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Summary

The brain of a patient with Alzheimer's disease (AD)

undergoes changes starting many years before the

development of the first clinical symptoms. The recent

availability of large prospective datasets makes it pos-

sible to create sophisticated brain models of healthy

subjects and patients with AD, showing pathophysio-

logical changes occurring over time. However, these

models are still inadequate; representations are main-

ly single-scale and they do not account for the com-

plexity and interdependence of brain changes. Brain

changes in AD patients occur at different levels and

for different reasons: at the molecular level, changes

are due to amyloid deposition; at cellular level, to loss

of neuron synapses, and at tissue level, to connectiv-

ity disruption. All cause extensive atrophy of the

whole brain organ. Initiatives aiming to model the

whole human brain have been launched in Europe and

the US with the goal of reducing the burden of brain

diseases. In this work, we describe a new approach to

earlier diagnosis based on a multimodal and multi-

scale brain concept, built upon existing and well-char-

acterized single modalities.

Key words: Alzheimer’s disease, hypermodel, multimodal inte-

gration, multiscale approach.

Introduction 

The diagnosis of neurodegenerative diseases such as

Alzheimer's disease (AD) is changing dramatically. For

the first time in 27 years, experts have proposed a

major change in the criteria, making it possible to diag-

nose and treat AD earlier. The new guidelines

(McKhann et al., 2011) state that new instrumental tech-

nologies can be used to detect the disease even before

evident memory problems or other symptoms arise. 
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For the first time, diagnosis aims at identifying the dis-

ease as it is developing, using results from multiple bio-

marker tests, such as fluorodeoxyglucose (FDG) brain

scans, magnetic resonance imaging (MRI) scans and

spinal taps, able to reveal indicative signs of brain

degeneration. These biomarkers have been developed

and tested only recently (Sperling and Johnson, 2013;

Johansson et al., 2011; Petersen, 2012), which

explains why none had been previously approved for

AD diagnosis. One of the newest, the positron emission

tomography (PET) scan, shows the brain plaques pecu-

liar to the pathology of AD (Herholz et al., 2011).

Others, such as cerebrospinal fluid (CSF) or MRI analy-

ses (Blennow and Zetterberg, 2013; Jack et al., 2012),

provide strong indications of AD even when patients do

not show any sign of dementia or memory loss. 

The dynamic changes in AD biomarkers are known to

occur non-linearly. Dynamic models of various neu-

roimaging biomarkers over time (as the disease pro-

gresses) have recently been well characterized

(Frisoni et al., 2010), whereas genetics in combination

with imaging biomarkers will soon provide even more

diagnostic and prognostic information (Ramanan et

al., 2013). Nevertheless, there is still no multimodal

and multiscale approach integrating all the information

captured by each single methodology.

The new proposed criteria for AD have already started

advocating the multimodal use of brain imaging tech-

niques to examine the inner structure and function of

the brain using one biological [e.g., beta-amyloid

(Aβ42) or tau protein in CSF] and three imaging mark-

ers (e.g., PET amyloid imaging, 18FDG PET and MRI).

A number of validation studies have already been con-

ducted, showing that these new criteria have excellent

sensitivity, specificity and accuracy (Jack, 2012).

Although the AD scientific community welcomed the

new criteria, they have still not been fully adopted in

daily practice (Frisoni et al., 2011).

In this article, we discuss the strengths and weakness-

es of the single-model approach so far used to diagnose

(and prognosticate) AD, and we try to define the key

issues involved in designing a brain hypermodel, lever-

aging on the information available at atomic, molecular,

cellular and tissue level, with the aim of launching a new

multimodal approach to the study of the brain.

This article begins by focusing on the biological mark-

er measurements used to monitor the evolution of AD,

before going on to define the problems and limitations

of a single-scale, single-modality approach, and finally

leading the reader towards a more detailed definition of

an initial brain hypermodel based on Bayesian infer-

ence and the e-infrastructures needed to implement it.
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Biological markers for brain investigation, diagno-

sis and monitoring 

Although it is now clear that AD involves gradual neuron

failure, why this happens is still not clear. Experts

believe that AD, like other chronic conditions, is the intri-

cate result of multiple factors, rather than of a dominant

cause (Barreto, 2013). Both age and genetics have

been identified as the most common risk factors (Karran

et al., 2011). Evidence from cases where the disease

runs in families with an autosomal dominant (FAD)

mode of transmission indicates that the affected genes

– mainly presenilin-1 (Ps1), presenilin-2 (Ps2), and

amyloid precursor protein (APP) – are involved in the

metabolism of beta-amyloid (Ab) (Roberson and Mucke,

2006), a small protein of 40 to 42 amino acids (Fig. 1).

It is currently believed that Ab-driven neurotoxicity trig-

gers neurodegeneration, leading to synaptic and neu-

ronal loss. This is indexed by intraneuronal accumula-

tion of abnormally phosphorylated tau, a structural

protein allowing the stabilization of microtubules

(George-Hyslop and Rossor, 2001). 

Beta-amyloid and tau proteins are the main con-

stituents of senile plaques and neurofibrillary tangles,

originally described by Alois Alzheimer in the brains,

examined under the microscope, of patients with pro-

gressive dementia. Pathology studies then showed

that, even though AD symptoms generally develop

A. Redolfi et al.
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Figure 1 – The amyloid cascade.

Evidence indicates that the amyloid precursor protein (APP) is involved in the metabolism of beta-amyloid (Aβ). The proteolytic pro-

cessing of APP unfolds through two alternative pathways. In the non-amyloidogenic pathway, APP is processed by an α-secretase.

In the amyloidogenic pathway, APP is first cleaved at a β-secretase site and subsequently cleaved by a γ-secretase complex to relea-

se the Aβ peptide, which can aggregate into fibrils and cause long-term neuronal injury. The amyloid cascade has led to the identifi-

cation of potential therapeutic paths: Aβ might be removed by immune-mediated mechanisms induced by vaccination; alternatively

the synthesis of Aβ might be blocked by the inhibition of both enzymes involved in the cleavage of Aβ from APP (β-secretase and

presenilin-dependent γ-secretase). Finally, the degradation of Aβ might be accelerated by enhancing the activity of Aβ-degrading

enzymes. Although the mechanism is still not completely understood, Aβ promotes the deposition of hyperphosphorylated tau, the

second pathological marker of the disease.
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later in life, Ab and tau accumulate in the brain

decades before the clinical onset of the disease

(Smith, 2002). Pre-existing neural reserve and plastic

resources of the brain are thought to compensate, for

a long time, for the progressive damage caused by Ab

and tau, until a threshold is passed and symptoms

develop (Fig. 2a). These acquisitions have allowed

the development of new drugs that interfere with Ab

and tau metabolism and accumulation and might halt,

or even reverse, the brain damage (Fig. 2b). A number

of molecules, used in cholinergic, serotonergic, hista-

minergic, anti-amyloid and tau-related therapies, are

currently in phase II and III clinical trials (efficacy stud-

ies in patients), and many more are at the preclinical

development phase (Mangialasche et al., 2010; Vellas

and Aisen, 2010; Pillai and Cummings 2013).

The development and potential availability of drugs is

generating great hopes and expectations, but at least

two major hurdles need to be overcome. First, to be

maximally effective anti-amyloid and anti-tau drugs
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Figure 2a – The natural history of clinical and neurobiological changes. 

