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Summary

Understanding how the brain manages billions of

processing units connected via kilometers of fibers

and trillions of synapses, while consuming a few tens

of Watts could provide the key to a completely new

category of hardware (neuromorphic computing sys-

tems). In order to achieve this, a paradigm shift for

computing as a whole is needed, which will see it

moving away from current “bit precise” computing

models and towards new techniques that exploit the

stochastic behavior of simple, reliable, very fast, low-

power computing devices embedded in intensely

recursive architectures.

In this paper we summarize how these objectives
will be pursued in the Human Brain Project.
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Introduction

The meaning of neuromorphic computing (NC) has

evolved significantly since the term was first coined by

Carver Mead in the 1980s. While the term was initially

meant to describe the use of electronic systems that

operate using the same physics of computation used

by the nervous system, it now represents a wider con-

cept that bridges computing systems and neural sys-

tems in both directions.

The original concept was essentially concerned with

the construction of electronic systems using existing

technologies in order to emulate neural ones, mostly

for brain simulation purposes (D’Angelo et al., 2013).

This use of hardware to emulate the behavior of por-

tions of the brain is represented by the arrow from

“hardware” to “brain” in figure 1. This traditional view of

NC is still the most widely accepted one in the domain

of neuroscience and neural computing.

The Human Brain Project and neuromorphic
computing

A slightly different view of NC is, however, possible: in

an effort to overcome the limitations of current tech-

nologies (in terms of energy per operation and area),

many researchers are investigating novel computing

architectures that mimic biological neural structures

with the purpose of achieving the computational capa-

bilities of such systems with similar volume and ener-

gy efficiency. This is denoted by the arrow from “brain”

to “hardware” in figure 1.

These two interpretations are, in fact, two sides of the

same problem, although they can be approached inde-

pendently. For instance, in the original emulation

approach, one can stick to a specific hardware imple-

mentation (e.g., a multiprocessor architecture, a cus-

tom-designed digital or analog circuit) and try to imple-

ment neural structure and functions according to this

pre-defined implementation style; benefits of this

approach could lie in: (i) the exploitation of the specif-

ic excellence of this implementation style in some met-

rics (e.g., computational speed in a digital design) and

(ii) the use of consolidated and highly automated

design flows. On the other hand, the same implemen-

tation style might encounter bottlenecks in other met-

rics (e.g., energy consumption).

Conversely, in the reverse approach, novel architec-

tures are sought that tend towards the highly parallel,

learning-based computational paradigm of the brain. In

the case of programmable systems this implies over-

coming the classical von Neumann computational par-

adigm upon which traditional computing systems are

based. For custom-designed circuits, it implies over-

coming digital implementations based on complemen-
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Figure 1 - The two views of neuromorphic computing.
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tary metal-oxide semiconductor (CMOS) devices and

the highly standardized, automated tools and flows

used to design them.

This article is organized as follows. It opens with a sur-

vey of NC approaches, providing, in this section, an

overview of the approaches to NC proposed in the liter-

ature, focusing in particular on their distinctive features.

It then looks at NC and the Human Brain Project (HBP),

describing the ways in which NC is approached in the

HBP, indicating its medium- and long-term objectives.

Survey of neuromorphic computing approaches

While the first attempts to implement electronic models

of neural circuits were focused mainly on “brain-cen-

tered” strategies, e.g., the construction of perceptrons

(Rosenblatt, 1958) and retinas (Fukushima et al.,

1970), the advent of NC in the late ’80s shifted the

research paradigm to a more “hardware-centered”

strategy under which engineers try to exploit the char-

acteristics made available by electronic devices, cir-

cuits and systems to emulate or simulate the brain

models proposed by neuroscientists.

Neuromorphic computing hardware has undergone

rapid development in the last two decades, with the

introduction of a large variety of designs, implementa-

tion methodologies and prototype chips. All of these

share a common objective, namely, to mimic the func-

tional behavior of the human brain within the same

budget of energy, but there are substantial differences

in the way in which this goal is pursued. It would be dif-

ficult to provide a fair and comprehensive description

of such a huge number of solutions, and maybe not

even particularly useful; a more constructive endeavor,

rather, is to group them in two main classes, namely,

“emulative” and “simulative” solutions.

Emulative strategies focus on physical emulations of

neural models using inherently noisy and unreliable

micro- or nano-scale electronic components, i.e., tran-

sistors, with feature sizes approaching the atomic

structure of matter. Circuits resulting from this

approach are typically referred to as “neurochips” (the

left branch of the taxonomy tree in figure 2). These

solutions have the potential to exploit the non-linear

current characteristics of silicon-based transistors to

naturally replicate the electrochemical functions of

human neurons. 

