications, pro-

gressions and regressions that have caused a specif-

ic brain to reach its present state;

- can be adapted to generate brains of different

species and different ontogenetic stages;

- can be modified in order to mimic pathological

states;

- provide the substrate for a new wave of theoretical

analysis, in which not only neuronal outputs but also a

wealth of low-level functional parameters are accessible.

Clearly, one drawback is that realistic models do not

provide an immediate intuition or any synthetic

description of brain functioning, which were the objec-

tives (probably impossible) of classical efforts to

understand the brain. In addition, possible weakness-

es could derive from missing mechanisms, lack of

appropriate connectivity rules, or inaccurate represen-

tations of neuronal and synaptic processes.

Therefore, realistic modeling requires step-by-step

validation through experimental assessment. 

Beyond what a single laboratory can provide, brain-

scale realistic models require a huge interactive effort

and computational infrastructures like those provided

by worldwide enterprises such as the HBP. Just as

single molecule or single neuron modeling requires

specialized techniques and laboratories, network con-

nectivity at different levels requires the development

of precise and detailed structural and functional maps

through highly specialized techniques (a field called

“connectomics”; Silvestri et al., 2013). In turn, the mul-

tiscale nature of realistic modeling provides a power-

ful new tool for investigating brain diseases through

the so-called hyper-models of pathogenetic mecha-

nisms, reflecting the fact that multifactorial diseases

with distributed lesions like Alzheimer’s disease or

multiple sclerosis reflect the recursive and interactive

nature of brain functioning (Redolfi et al., 2013). Thus,

realistic modeling, avoiding the temptation to simplify

nature, tackles complexity and allows us to consider

the multiparametric distributed nature of brain dis-
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eases. Finally, realistic modeling has profound impli-

cations for the robotic sectors, as it allows the brain’s

computational mechanism to be not only simulated

through software, but also emulated in new electronic

devices (a field called “neuromorphic computing”;

Calimera et al., 2013). 

In the case of the cerebellum, the process of signal

coding and learning is particularly relevant and could

be investigated at the mechanistic level. Moreover,

motor dysfunctions (ataxia) and procedural learning

deficits could be investigated by generating specific

alterations in the molecular and cellular mechanisms

of the cerebellar network model. Likewise, pathologies

involving the cerebellum could be simulated in order

to understand how different processes of dysfunction

and compensation take place. These include various

ischemic and neoplastic conditions, multiple sclerosis,

paraneoplastic cerebellar degeneration, alcoholism,

and pathologies like autism and dyslexia, to mention

just a few (D'Angelo and Casali, 2013). A wealth of

applications in terms of pathophysiology, diagnosis

and therapy of brain diseases can be envisaged, rang-

ing from simulations of the impact of molecular/cellu-

lar damage on network functioning to the identification

of new therapeutic tools. Finally, realistic models

could be developed in 3D and used to interpret the

hemodynamic signals of functional MRI or to simulate

the effect of the transcranial magnetic stimulation

pulse on the underlying circuits. On the robotic side,

embedding a realistic cerebellum model into a senso-

rimotor control system could make it possible not only

to investigate neuronal functioning in closed-loop con-

ditions, but also to extend the adaptive and flexible

control capabilities of robots and potentially to link

their activity to cognitive functions. 
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