Recent studies have greatly advanced our knowledge of the pathophysiology of AD, as well as the progression of the neurobiologi-

cal changes over time. The abnormal accumulation of Aβ and tau in the brain leads to neuronal injury, starting years before the first

clinical symptoms appear and proceeding with a stereotypical pattern of early medial temporal lobe (entorhinal cortex and hippocam-

pus) involvement, followed by progressive neo-cortical damage. The delay in the development of cognitive symptoms suggests that

the toxic effects of tau and/or Aβ progressively erode the ‘brain reserve’ until a clinical threshold is crossed and amnestic symptoms

appear. Amnestic mild cognitive impairment (MCI) is the prodromal phase of AD and is characterized by non-disabling memory

symptoms. MCI is followed by more widespread cognitive deficits in multiple domains and disability (i.e. lack of self-sufficiency in one

or more activities of daily living), when the traditional diagnostic criteria for AD are fulfilled. The case of a person whose brain starts

accumulating tau and Aβ at around age 40, experiences MCI at age 74, and is diagnosed with AD at age 78 is depicted. The clinical

course of the disease lasts only four years, but the neurobiological course lasts almost 40 years.

Figure 2b – Tomorrow’s therapeutic strategy. 

The natural history of the neurobiological changes in AD suggests that drugs that might potentially delay the progression of cognitive

deterioration should be administered as soon as possible in the course of the disease. The earliest time when it is now possible to

recognize the disease is at the stage of MCI. An effective disease-modifying drug administered at this stage might keep the patient

in the MCI stage, which is associated with a reasonably good quality of life.
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need to be prescribed early in the course of the dis-

ease. Indeed, the failure of many anti-amyloid drugs,

such as: tramiprosate, tarenflurbil, AN1792, and many

others, has been attributed, among other things, to the

fact that patients were treated in the overt stages of the

disease. Second, researchers working on AD will need

to find the right set of meaningful surrogate outcomes,

or biological biomarkers, sensitive to disease progres-

sion which can be effectively deployed to test drug effi-

cacy in a clinical trial setting. These markers can great-

ly enhance power, allowing up to 10-fold decreases in

sample sizes, and thereby making it possible to test a

much larger number of drugs and increasing the

chances of finding one that is really effective. This

approach has already been proven successful in the

case of antiretroviral drugs for acquired immunodefi-

ciency syndrome (AIDS), antihypertensive drugs for

stroke, and statins for atherosclerosis, whose success

was largely due to the availability of relevant biomark-

ers (blood CD4+ white cell count, blood pressure val-

ues, and serum cholesterol levels respectively).

With the advent of the “omics” technologies (i.e.,

genomics, transcriptomics, proteomics, metabolomics,

and connectomics) we entered a new era of biomedical

sciences and biomarker discovery. Two-thirds of the

approximately 30,000 genes in the human genome are

related to brain function, and up to half of the variance

in age-related changes in cognition, brain volume and

neuronal function appears to be genetically determined.

The Ensembl project [the EBI EMBL genome browser

sequencing project – http://www.ensembl.org; (Flicek et

al. 2013)] has produced a genome database for human

and other eukaryotic species, freely available online. In

addition, our knowledge of and ability to analyze the

transcriptome, proteome and metabolome are now

advancing at the same rapid pace that characterized the

genomic phase. Besides the specific and complex chal-

lenge of identifying and characterizing proteins relevant

to pathological AD brains, we need to consider that the

overall human proteome is currently estimated to be

made up of over 1 million proteins, a staggering amount

resulting from: i) single-nucleotide polymorphisms,

which cause two-thirds of all the human genes to gener-

ate alternative isoforms (Mullikin et al., 2000); and ii)

alternative splicing mechanisms of a single gene, which

can lead to the codification of different proteins. Since

the discovery of these mechanisms, there have been

many attempts to catalog the whole human proteome,

and in this context, a special mention must be made of

HUPO – Human Proteome Organisation – an interna-

tional institution fostering proteomic initiatives geared at

furthering understanding of human disease (http://www.

hupo.org). To date, only few studies have correlated

human neuroimaging findings with genomic, transcrip-

tomic, proteomic or metabolomic findings, but such cor-

relations are expected soon. 

Proton magnetic resonance spectroscopy (MRS) rep-

resents the link with metabolomics, including lipid dis-

orders influencing AD (Astarita and Piomelli, 2011). In

patients at risk of AD, MRS can provide a window onto

the biochemical changes associated with the loss of

neuronal integrity before cognitive impairment arises

(Graff-Radford and Kantarci, 2013).

“Imaging genetics” is a relatively new branch of neu-

roimaging which is gaining pace at an unprecedented

rate (Petrella et al., 2008). This methodology exploits

an endophenotypes approach in order to identify

genes responsible for different cognitive phenotypes.

For example, thousands of microarrays containing the

genetic markers of people with and without good

memory, previously assessed through MRI technolo-

gy, can be compared simultaneously to identify which

genes differ and are linked to poor memory perform-

ance. Sequencing an entire genome is currently very

expensive, but the National Institutes of Health (NIH)

hopes that the total cost can be reduced to $1,000 per

genome over the next five years. 

Other neuroimaging techniques, including PET, MRI,

MRS, and functional MRI (fMRI), allow us to investi-

gate the biological macro effects of genetic alterations. 

Substantial advances in molecular imaging led to the

recent development of PET ligands to track various

receptors, neurotransmitters, and proteins, such as Ab

(Pittsburgh compound B, florbetapir, flutemetamol, flor-

betaben), tau, and acetylcholine (Bencherif et al.,

2002; Klunk and Mathis, 2008; Klunk, 2011; Shin et al.,

2011; Clark et al., 2012). Given that cholinergic deficits

as well as amyloid and tau deposition are characteris-

tic of AD, these new ligands should be able to refine

our understanding of normal and pathological aging.

A final remark should be made about the administra-

tion of neuropsychological tests, the most traditional

and pervasive approach to describing and characteriz-

ing the stages of AD disease. These tests are a useful

means of summarizing, in a single final measurement,

all the complex interactive processes described above.

As we have seen, neuroscientists can now leverage on

different instrumental techniques to draw up an overall

picture of the disease and we believe that all these

instruments must now be played together like the

strings of a single guitar. Such a multimodal approach

will be instrumental to the success of ambitious scien-

tific initiatives with high societal impact, such as PAD

2020, the Campaign to Prevent Alzheimer’s Disease

by 2020 (PAD 2020, http://pad2020.org/). 

Modeling dynamic changes of multiple biomarkers

over time 

Over the past two decades, the pathological modifica-

tion pathway of biological markers over the whole

course of AD has been defined. Cross-sectional stud-

ies (Hampel et al., 2004; Jack et al., 2008; Furukawa

et al., 2010) have demonstrated that by the time a

patient shows memory deterioration, markers of Ab

and tau deposition in the brain have changed, as have

imaging markers of amyloid deposition detectable

through [F]AV45 or [C]PIB PET, metabolic markers on

glucose 18FDG PET, atrophic markers of neurodegen-

eration on MRI, markers of axonal and myelin integri-

ty on diffusion tensor imaging (DTI), and markers of

A. Redolfi et al.
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neuronal and synaptic function on fMRI (Fig. 3). All

these biomarkers detect unimodal and single-scale

changes, and have poor temporal consistency.

Moreover, the percentage difference versus a group of

matched cognitively healthy persons could not be

taken as a reliable indicator of the earliest phase of

change over time due to the different metrics and pre-

cision of measurements (Pepe et al., 2008). 