The choice of “analog” or “digital” neural primitives

constitutes the main factor distinguishing between dif-

ferent neurochips. For instance, the pioneering work

conducted by Carver Mead (Mead, 1989) belongs to

the class of analog neurochips, as it integrates biolog-

ically inspired electronic sensors with analog circuits,

introducing an address-event-based asynchronous,

continuous time communications protocol. Today, the

Mead approach is adopted by many ongoing research

studies (e.g., Indiveri, 2000). Analog circuits are very

compact and offer high speed at low energy dissipation

as they naturally perform neuron-like functions, such

as integration and summation of currents and charges.

This comes at a cost, namely, high sensitivity to noise,

process parameter variations, and, most important,

greater design and verification efforts, all of which

increase the implementation cycle. On the other hand,

digital circuits offer high computational power, high reli-

ability and faster prototyping thanks to the availability

of powerful computer-aided design tools coming from

the very large-scale integration (VLSI) domain.

Disadvantages are the relatively large circuit size com-

pared to analog implementations as many elementary

functions (like integration) are not available in digital.

The 1990s saw pioneering works on digital circuits

(Murre, 1995; Ramacher et al., 1993; Jahnke et al.,

1996).

Simulative approaches are those that focus on simu-

lation of neural models rather than precise emulation of

neural signals. Such methods, referred to as “neuro-

computers” (right branch in figure 2), exploit the large

availability of low-price, reliable integrated circuits to

speed up the execution of neural models. More specif-

ically, they aim at reproducing large systems that

abstract away the biological details of the brain and

focus on the brain’s larger-scale structure and archi-

tecture, on how its elements receive sensory input and

on how they connect to each other, adapt these con-

nections, and transmit motor output.

Three different types of neurocomputers can be envis-

aged: “accelerator boards”, “programmable arrays”

and “general-purpose”. Even though they belong to the

same class of strategies, their implementation reflects

the existence of different requirements that have

emerged as neurocomputers have evolved.

When the objective is to speed up the simulation of a

stable, already available neural model, accelerator

boards are definitively the best option. Accelerators

were also the first kind of NC hardware seen in the

early ’90s because they were relatively cheap, widely

available, and simple to connect to a PC using expan-

sion slots, and were typically provided with user-friend-

ly software tools. These accelerators are typically

based on artificial neural networks, but some proto-

types that use digital signal processors (DSPs) for fast

signal processing have been proposed. The speed-up

they can achieve is in the order of 10x with respect to

pure software simulations running on single worksta-

tions. The first examples of such boards were pro-

posed around two decades ago (Lindsey et al., 1995;

Trealeaven, 1989; Arif et al., 1993).

A. Calimera et al.
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Figure 2 - Classification of neuromorphic hardware.
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Accelerator boards are specialized for certain tasks,

hence, they lack flexibility, and when a new model has

to be implemented, the design time they require is typ-

ically very long. For this reason they are not particular-

ly suitable for fast prototyping of new computing para-

digms. To overcome this issue, the second class of

neurocomputers, i.e., “programmable arrays” (better

known as field programmable gate arrays - FPGAs),

has emerged as a more effective solution. FPGAs offer

hardware-like performance gains with greatly reduced

design time (Roggen et al., 2003) as they can be elec-

tronically reprogrammed in real time (Maguire et al.,

2007) using commercial development tools.

Nevertheless, FPGAs suffer from severe power and

routability issues which limit their use for scaling a neu-

ral model to large sizes.

The third class of solution relies on the use of “gener-

al-purpose” processors and software, which offer

enough programmability to explore different neural

models. The accuracy they guarantee is far below that

of the above approaches, but they are particularly use-

ful when the research question is not “how” to scale a

model, but “which” model to scale (Rast et al., 2010);

in this sense they offer the option of “what-if” analysis

that can serve as feedback for the optimization of other

NC hardware, like accelerators and neuro chips, or for

the refinement of neural models. One of the main limi-

tations of these approaches is the overhead introduced

by software, which is typically stored in memory units

that are physically far from the computational engines

(CPUs). Hence, the “flight time” of data exchanged

between CPUs and memory may introduce large delay

penalties that seriously compromise the performance.

Implementations range from architectures of simple,

low-cost elements – the first examples are described

by Heemskerk et al. (1994) and Speckman et al.

(1993) – to architectures with rather sophisticated

processors like transputers, which are unique for their

parallel I/O lines (Foo et al., 1993), or DSPs, which

were primarily developed for correlators and discrete

Fourier transforms (Onuki et al., 1993). A more recent,

and efficient strategy is to exploit the availability of mul-

ticore architectures. This is the approach adopted with-

in the SpiNNaker platform, which will subsequently be

described in detail.

Among all the aforementioned techniques, none is sys-

tematically better than the others; different strategies

can be adopted orthogonally in order to achieve the

final goal of understanding the human brain. This is the

goal of the NC division of the HBP.