A great incremental advance in the conceptualization

of AD has come from serial studies, initially carried out

in Europe on mutation carriers coming from families

with AD (Fox et al. 1996) and more recently from large

serial studies, in particular the Alzheimer’s Disease

Neuroimaging Initiative (i.e.: ADNI-1, -GO and -2) and

a related initiative in Australia (Australian Imaging,

Biomarker & Lifestyle Flagship Study of Ageing – AIBL

or “Australian ADNI”). These studies have collected

biomarkers serially (generally every 6 to 12 months) in

persons with variable degrees of cognitive deteriora-

tion, ranging from none, to mild cognitive impairment,

through to dementia, allowing neuroscientists to out-

line the dynamics of the change in biomarkers over

time. As an illustrative instance, figure 4 (see over)

shows that carriers of fully penetrant mutations (i.e.,

PseN1, PseN2 and APP), who will inexorably devel-

op AD, exhibit a deviation from the normal trajectory of

hippocampal shrinkage as early as 5.5 years before

the diagnosis of dementia (the hippocampus is the

brain structure where memories are consolidated and

where, in AD, tau pathology and neurodegeneration

are particularly severe), while a global indicator of

whole-brain shrinkage can be detected no earlier than

one year before diagnosis. Moreover, when hippocam-

pal shrinkage emerges, atrophy accelerates at a rate

of about 0.3% per year (Ridha et al., 2006), showing

that the evolution of this biomarker is not linear. 

Studies with a similar design, investigating the

changes in Ab42 and tau in CSF, [11C]-PIB amyloid

tracer uptake, and [18F]-glucose uptake, have outlined

a theoretical scenario wherein some markers change

earlier and reach a plateau ahead of others, which

instead change later and reach a delayed plateau. In

both cases, it is clear that biomarkers follow a non-lin-

ear, sigmoid curve (Jack et al., 2010, 2013).

Depending on the degree of abnormality and the slope

of change, different biomarkers at different times can be

Brain investigation and brain conceptualization
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Figure 3 – Markers of Alzheimer’s disease. 

Cross-sectional studies have shown that the pattern of marker abnormality in NC, MCI and AD (see below) is one where controls and

AD patients are at the opposite ends (low-high), and MCI patients lie somewhere in the middle. However, the difference between the

biomarker level of a patient group and a group of cognitively healthy persons cannot be taken as a point of reference to identify the

earliest time of change, since genetic and environmental confounders affect the trajectory of biomarkers. Alzheimer’s pathological

modifications occur gradually and the dynamics of biomarker changes over time are complex and often non-linear. Acronyms:

PIB=Pittsburgh compound B (11C); PET=positron emission tomography; FDG=fluorodeoxyglucose (18F); HIPPO=hippocampal volume;

Aβ42=beta-amyloid protein ending at amino acid 42; CN=Controls, MCI=mild cognitive impairment, MCI-C=subjects that convert from

MCI state to probable AD stage; MCI-NC=subjects that do not convert from MCI state to probable AD stage; AD=Alzheimer’s disea-

se; SUVR=standardized uptake value ratio; W score=this is the value from a standard normal distribution corresponding to the obser-

ved percentile.
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used for diagnosis or monitoring progression over the

disease course. The recently conceptualized scenario

suggests that the first pathological event consists of the

brain changes taking place at the molecular level (toxic

amyloid deposition), which lead to the destruction of

synaptic functions and axonal integrity; these are fol-

lowed by neuronal loss, gray and white matter atrophy

and, finally, clinical cognitive decline (Teipel et al., 2013). 

Modeling the changes in biomarkers over time is use-

ful for many reasons. It allows us to predict which bio-

marker or combinations of biomarkers are more sensi-

tive to the disease state, with practical implications for

the diagnosis, and which to the disease progression,

with the possibility of better understanding the effica-

cy of disease-modifying drugs. Figure 4 shows that

hippocampal atrophy might be of poor diagnostic

value at the earliest stages of the disease, but might

be an accurate and valuable marker of progression

later on in its course. On the contrary, amyloid burden

might be a good diagnostic marker in the earliest

stages of the disease, but might be poorly useful as a

marker of disease progression. When modeled bio-

markers are used as the basis of a prediction, they

allow the formulation of a robust pathogenic hypothe-

A. Redolfi et al.

180 Functional Neurology 2013; 28(3): 175-190

Figure 4 – Dynamics of the change in AD biomarkers over time.

Panel A: Ridha et al. (2006) report that persons carrying mutations for FAD provide evidence of acceleration of brain atrophy with dis-

proportionate hippocampal involvement preceding clinical diagnosis. As patients moved from the pre-symptomatic to MCI and AD sta-

ges, the mean of total hippocampal and whole-brain volumes decreased. The estimated difference of hippocampal atrophy between

autosomal mutation carriers and control groups becomes significant 5.5 years before clinical diagnosis of AD, while the difference in

whole-brain atrophy only around 1 year  before diagnosis (Panel B). Moreover, once hippocampal and whole-brain shrinkage has

appeared, atrophy rates accelerate, showing a non-linear change over time. Panel C: Jack et al. (2013) report that the Dominantly

Inherited Alzheimer's Network (DIAN) and studies of Colombian kindred carriers of a Ps1 mutation support the idea of a protracted

preclinical period (10 years or more) during which biomarkers become abnormal sequentially while people remain clinically asympto-

matic. Additionally, the DIAN results suggest that CSF Aβ42 might become abnormal before amyloid PET, with CSF Aβ42 initially star-

ting at abnormally high concentrations followed by a progressive decline. DIAN results also suggest that tau becomes abnormal befo-

re FDG PET and that FDG PET and MRI become abnormal very close in time. Standardized difference in Panel C is derived from the

mutation carrier group and the non-carrier group showing the non-linear changes over time. Abbreviations: Yrs=years; FAD=familial

Alzheimer’s disease; CTR=controls; CSF=cerebrospinal fluid; Aβ42=beta-amyloid protein ending at amino acid 42; CDR-

SOB=Clinical Dementia Rating Scale Sum of Boxes.
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sis. For example, according to the modeled rates of

atrophy, the medial temporal cortex changes substan-

tially in the early stages of the disease, while rates of

atrophy in the frontal cortex are either flat or changes

occur at a later stage. What this shows is that neu-

rodegeneration starts earlier in the medial temporal

cortex and only later spreads to the frontal cortex.

In the next section, we will conceptualize what we have

called the hypermodel of AD pathology. The main point

on which the following dissertation hinges is the capa-

bility of the brain simulator to estimate the multimodal

and multiscale pathological changes over time with the

highest possible consistency (Silvestri et al., 2013).

The hypermodel will transform the diagnosis and treat-

ment of brain diseases, providing insights into the

organizational complexity of this convoluted organ. 

The brain hypermodel: a multiscale and multi-

modal dynamic simulator

Definition of the brain hypermodel 

Modern neuroscience has afforded deep insights into

every level of brain organization – from genes to cogni-

tion. Neuroscience today is faced with the compelling

need to fit the different levels together, exploiting

advanced theoretical models, such as the hypermodel

of the brain, in order to capture, through solid mathemat-

ical rules, all the deep mechanics of the brain. Thus, our

knowledge of AD can be improved (Ewers et al., 2011).

This multiscale challenge is made even more complicat-

ed by the temporal and spatial scales at play, which

range over nine-ten orders of magnitude (Table I). The

Brain investigation and brain conceptualization
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Table I - The brain hypermodel relies on multiple biomarkers describing the dynamics of the brain in the different stages of
the disease. 

 
Abbreviations: AD=Alzheimer’s disease; CTR=healthy elderly control; MCI=mild cognitive impairment; CSF=cerebrospinal
fluid; mRNA=messenger ribonucleic acid; SNP=single nucleotide polymorphism; ACe=gene encoding for angiotensin-con-
verting enzyme; APoe=gene encoding for apolipoprotein E; APP=gene encoding for amyloid precursor protein;
BACe1=gene encoding for beta-secretase1; BCHe=gene involved in butyrylcholinesterase synthesis; BdNF=gene encoding
for brain-derived neurotrophic factor; CAdPs2= gene encoding for calcium-binding protein involved in exocytosis of vesicles
filled with neurotransmitters and neuropeptides; CoMT=gene encoding for catechol-O-methyl transferase; dAPK1=gene
encoding for death-associated protein kinase 1; dIsC1=gene implicated in thought and working memory; GrM3=gene
encoding for metabotropic glutamate receptor; IGF=gene encoding for insulin growth factor; KIBrA=gene involved in hip-
pocampal activation; MTHFr=gene encoding for methyl-tetrahydrofolate reductase; Nos=gene encoding for nitric oxide syn-
thase; PLXNB3=this gene is a member of the plexin family playing a role in axon guidance; PseN1-2= genes encoding for
presenilin-1 and 2; sod1=gene encoding for superoxide dismutase 1; T-TAU=total tau; P-TAU: phosphorylated tau; AB42=Ab
1-42 protein in CSF; =increased =slightly increased =decreased =slightly decreased =stable; MRS=magnetic res-
onance spectroscopy; Cho=choline; Cr=creatine; mi=myo-inositol; NAA=N-acetyl aspartate; FDG PET= 18F-fluorodeoxyglu-
cose positron emission tomography; MRI=magnetic resonance imaging; rsfMRI=resting state functional MRI; DTI=diffusion
tensor imaging; CDR=Clinical Dementia Rating scale; MMSE=Mini Mental State Examination.

↑ ↑ ↑ ↑

→
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hyper brain is a mathematical model, based on the

Bayesian inference, useful to describe brain activity

ranging from the low-level mechanisms up to the large-

scale biological processes (Friston et al., 2002a,b). To

understand the Bayesian brain it is necessary to under-

stand the structure and connectivity hierarchically link-

ing the variables considered in the analysis. The gener-

al assumption is that genes influence cognition and

behavior. Therefore, the first step involves regulation

and transcription of genes in many proteins. These pro-

teins eventually influence cell processes and functions

through enzymatic reactions. Neurons, forming neural

networks, work together in a complex pattern of stimula-

tion and inhibition, along with other interactions, to pro-

duce a given cognitive behavior. Taking this into consid-

eration, neuroimaging techniques, including PET, MRI,

MRS, and fMRI, allow us to examine the biological

effects of genetic alterations. Both at genetic and neu-

roimaging level, hierarchical Bayesian mixture models

have started to be proposed (Wakefield et al., 2010,

Nathoo et al., 2012). The structure and function of the

human brain in these models can be studied at multiple

temporal and spatial scales. 

BOX 1 should help to familiarize the reader with the basic

Bayesian components adopted by the brain hypermodel. 

To develop the brain hypermodel of AD based on genet-

ic, clinical, imaging and behavioral data, a large number

of postprocessing tools are required (Fig. 6, over) in

order to generate inputs that feed the Bayesian net-

work. BOX 2 will help the reader to understand the pro-

grams and information and communication technology

(ITC) tools used by the brain hypermodel.

The level of complexity implicit in connecting and inte-

grating all these single-modality tools into a consistent

multimodal framework (the hypermodel) is such as to

drive the evolution of the research framework from the

traditional models, such as a generalized linear

model, to hierarchical (mixed effects) models. 

Brain hypermodel axioms

The brain hypermodel needs to be based on specific

fundamental principles:

• Current observation depends on past observation.

• The distribution (i.e.: prior, likelihood and posterior)

of every biomarker has to be derived according to

Jack (2013).

• Multi-level descriptions of the brain space, ranging

from genes to proteins, from microcircuits to voxels,

from small tissues to global regions of interest, must

come from large serial datasets, such as: ENSEMBL –

(www.ensembl.org); UCSC – University of California

Santa Cruz genome and transcriptome browser

(http://genome.ucsc.edu/); HPRD – Human Protein

Reference Database (http://www.hprd.org/); HMDB –

A. Redolfi et al.
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BOX 1 – The brain hypermodel: basic concepts

Hierarchical model: The model is described by several parameters that vary at more than one level. The hierarchical model

is suitable in cases of nested data (e.g., omics, imaging, clinical, patient’s neuropsychologial data, etc.). In this hierarchical

analysis, the estimated elements come from subjects randomly selected from a larger population.

Bayesian model: A typical Bayesian model concerns the probabilistic relationships between diseases and symptoms.

Given a set of symptoms, a Bayesian network can be used to compute the probabilities of the presence of a certain

disease. Brain hypermodels typically rely on a Bayesian network, a probabilistic model expressed via a graph (Fig. 5):

here, every node of the graph represents random variables (e.g., observable quantities, unknown parameters or

hypotheses), edges represent dependencies and those nodes which are not connected represent independent vari-

ables. Each node is associated with a probability function that takes a particular set of values from the node's parent

as input and gives the probability of the variable represented by the node as output. The Bayesian model relies on addi-

tional concepts, i.e.: (A) Prior probability: this is the probability distribution that confers the uncertainty on an uncertain

quantity defined as “p” (e.g.: suppose “p” is the number of voxels that will be activated for a specific task in an fMRI

experiment) before the data are taken into account (in this case, the results of the experiment obtained via independ-

ent component analysis); (B) Likelihood: this is synonymous with probability, albeit with some differences. Probability

is used when describing a function of the outcome given a fixed parameter value, and it can be described as follows:

“if a transcript of a messenger ribonucleic acid (mRNA) is expressed 100 times and this mRNA is not affected by errors

from the RNA polymerase, what is its probability of expressing a fully functional protein?”. The term likelihood, instead,

is used when describing a function of a parameter given an outcome. For example: “if an mRNA is translated 100 times

and it encoded for an active protein 100 times, what is the likelihood of the mRNA being unaffected by errors?”; (C)

Posterior probability: this measures the likelihood that an event will occur given that a related event has already

occurred. An example can be given by calculating the probability of a case of MCI converting to AD, given that the level

of Aβ42 in the CSF has risen. Let A be the event that MCI converts to AD, and the probability that MCI will convert is

75% (P(A) = 0.75). Let B be the event that the level of Aβ42 rises, with a probability of 80% (P(B) = 0.80). Finally, let

the likelihood that Aβ42 will rise, given that MCI converts to AD, be 99% (P(B|A) = 0.99). The probability that MCI will

convert to AD given that Aβ42 rises can be determined by plugging these values into the Bayes’ Theorem, giving

P(A|B) = 0.99*0.75⁄
0.80

= 0.92. This means that in this hypothetical situation if the CSF Aβ42 level is rising, MCI has a 92%

chance of converting.

Multivariate analysis: This statistical technique is based on observation and analysis of more than one outcome vari-

able at a time. The technique is used to perform studies across multiple dimensions while taking into account the

effects of all variables on the responses of interest.
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Figure 5 – Definition of the brain hypermodel. 

This is represented as a set of mathematical relations expressed in terms of random variables and associated probability distributions

with the aim of describing the observations of brain atrophy merging with different levels of information. These levels are dynamically

linked through a directed acyclic graph. The relations among the nodes of the graph describe the mutual biomarker variations as well

as their temporal and spatial interactions from the lowest to the highest scale.

Human metaboloma database (http://www.hmdb.ca/);

and ADNI – Alzheimer’s Disease Neuroimaging Initiative

(which comprises a huge number of image modalities

e.g.: [11C]PIB PET, [18F]-AV45 PET, [18F]FDG PET, resting

fMRI, DTI and structural MRI) (http://adni.loni.usc.edu/).

Additional datasets might need to be added for further

refinement of the brain hypermodel.

Brain hypermodel statistical pillars

The most obvious approach to the modeling of dynam-

ic, multimodal and longitudinal measurements is

through hierarchical (or random effect) models, as

used in many recent publications (Ridha et al., 2006).