Neuromorphic computing and the Human Brain

Project

Neuromorphic computing is a fundamental pillar of the

HBP and one of the six platforms implemented within it

(the Neuromorphic Computing Platform, hereafter

NCP for brevity) (Markram, 2013). The term platform

emphasizes the fact that, like the other HBP platforms,

the NCP will provide users with access to specific “ser-

vices”. In the case of the NCP, these services corre-

spond to the two neuromorphic computing systems

(NCSs), i.e., specific and custom-designed neuromor-

phic “hardware” systems that, described later in this

section, are the concrete outcome of the project in the

context of NC research. Access to these NCSs implies

not just usage of the hardware, but also availability of

software tools for their configuration, operation and the

analysis of generated data as well as user support

through documentation.

Thanks to the possibility of accessing these services,

researchers will be relieved of the need to develop and

maintain basic hardware and software, and allowed to

focus on experiments and applications directly relevant

to their field. We expect that the NCP, allowing

researchers to work with state-of-the-art design tools

and with two advanced NCSs that implement simplified

models of actual neuronal circuitry, will enable a huge

acceleration in the current research of brain simulation

and emulation.

The NCP is closely linked with two other HBP plat-

forms: the Brain Simulation Platform and the High-

Performance Computing Platform (Fig. 3). The former

feeds the NCP with brain models, whereas the latter

provides supercomputing, and cloud capabilities as

well as the system software, middleware, and visuali-

zation support necessary to create, simulate and ana-

lyze multiscale brain models.

As mentioned before, the NCP overlaps almost entire-

ly with the two NCSs that are provided. These NCSs

implement two different conceptual approaches to NC

as described in the survey section.

The specific contribution of the POLITO research unit to

the NC sub-project in the HBP will relate to the devel-

opment of new and more efficient tools for software

development on the neuromorphic multicore (NM-MC)

systems, specifically the SpiNNaker one: in particular,

tools for the automated parallelization of source code

starting from algorithms. Using software terminology,

this middleware will ease the task of programmers in

writing applications for systems of this type.

Neurochip-like computing system

The first type of NCS provided by the HBP is based on

the European FACETS project (http://facets.kip.uni-

heidelberg.de), which has pioneered an approach

combining local analog computation in neurons and

synapses with binary, asynchronous, continuous time

spike communication. This NCS is termed NM-PM in

the project, where PM stands for physical model.

The Human Brain Project and neuromorphic computing
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Figure 3 - Relationship of the NCP with other platforms.
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Current versions of the NM-PM system incorporate

5x107 plastic synapses and 200,000 biologically real-

istic neuron models on a single 8-inch silicon wafer.

In terms of technology the large-scale FACETS system

is based on a mixed analog/digital VLSI implementa-

tion in a standard 180nm CMOS process. Local com-

putation in neurons and synapses is mostly performed

by compact custom-designed analog circuits, which

communicate by exchanging spikes in an asynchro-

nous fashion. The neuron and synapse models imple-

ment state-of-the-art results from neuroscience; the

models include features such as plasticity mechanisms

and a complex neuron model with up to 16,000 synap-

tic inputs per neuron, spike frequency adaptation and

various firing modes as observed in biology.

As the substrate represents a typical non-von

Neumann system architecture, the memory required

for synaptic weights and cell parameters is distributed

in the computing fabric and employs technologies like

small SRAM  memory cells as well as analog units.

The various silicon wafers with the analog compo-

nents, which implement the true neuromorphic compu-

tations, are stacked in a crate and attached to a moth-

erboard that contains the digital portion of the system

used to interface the analog chips on the wafers with

several FPGAs on the backplane interconnecting the

wafer boards in the crate. These FPGAs implement the

necessary communication protocols to exchange neu-

ral events between the different network wafers and

the host computer. Figure 4 shows an abstract block

diagram of the NM-PM adapted from (http://facets.kip.

uni-heidelberg.de).

A key characteristic of the NM-PM computing system is

that it does not execute a programmed code but

evolves according to the physical properties of the

electronic devices. In this sense NM-PM truly imple-

ments the neuromorphic hardware paradigm, in which

a specific hardware architecture is used to implement

a brain model. Another feature of the original FACETS

project, which has been inherited by the NM-PM com-

puting system, is the use of a network description lan-

guage (PyNN) that provides platform-independent

access to software simulators and neuromorphic sys-

tems and will be used throughout the HBP. The NM-PM

paradigm will evolve in three versions of increasing

complexity within the timeframe of the HBP.

The first version, NM-PM-1, will be delivered within the

first 18 months of the HBP, and will scale the system

up to a size of 20 wafers corresponding to 4 million

neurons and 1 billion synapses operating at an accel-

eration factor of 10,000 compared to biological real

time. It will be installed in a dedicated building on the

Science Campus at Heidelberg University in Germany.