A hierarchical model offers the advantage of modeling

BOX 2 – ITC tools needed for the brain hypermodel

“OMICS” tools: Being concerned with strands of nucleotides [i.e., deoxyribonucleic acid (DNA) or ribonucleic acid

(RNA)] and chains of amino acids (i.e., oligomers or proteins), the hypermodel should handle inputs coming from

sequence analysis tools (e.g. Genscan, ExPASY, ORF-finder), sequence alignment programs (e.g., BLAST,

PipeAlign, PROMALS3d), and monitoring protein expression algorithms (e.g., CountCodon, Molecular Toolkit,

Promoser). 

Imaging tools: The model needs specific algorithms to properly register different brain image modalities in different

subjects at different time points into the same space. Modeling the course of brain changes in neurodegenerative dis-

orders requires spatial consistency at multiple spatial scales. The Boundary Shift Integral (BSI) is one of the tools

available to segment and register brain scans at multiple time points (Leung et al., 2012). Other single image analy-

sis tools for AD are: the Multi-Atlas Propagation Segmentation (MAPS) for the hippocampus, which combines atlas-

based segmentation and multi-feature pattern recognition (Leung et al., 2011); the PIB uptake model (Scheinin et al.,

2009); the multi-atlas based anatomical segmentation tool (Wolz et al., 2010; Lötjönen et al., 2011); DEMONS, a

deformation-based patient normalization and follow-up method (Vercauteren et al., 2009); and the 4D longitudinal

brain atrophy simulation tools to predict brain atrophy. New insights into microstructural changes of the white matter

should be assessed through deformation-based morphometry (Zhang et al., 2010). All these algorithms can play an

important role in the definition of the hypermodel. However, the aforementioned tools are needed to pre-process mul-

timodal data that must then be analyzed through advanced imaging libraries and tools to assess the final biomarkers.

Therefore, additional algorithms to be adapted and plugged in the model are: FSL (Woolrich et al., 2009), FreeSurfer

(Fischl, 2012; Bernal-Rusiel et al., 2012), Civet (Kim et al., 2005), BrainCSI for MRS, Voxel/Bayesian based mor-

phometry and BrainVISA (Chaari et al., 2010).

Neuropsychological tools: the integration of the neuropsychological data can be done by interfacing computerized

assessment tools such as CANTAB (Egerházi et al., 2007).
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the spatial dependence of variables at neighboring

locations using multilevel descriptions of the space at

scales ranging from local (nucleotide) to global (voxel

regions of interest or even lobes).

The use of hierarchical models, with empirical Bayes

estimation, in the field of neuroimaging was initially

proposed by Friston et al. in the context of fMRI data

analysis, as a way of overcoming some constraints

and limitations of the classical statistical parametric

mapping approach. In the analysis conducted by

Friston et al., this technique made it possible, in con-

trast with the classical statistical approach, to move

from a local (e.g. at voxel level) to a global (at whole-

brain level) estimation, with the tangible benefit of

increasing the power in the detection of statistically

significant results. 

At all spatial scales, however, a statistical issue may

arise that needs to be taken into account, namely, the

false positive detection rate due to multiple comparisons.

However, techniques for a posteriori correction of results

are available, based on both parametric (i.e., Bonferroni,

false discovery rate, family-wise error) (Hochberg and

Benjamini, 1990; Friston, 1995; Genovese et al., 2002)

and non-parametric assumptions (i.e., bootstrap, permu-

tation tests) (Nichols and Holmes, 2002). 

The hierarchical formulation might benefit from the so-

called multivariate exchangeability assumption. This

A. Redolfi et al.
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Figure 6 – Tools and data exploited by the brain hypermodel. 

The scheme represents algorithms and datasets structured by different levels of depth and scale. 

Explanations: Genscan=program to identify the gene structure from the DNA strand (http://genes.mit.edu/GENSCANinfo.html);

ExPASy=Web-portal to obtain user access to proteomics, genomics, phylogeny, systems biology, population genetics and transcriptomics

(http://www.expasy.org/); ORF-Finder=Open Reading Frame finder in RNA coding strand (http://www.ncbi.nlm.nih.gov/projects/gorf/);

BLAST=algorithm able to find regions of similarity between biological sequences (http://blast.ncbi.nlm.nih.gov/); PipeAlign=toolkit for pro-

tein family analysis (http://bips.u-strasbg.fr/PipeAlign/); PROMALS3d=multiple protein sequence and structure alignment tool (http://pro-

data.swmed.edu/promals3d/promals3d.php); Promoser=tool for transcription regulation analysis (http://cagt.bu.edu/page/

Promoser_about); Molecular Toolkit=tool for manipulation of nucleic acids and protein (http://www.vivo.colostate.edu/molkit/);

CountCodon=on-line tool to count codons in mRNA (http://www.kazusa.or.jp/codon/countcodon.html); FSL=complete library for the analy-

sis of fMRI, MRI, DTI data (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/); FS=FreeSurfer, a set of automated tools for reconstruction of the brain's

cortical surface from structural MRI data (https://surfer.nmr.mgh.harvard.edu/); CIVET=tool for the segmentation of the cerebral cortex

(http://cbrain.mcgill.ca/); BSI= Boundary Shift Integral (http://idealab.ucdavis.edu/software/bbsi.php); MAPS=multiple-atlas propagation

and segmentation tool; DEMONS=diffeomorphic registration algorithm (http://www.insight-journal.org/browse/publication/154); DBM –

(TBM)=deformation based morphometry; BrainVISA=complete set of tools and libraries to process brain image data (http://brainvisa.info/);

VBM=voxel-based morphometry (http://www.fil.ion.ucl.ac.uk/spm/); CANTAB=Cambridge Neuropsychological Test Automated Battery;

ENSEMBL=EBI EMBL genome browser sequencing project (www.ensembl.org9; UCSC=University of California Santa Cruz genome and

transcriptome browser (http://genome.ucsc.edu/); HPRD=Human Protein Reference Database (http://www.hprd.org/); HMDB=Human

metabolome database (http://www.hmdb.ca/); IBNA=Italian Brain Normative Archive; ADNI (1-GO-2)=Alzheimer’s Disease Neuroimaging

Initiative (http://adni.loni.usc.edu/); AIBL=Australian ADNI (http://www.aibl.csiro.au/); PHARMACOG=European ADNI dataset

(http://www.imi.europa.eu/content/pharma-cog). OMICS=of or pertaining to related measurements or data from fields such as genomics,

proteomics, transcriptomics, metabolomics; CSF=cerebrospinal fluid; NEUROPSYCH. TESTS=neuropsychological tests.
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approach allows missing data to be substituted in

order to promptly estimate the subject's parameters.

What this means is that, if necessary, the individual

estimated subject parameter can gain in consistency

thanks to an increased weight, assumed from the esti-

mation gathered from the entire population, and thus

move from a poor subject estimate to a wider and

well-defined population perspective. This is one of the

key advantages offered by hierarchical Bayesian

modeling as opposed to the classical regression

approach. 

Flexibility and added value of the brain hypermodel

The hypermodel might be considered a high-order

marker of disease progression that could be highly

representative of all the data. While many parameters

will provide direct information about the progression of

the disease, others might give “clues” as to the right

direction to explore, and provide new insights for a

better explanation of data. A statistical analysis of the

hypermodel, considering the correlation and redun-

dancy between the variables, could identify significant

spatial patterns and time trends.

Unfortunately, the brain hypermodel can still be ham-

pered by a very large number of variables. In the

practical clinical setting (e.g. in clinical trials and for

early/differential diagnosis), a reduced or simplified

model might be used for more predictive and individ-

ualized healthcare. Examples of this model have

been proposed showing incredibly high diagnostic

and prognostic power (Soininen et al., 2012). Predict-

AD (http://www.predictad.eu/), a recently EU-funded

research project, has developed and adopted objec-

tive and efficient methods to enable earlier diagnosis

of AD through a holistic view of patients which com-

bines information from several sources, such as

blood samples, imaging and clinical tests (Antila et

al., 2013).

Additionally, the hypermodel could estimate the devi-

ation from the “experienced curve” of neurodegener-

ation during a clinical trial with a disease-modifying

agent, a deviation translatable into a measure of

treatment efficacy. Modeling the adverse effects of a

treatment will allow researchers to assess the safety

of new drugs, which is a critical step on their route to

market and an aspect that in the past has proved to

be a common cause of expensive failures (López-

Arrieta and Schneider, 2006; Qizilbash et al., 2007).

There is evidence that side effects of new AD drugs

might include micro-bleeds and inflammation

(Cordonnier and van der Flier, 2011). Even if subjec-

tive assessment of radiological images can be used

to detect these kinds of side effects, these measures

are relatively crude and lack quantification. In this

regard, the hypermodel might make a significant con-

tribution to imaging safety in the context of biomarker

quantifications.

Finally, the brain hypermodel might help to overcome

current limitations in early detection and clinical man-

agement of dementia due to lack of sensitive and spe-

cific biomarkers for classification and prediction.

Specifically, the hypermodel could locate a given

patient, studied at one point in time, on the appropri-

ate trajectory (e.g. healthy or AD), and from there pre-

dict past and future points (e.g. five years before

symptoms, one year after symptoms, etc.) according

to the specific pattern of his/her disease marker evo-

lutions. 

The computational engine

To overcome the high computational needs required

by a multimodal and multiscale brain model, we

describe here the most well-equipped e-infrastruc-

tures available worldwide that can host the Bayesian

model and its processing tools, to perform ad hoc

brain hyper simulations on real data. First, what is an

e-infrastructure? An e-infrastructure offers neurosci-

entists advanced image analysis algorithms, powerful

resources, 3D visualization tools, quality control serv-

ices as well as statistical tools, a fertile ground for

brain hypermodels. An e-infrastructure allows neu-

roimaging experiments to be conducted using dedicat-

ed computational resources such as: grids, high-per-

formance computing (HPC) systems, and clouds. The

remarkable growth, accessibility and availability of

imaging and non-imaging data from people affected

by neurodegenerative conditions have recently fos-

tered the development of many of these computation-

al e-infrastructures.

Table II (over) summarizes core features, datasets

and tools of the three leading e-infrastructures avail-

able in the field of neuroimaging. Amongst these,

neuGRID (www.neugrid4you.eu) is the leading

European e-infrastructure, developed with the aim of

overcoming those hurdles that each neuroscientist

has to face daily when trying to set up an advanced

experiment on computational neuroimaging. Here,

neuroscientists can find core resources for their analy-

ses. The neuGRID platform offers access to 500 pro-

cessing cores, 25 terabytes of effective storage and it

has established a connection with external computing

resources to double its capacity on demand. From a

bandwidth point of view, neuGRID leverages on the

pan-European research and education network

GEANT (www.geant.net). Although originally designed

for neuroscientists working on AD, neuGRID has, in a

second phase, been expanded to deal with a wider

range of brain diseases, such as white matter disease

and psychiatric diseases. NeuGRID also includes

tools useful for clinical use, sensitive to the departure

of single cases from a normative reference image

database (Fig. 7, over). 

LONI (Laboratory Of Neuro Imaging –

http://www.loni.usc.edu/) focuses on the development of

image analysis methods and their application to health

issues. The LONI e-infrastructure is the longest-estab-

lished platform among those available in the field of neu-

roimaging (Dinov et al., 2009). It responds to the needs

Brain investigation and brain conceptualization
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of a wide range of users, offering specific services (data

and algorithms) to both neuroscientists and neurobiolo-

gists. LONI hosts the ADNI databases, which comprise

clinical data and information from genetic scans from

older people with AD (400 mild AD), people with mild

cognitive impairment (350 early MCI, 400 MCI and 150

late MCI), and healthy elders (350 CTR). The LONI

imaging portfolio comprises high-resolution structural

MRI (T13D MPRAGE, T2, PD), 18F-FDG PET, amyloid

PET (AV45 PET), fMRI and DTI. Algorithms for data

analysis are available via the LONI Pipeline graphical

interface, a user-friendly workflow management system

that makes it possible to automatize the measurement

of functional, tractographic and morphometric analyses,

to dynamically assess volume and shape features, and

to extract and associate cognitive, genetic, clinical,

behavioral and imaging biomarkers. LONI provides

access to a large, centralized HPC infrastructure – locat-

ed at the University of Southern California, Los Angeles

(USC) – for computationally intensive analyses. External

researchers are granted access to the LONI HPC

resources on the basis of ad hoc scientific agreements. 

CBRAIN (http://cbrain.mcgill.ca/) is a network of five

Canadian brain imaging research centers, connected

to HPC centers in Canada and Europe. The CBRAIN

e-infrastructure offers advanced networking, trans-

parent access to computing resources, a wide range

of tools as well as web-based results visualization, all

thanks to a comprehensive and well organized web

portal. CBRAIN is a distributed environment connect-

A. Redolfi et al.
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Table II - Main features of the three e-infrastructures in terms of (i) Image data sets available; (ii) Image‐processing algo-
rithms, suites and tools available; (iii) resources and connectivity.

Abbreviations: TB=terabytes; PB=petabytes; EGEE=Enabling Grids for E-Science in Europe. This is a public resource expan-
ding the computational power of the neuGRID platform; LONI=Laboratory of Neuro Imaging; USC=University of Southern
California, Los Angeles; CPU=central processing unit; GB/s=gigabytes per second; AD=Alzheimer’s disease; WMD=white
matter disease; PSY=psychiatric disease; T13D=volumetric sequence weighted in T1; T2=MRI sequence weighted in T2;
PD=proton density-weighted image; PET= positron emission tomography; rsfMRI: resting-state functional MRI; DTI=diffusion
tensor imaging; GWAS=genome wide association study; BLAST=basic local alignment search tool; ADNI= Alzheimer’s
Disease Neuroimaging Initiative; AIBL=The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing;
ABIDE=Autism Brain Imaging Data Exchange; BRIN=Brain Info; PAD/CRYO=Public Anonymized Dataset/Cryosection; ADD-
NEUROMED=the AddNeuroMed study; NIHPD: National Institutes of Health Pediatric Database; OASIS=Open Access Series
of Imaging Studies; 1000 Functional Connectomes – INDI=1000 functional connectomes International Neuroimaging Data
Sharing Initiative project; LADIS=Leukoaraiosis And DISability; EDSD=European diffusion tensor imaging study in dementia;
FBIRN=The Functional Bioinformatics Research Network; ELUDE=Efficient Longitudinal Upload of Depression in the Elderly.
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ed through a high-speed wide area network band-

width. 

NeuGRID is expanding its platform internationally,

bridging with the other e-infrastructures, with the ulti-

mate aim of delivering an authentic virtual laboratory,

integrating the widest range of available analysis serv-

ices with a specific support center for end users. This

will create a virtual space accessible to the user via

web no matter where he/she is physically located.

The above facts and figures support the notion that e-

infrastructures are today the most advanced and the

best equipped platforms to support the deployment

and distribution of the hypermodel of the brain. In this

way, a neuroscientist would be just a click of his/her

fingertips away from all he/she needs to start a simu-

lation. Along the same lines, the recent EU FET

Brain investigation and brain conceptualization
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Figure 7 - The N4U infrastructure. 