The NM-PM-1 system will be complemented by a ded-

icated conventional compute cluster for network con-

figuration, data analysis and execution of closed per-

ception-action loop experiments.

NM-PM-2, expected three years after the start, will

contain 1000 modules implemented in 65nm circuit

technology and will pioneer the use of wafers embed-

ded in printed circuit boards. In the second phase of

the project, the HBP will build a third-generation NM-

PM-3 system, exploring options for systems that can

shift between different speeds of operation, from real

time (a pre-condition for robotics and many other

applications) to 10,000 times faster than real time. It is

planned that NM-PM-3 will incorporate 10,000 wafer

modules with 1016 components. This will give the sys-

tem the ability to emulate a substantial fraction of the

human brain.

Neurocomputer-like neuromorphic computing

system

The second NCS provided for in the HBP is a program-

mable system based on massively parallel multicore

architectures, in turn based on ARM processors. This

NCS is termed NM-MC in the project, where, as

already indicated, MC denotes multicore.

The NM-MC system is based on the approach adopt-

ed by the UK SpiNNaker group (Furber and Temple,

2007). The basic building block is the SpiNNaker chip,

which contains, in its original version, 18 ARM cores

and a shared local 128Mbyte memory. It allows real-

time simulation of networks implementing complex,

non- linear neuron models. A single chip can simulate

16,000 neurons with 8 million plastic synapses run-

ning in real time within an energy budget of 1W.

One of the processors acts as a monitor processor,

and runs the operating system functions on the chip.

The other ones act as fascicle processors, each mod-

eling a group of up to a thousand individual neurons.

Each fascicle processor receives spike events from,

and issues spike events into, a packet-switching com-

munications system, with each spike event encoded

as a single packet. Within a chip, these spike events

converge through the network-on-chip (NoC) commu-

nications to an arbiter, where they are selected and

sent in sequence to a router, which uses internal

tables to identify which fascicle processors should

receive each event (determined from the connectivity

netlist of the neural network that is being modeled)

and passes the event on accordingly.

The overall system consists of multiple interconnected

chips: connectivity is provided by six transmit and

receive bidirectional interfaces to six neighboring chips

(Fig. 5). Local memory is not shown in the picture. 

A. Calimera et al.
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Figure 4 - Structure of the basic meuromorphic device used in

the NM-PM computing system.
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This interface implies a fully connected system as an

NoC where each chip is connected to six others in a

toroidal manner (Fig. 6, over).

As such, the NM-MC is a brain-inspired massively par-

allel computing system that can, in principle, be used

for any type of computation. What makes it suitable for

simulation of neural systems is clearly the application

software running on it. It is evident that considerable

effort has gone into providing software development

kits that make it possible to compile and execute user

programs, as well as proper operating system support

to manage communication between the nodes.

Unlike the NM-PM approach, the NM-MC one does not

implement a specific algorithm, and it is, rather, to be

viewed as a platform on which different algorithms, and

thus different types of neurons and connectivity pat-

terns, can be evaluated.

Similar to the NM-PM, the NM-MC will evolve in two ver-

sions of increasing complexity. In the first 18 months the

system will scale to 1 million ARM cores correspon-

ding to approximately 56,000 SpiNNaker chips with a

simulated bisection bandwidth of 109 spikes per second

(version NM-MC-1) and a simulation capability of 1 bil-

lion neurons in biological real time.

The second version (NM-MC-2), expected after three

years of the project, will improve to 4 million cores with

a simulated bisection bandwidth of 1011 spikes per

second.

Accuracy issues

From this “computational” perspective, details about

the accuracy of neural element models (neurons and

synapses in particular) against the real elements or

biological-level models are not degrees of freedom;

each specific approach implements selected models

that are decided upfront. Specifically, as regards neu-

ron models, the FACETS system implements an

exponential integrate-and-fire (AdExp) neuron model,

whereas the SpiNNaker system is optimized for neu-

ron models such as the Leaky Integrate-and-Fire and

the Izhikevich ones. SpiNNaker admittedly states that

its architecture is “not intended to run models with

high biological accuracy, but is much more aimed at

exploring the potential of the spiking neuron as a

component from which useful systems may be engi-

neered”, which clearly explains the semantics of the

The Human Brain Project and neuromorphic computing
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Figure 5 - Structure of the SpiNNaker 

(and NM-MC) basic chip (adapted from

http://www.artificialbrains.com/spinnaker#ha

rdware).
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computational perspective. The procedures and

implications of realistic biologically based models are

presented elsewhere in this issue (D’Angelo et al.

2013).

Concluding remarks

Neuromorphic hardware is an essential instrument to

provide feedback on neural models developed by neu-

roscientists. The Neuromorphic Computing Platform in

the Human Brain Project serves this purpose through

two different computing paradigms to allow a better

coverage of this feedback.
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