The infrastructure is composed of different layers. At the top, there is the Specific Support Center (SSC) and the Virtual Laboratory,

accessible via browser. The goal of the SSC is to support users, providing training and assistance such as: designing a scientific expe-

riment, building the brain hypermodel, uploading data, customizing algorithm pipelines, running different kinds of analyses, visualizing

outputs, checking results, and carrying out statistics. The Virtual Laboratory provides the environment for users to conduct their own

analyses on specific sets of data. The neuGRID platform is composed of:

(i) An on line web-portal (https://neugrid4you.eu) to provide facilities for users to interact with the neuGRID services. Users can leve-

rage on the Online Help Desk, a one-stop assistance facility with which every neuroscientist can interact in order to learn about

neuGRID and how to use it. 

(ii) A set of data resources. Data can be integrated in N4U upon users’ request. In neuGRID, all data are indexed and registered crea-

ting a user-friendly atlas. All data, pipelines and experimental results can be browsed and queried. 

(iii) An analysis work area. Here neuroscientists can define new pipelines or configure existing algorithms to be run against selected

datasets. At the end, results can be visualized.

(iv) Access to the quality control and statistical tool environment providing neuroscientists with informative reports on the execution

of their pipelines. 

The neuGRID virtual laboratory sits on top of a 3-tier distributed computing infrastructure:

Tier 1: this is the real core of the infrastructure. It is composed of a number of sites providing computing resources and integrated ser-

vices. The sites are located in Italy, France, Sweden, Switzerland and The Netherlands.

Tier 2: this attaches additional public facilities augmenting N4U's capacity (e.g. LONI, CBRAIN, ESFRI).

Tier 3: this adds private cloud computing resources from external providers.

The three different tiers are coordinated by the Grid Coordination Center (GCC) and the Data Coordination Center (DCC). The DCC

coordinates the neuGRID data, quality control and analysis procedures. The GCC is in charge of hosting, maintaining and running

the grid computing system services. These services are the cornerstones of the platform providing the inner mechanics of the

neuGRID grid/cloud job parallelization.
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Flagship initiative called The Human Brain Project

(HBP: http://www.humanbrainproject.eu/) as well as

the American Brain Activity Map project (BAM:

http://www.nih.gov/science/brain/) will widely exploit

the larger scale of data and the huge power of the

resources available through NeuGRID, LONI and

CBRAIN to characterize, build and test the respective

in silico brain models. 

Concluding remarks 

According to the latest EU estimates, the global preva-

lence of AD is predicted to quadruple to reach 105 mil-

lion by 2050. To tackle this social emergency and

improve AD diagnosis over the next 15 years, clinical

practice will need to rely more and more on multimodal

methodologies, using an integrated approach based

on genetic, biological, imaging methods, as well as

neuropsychological and cognitive tests. Indeed, mod-

ern neurobiology and neuroscience have gained deep

insights into every level of brain organization, and this

will help us to move closer to the real cause of the dis-

ease rather than just looking at its symptoms: howev-

er, to date, there is no clear consensus on how to fit the

different levels together. In this review, we have

described a possible method, based on a theoretical

approach in which use is made of virtual laboratories

concretely capable of implementing these notions: it is

our belief that this approach could succeed in making

sense of the deep mechanics that govern the underly-

ing processes of the brain, thus helping neuroscientists

in their daily work.

With such a complete model of the human brain, four

main objectives could be addressed: i) earlier and

more accurate detection of AD; ii) new surrogate out-

comes for clinical trials; iii) faster development of

drugs aimed at delaying or halting the neurodegener-

ation; iv) the development of a reference model that

could also be used in other multimodal neurodegener-

ative brain diseases and research communities.

Finally, the idea of defining a multiscale and multi-

modal approach to further understanding of the com-

plex pathophysiology of AD has recently been turned

into major projects. In Europe, a billion-euro initiative,

the HBP (mentioned earlier) is currently under way

(D’Angelo et al., 2013; Markram, 2013; Calimera et

al., 2013), wherein all existing knowledge about the

human brain is to be pulled together in order to build

up a model of the brain, piece by piece, with advanced

ITC simulations. This idea has also prompted a simi-

lar initiative, the BAM, this time in the US. The ultimate

aim of this project is to map the activity of every single

neuron in the human brain. This historical moment will

certainly be destined to leave a large footprint in our

community and in the way we conduct (neuro)science.

As Henry Makram, HBP principal investigator, has

claimed: "It is not impossible to build a human brain

and we can do it in 10 years” reconstructing deeply

the brain's every circuit and process. Therefore, there

is nothing left to do but work!

8-Redolfi_FN 3 2013  08/10/13  12:25  Pagina 188

©
 C

IC
 Ed

izi
on

i I
nt

er
na

zio
na

li



Fox NC, Warrington EK, Freeborough PA, et al (1996).

Presymptomatic hippocampal atrophy in Alzheimer's dis-

ease. A longitudinal MRI study. Brain 119: 2001-2007.

Frisoni GB, Fox NC, Jack CR Jr, et al (2010). The clinical use

of structural MRI in Alzheimer disease. Nat Rev Neurol

6:67-77.

Frisoni GB, Redolfi A, Manset D, et al (2011). Virtual imaging

laboratories for marker discovery in neurodegenerative

diseases. Nat Rev Neurol 7: 429-438.

Frisoni GB, Winblad B, O'Brien JT (2011). Revised NIA-AA cri-

teria for the diagnosis of Alzheimer's disease: a step for-

ward but not yet ready for widespread clinical use. Int

Psychogeriatr 23: 1191-1196.

Friston KJ (1995). Commentary and opinion: II. Statistical para-

metric mapping: ontology and current issues. J Cereb

Blood Flow Metab 15: 361-370.

Friston KJ, Glaser DE, Henson RN, et al (2002a). Classical and

Bayesian inference in neuroimaging: applications.

Neuroimage 16: 484-512.

Friston KJ, Penny W, Phillips C, et al (2002b). Classical and

Bayesian inference in neuroimaging: theory. Neuroimage

16: 465-483.

Furukawa K, Okamura N, Tashiro M, et al (2010). Amyloid PET

in mild cognitive impairment and Alzheimer's disease with

BF-227: comparison to FDG-PET. J Neurol 257: 721-727.

Genovese CR, Lazar NA, Nichols T (2002). Thresholding of sta-

tistical maps in functional neuroimaging using the false

discovery rate. Neuroimage 15: 870-878.

George-Hyslop PS, Rossor M (2001). Alzheimer's disease.

Unravelling the disease process. Lancet 358 Suppl: S1.

Graff-Radford J, Kantarci K (2013). Magnetic resonance spec-

troscopy in Alzheimer's disease. Neuropsychiatr Dis Treat

9: 687-696.

Hampel H, Teipel SJ, Fuchsberger T, et al (2004). Value of CSF

beta-amyloid1-42 and tau as predictors of Alzheimer's dis-

ease in patients with mild cognitive impairment. Mol

Psychiatry 9:705-710.

Herholz K, Westwood S, Haense C, et al (2011). Evaluation of

a calibrated (18)F-FDG PET score as a biomarker for pro-

gression in Alzheimer disease and mild cognitive impair-

ment. J Nucl Med 52: 1218-1226.

Herskovits EH, Peng H, Davatzikos C (2004). A Bayesian mor-

phometry algorithm. IEEE Trans Med Imaging 23: 723-

737.

Hochberg Y, Benjamini Y (1990). More powerful procedures for

multiple significance testing. Stat Med 9: 811-818.

Jack CR Jr (2012). Alzheimer disease: new concepts on its neu-

robiology and the clinical role imaging will play. Radiology

263: 344-361.

Jack CR Jr, Knopman DS, Jagust WJ, et al (2013). Tracking

pathophysiological processes in Alzheimer's disease: an

updated hypothetical model of dynamic biomarkers.

Lancet Neurol 12: 207-216.

Jack CR Jr, Knopman DS, Jagust WJ, et al (2010). Hypothetical

model of dynamic biomarkers of the Alzheimer's patholog-

ical cascade. Lancet Neurol 9: 119-128.

Jack CR Jr, Knopman DS, Weigand SD, et al (2012). An oper-

ational approach to National Institute on Aging-Alzheimer's

Association criteria for preclinical Alzheimer disease. Ann

Neurol 71:765-775.

Jack CR Jr, Lowe VJ, Senjem ML, et al (2008). 11C PiB and

structural MRI provide complementary information in imag-

ing of Alzheimer's disease and amnestic mild cognitive

impairment. Brain 131: 665-680.

Johansson P, Mattsson N, Hansson O, et al (2011).

Cerebrospinal fluid biomarkers for Alzheimer's disease:

diagnostic performance in a homogeneous mono-center

population. J Alzheimers Dis 24:537-546.

Karran E, Mercken M, De Strooper B (2011).The amyloid cas-

cade hypothesis for Alzheimer's disease: an appraisal for

the development of therapeutics. Nat Rev.Drug Discov 10:

698-712.

Kim JS, Singh V, Lee JK, et al (2005). Automated 3-D extraction

and evaluation of the inner and outer cortical surfaces

using a Laplacian map and partial volume effect classifica-

tion. Neuroimage 27: 210-221.

Klunk WE (2011) Amyloid imaging as a biomarker for cerebral

beta-amyloidosis and risk prediction for Alzheimer demen-

tia. Neurobiol Aging 32 (Suppl 1): S20-36.

Klunk WE, Mathis CA (2008). The future of amyloid-beta imag-

ing: a tale of radionuclides and tracer proliferation. Curr

Opin Neurol 21:683-687.

Leung KK, Barnes J, Modat M, et al (2011). Brain MAPS: an

automated, accurate and robust brain extraction technique

using a template library. Neuroimage 55:1091-1108.

Leung KK, Ridgway GR, Ourselin S, et al (2012). Consistent

multi-time-point brain atrophy estimation from the bound-

ary shift integral. Neuroimage 59: 3995-4005.

López-Arrieta JM, Schneider L (2006) Metrifonate for

Alzheimer's disease. Cochrane Database Syst Rev (

2):CD003155.

Lötjönen J, Wolz R, Koikkalainen J, et al (2011). Fast and robust

extraction of hippocampus from MR images for diagnos-

tics of Alzheimer's disease. Neuroimage 56: 185-196.

Mangialasche F, Solomon A, Winblad B, et al (2010).

Alzheimer's disease: clinical trials and drug development.

Lancet Neurol 9:702-716.

Markram H (2013) Seven challenges for neuroscience. Funct

Neurol 28:145-151.

McKhann GM, Knopman DS, Chertkow H, et al (2011). The diag-

nosis of dementia due to Alzheimer's disease: recommen-

dations from the National Institute on Aging-Alzheimer's

Association workgroups on diagnostic guidelines for

Alzheimer's disease. Alzheimers Dement 7:263-269.

Mullikin JC, Hunt SE, Cole CG, et al (2000). An SNP map of

human chromosome 22. Nature 407: 516-520.

Nathoo FS, Lesperance M, Lawson A, et al (2012). Comparing

variational Bayes with Markov chain Monte Carlo for

Bayesian computation in neuroimaging. Stat Methods Med

Res 22: 398-423.

Nichols TE, Holmes AP (2002) Nonparametric permutation tests

for functional neuroimaging: a primer with examples.

Human Brain Mapp 15: 1-25.

Pepe MS, Feng Z, Janes H, et al (2008). Pivotal evaluation of

the accuracy of a biomarker used for classification or pre-

diction: standards for study design. J Natl Cancer Inst

100:1432-1438.

Petersen RC (2012) New clinical criteria for the Alzheimer's dis-

ease spectrum. Minn Med 95: 42-45.

Petrella JR, Mattay VS, Doraiswamy PM (2008) Imaging genet-

ics of brain longevity and mental wellness: the next fron-

tier? Radiology 246: 20-32.

Pillai JA, Cummings JL (2013) Clinical trials in predementia stages

of Alzheimer disease. Med Clin North Am 97: 439-457.

Qizilbash N, Birks J, Lopez Arrieta J, et al (2007). WITH-

DRAWN: Tacrine for Alzheimer's disease. Cochrane

Database Syst Rev (3):CD000202.

Ramanan VK, Risacher SL, Nho K, et al (2013). APOE and

BCHE as modulators of cerebral amyloid deposition: a flor-

betapir PET genome-wide association study. Mol

Psychiatry doi: 10.1038/mp.2013.19.

Ridha BH, Barnes J, Bartlett JW, et al (2006). Tracking atrophy

progression in familial Alzheimer's disease: a serial MRI

study. Lancet Neurol 5: 828-834.

Brain investigation and brain conceptualization

Functional Neurology 2013; 28(3): 175-190 189

8-Redolfi_FN 3 2013  08/10/13  12:25  Pagina 189

©
 C

IC
 Ed

izi
on

i I
nt

er
na

zio
na

li



Roberson ED, Mucke L (2006). 100 years and counting:

prospects for defeating Alzheimer's disease. Science 314:

781-784.

Scheinin NM, Aalto S, Koikkalainen J, et al (2009). Follow-up of

[11C]PIB uptake and brain volume in patients with

Alzheimer disease and controls. Neurology 73: 1186-1192.

Shin J, Kepe V, Barrio JR, et al (2011). The merits of FDDNP-

PET imaging in Alzheimer's disease. J Alzheimers Dis 26

(Suppl 3):135-145.

Silvestri L, Sacconi L, Pavone FS (2013). The connectomics

challenge. Funct Neurol 28:167-173.

Smith AD (2002). Imaging the progression of Alzheimer pathol-

ogy through the brain. Proc Natl Acad Sci U S A 99: 4135-

4137.

Soininen H, Mattila J, Koikkalainen J, et al (2012). Software tool

for improved prediction of Alzheimer's disease.

Neurodegener Dis 10: 149-152.

Sperling R, Johnson K (2013). Biomarkers of Alzheimer dis-

ease: current and future applications to diagnostic criteria.

Continuum (Minneap Minn) 19: 325-338.

Teipel SJ, Sabri O, Grothe M, et al (2013). Perspectives for mul-

timodal neurochemical and imaging biomarkers in

Alzheimer's disease. J Alzheimers Dis 33 (Suppl 1): S329-

347.

Vellas B, Aisen PS (2010). Early Alzheimer's trials: new devel-

opments. J Nutr Health Aging 14: 293.

Vercauteren T, Pennec X, Perchant A, et al (2009).

Diffeomorphic demons: efficient non-parametric image

registration. Neuroimage 45, (1 Suppl): S61-72.

Wakefield J, De Vocht F, Hung RJ (2010). Bayesian mixture

modeling of gene-environment and gene-gene interac-

tions. Genetic Epidemiol 34:16-25.

Wolz R, Aljabar P, Hajnal JV, et al (2010). LEAP: learning

embeddings for atlas propagation. Neuroimage 49: 1316-

1325.

Woolrich MW, Jbabdi S, Patenaude B, et al (2009). Bayesian

analysis of neuroimaging data in FSL. Neuroimage 45

(1Suppl): S173-186.

Zhang H, Awate SP, Das SR, et al (2010). A tract-specific frame-

work for white matter morphometry combining macroscop-

ic and microscopic tract features.Med Image Anal 14: 666-

673.

A. Redolfi et al.

190 Functional Neurology 2013; 28(3): 175-190

8-Redolfi_FN 3 2013  08/10/13  12:25  Pagina 190

©
 C

IC
 Ed

izi
on

i I
nt

er
na

zio
na

li




