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Abstract

Early detection of dementia can be useful to delay pro-

gression of the disease and to raise awareness of the

condition. Alterations in temporal and spatial EEG

markers have been found in patients with Alzheimer's

disease (AD) and mild cognitive impairment (MCI).

Herein, we propose an automatic recognition method of

cognitive impairment evaluation based on EEG analy-

sis using an artificial neural network (ANN) combined

with a genetic algorithm (GA). The EEGs of 43 AD and

MCI patients (aged between 62 and 88 years) were

recorded, analyzed and correlated with their MMSE

scores. Quantitative EEGs were calculated using dis-

crete wavelet transform. The data obtained were ana-

lyzed by the means of the combined use of ANN and GA

to determine the degree of cognitive impairment. The

good recognition rate of ANN fed with these inputs sug-

gests that the combined GA/ANN approach may be

useful for early detection of AD and could be a valuable

tool to support physicians in clinical practice.

KEY WORDS: artificial neural network, dementia, EEG, genetic

algorithm, MMSE.

Introduction

Mild cognitive impairment (MCI, also known as incipi-

ent dementia, or isolated memory impairment) is a

diagnosis given to individuals who have cognitive

impairments beyond what can be expected for their

age and level of education, but that do not interfere

significantly with their daily activities. It is regarded as

the boundary or transitional stage between normal

aging and dementia (Petersen et al., 1999). MCI can

Elman neural network for the early identification 
of cognitive impairment in Alzheimer’s disease

present with a variety of symptoms; when memory

loss is the predominant symptom it is termed “amnes-

tic MCI” and frequently seen as a risk factor for

Alzheimer’s disease (AD) (Calabrò et al., 2011).

Dementia is a syndrome consisting of a loss, present-

ing in a number of different combinations, of several

separable but overlapping intellectual abilities, such

as to interfere with normal daily activities. It may be

due to various brain diseases, including neurodegen-

erative diseases (mainly AD), stroke, trauma and

encephalitis.

An estimated 24 million people worldwide have

dementia, and the majority of them are thought to

have AD. Thus, AD represents a major public health

concern and has been identified as a research priori-

ty. The cognitive function primarily impaired in AD is

short-term memory, followed by long-term memory,

attention, language, visuospatial abilities and abstract

reasoning; these impairments ultimately lead to a total

dependence in activities of daily living (Sunderland et

al., 2006). However, not all patients with cognitive

impairment progress to dementia; sometimes they can

regain some normal function (Jack et al., 2005). 

A reliable diagnostic/prognostic tool for cognitive

impairment would be extremely useful for screening

the elderly population, including subjects with subjec-

tive memory complaints; such screening would allow

the immediate initiation of appropriate medical and

rehabilitation treatments in individuals found to require

them. There already exist several tools for evaluating

cognitive impairment. These include the well-known

Milan Overall Dementia Assessment, Alzheimer

Disease Assessment Battery, Cambridge Examination

for Mental Disorders of the Elderly and, of course, the

Mini-Mental State Examination (MMSE). The MMSE,

introduced by Folstein et al. (1975), is a 30-item ques-

tionnaire covering mathematics, memory and orienta-

tion that is administered to patients to evaluate the

severity of cognitive impairment and changes in cog-

nitive abilities. The number of correct answers is con-

verted into a score ranging from a maximum of 30,

which indicates normal functioning, to a minimum of

zero, which indicates the presence of severe cognitive

impairment (Mungas, 1991). However, the test results

can be influenced by several conditions, including

physical problems such as motor impairment or hear-

ing problems, but also by the age and level of educa-

tion of the subject investigated (Ganguli et al., 2010). 
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The MMSE is subject to a “ceiling effect” (when it fails

to detect initial cognitive impairment in subjects with a

higher level of schooling, who can obtain higher

scores), and a “floor effect” (a term that refers to the

instrument’s inability to detect changes in established

advanced dementia, in subjects with little formal edu-

cation and those with severe language problems)

(Franco-Marina et al., 2010). To overcome these prob-

lems, a method based on automated analysis of rou-

tine EEG data may be ideal. Indeed, studies in AD

patients have shown EEG abnormalities mainly relat-

ed to alterations in each frequency band. An increase

in theta and delta activity and a decrease in alpha and

beta activity are commonly observed (Coben et al.,

1983, 1985; Giaquinto and Nolfe, 1986; Brenner et al.,

1986; Pijnenburg et al, 2004). Furthermore, these

abnormalities are correlated with the severity of the

disease (Hughes et al., 1989; Kowalski et al., 2001),

and a significant correlation has been reported

between the generalized frequency value and MMSE

scores (Yoshimura et al., 2004). Thus, over the past

three decades, the EEG has been found to be a use-

ful tool for detecting, through the extraction of certain

features, patients affected by AD and cognitive impair-

ment (Babiloni et al., 2004; Huang et al., 2000; Dierks

et al., 1993; Jonkman, 1997; Jeong, 2004; Jung et al.,

2007). The aim of this study was to correlate MMSE

scores with unique features extracted from EEG

traces, in order to develop a tool for computer auto-

mated analysis that, combining a genetic algorithm

(GA) and artificial neural network (ANN), may prove

able to discriminate between cognitively healthy and

impaired individuals.

Materials and methods

Forty-three patients affected by AD (with different lev-

els of impairment) or MCI were enrolled. The subjects

(men and women aged between 62 and 88 years)

underwent a routine neuropsychological evaluation,

i.e. the MMSE, at IRCCS Centro Neurolesi “Bonino-

Pulejo” in Messina. Furthermore, five normal controls

(sex- and age-matched), without cognitive deficits,

were enrolled into the project as the control group.

EEG analysis

All EEGs were recorded and stored on computer for

subsequent preprocessing and extraction of distinc-

tive features. EEG data were recorded from 19 elec-

trodes positioned according to the International 10-20

system, using a unipolar montage and a sampling fre-

quency of 1024 samples per second. The EEG was

recorded in resting state eyes-closed and eyes-open

conditions (10 minutes in continuous recording mode).

EEG signals are subject to internal noise from sources

such as muscle activity and cardiovascular activity,

and external noise from sources such as electrostatic

discharge and interferences due to the presence of

the electricity distribution network. Therefore, it is nec-

essary to perform pre-filtering operations. To suppress

internal noise a cascade of filters was used:

• A high-pass filter to suppress the low-frequency

components with a bandwidth (-3dB) of 1.6002 Hz

whose transfer function is

and whose magnitude response is shown in figure 1.

• A low-pass filter to suppress the high-frequency

components with a bandwidth (-3dB) of 30 Hz

whose transfer function is

and whose magnitude response is shown in figure 2.

To suppress internal noise and delete individual com-

ponents at 50 Hz, a second-order notch filter, also

known as band-stop filter or band-rejection filter, was

used with a center frequency of 50 Hz and a Q factor

of 35 whose transfer function is

and whose magnitude response is shown in figure 3.

The next step was the extraction of the EEG features to

evaluate cognitive impairment. In accordance with report-

ed literature (Primavera et al., 1990), we focused on the

Alpha rhythm in the T5, T6, O1 and O2 derivations, the

Delta rhythm in the F7, O1, and O2 derivations, and the

Beta rhythm in the F7 derivation. For the extraction of the

aforementioned rhythms the discrete wavelet transform

(DWT) was used. A Y function is defined a wavelet if

The DWT allows the signals to be described in terms

of coefficients, which represent the energy content in

their specific time-frequency regions. This representa-

tion is constructed through decomposition of the sig-

nal over a set of functions generated by scaling and

translating a wavelet initial function Y

The initial function can be regarded as a band-pass filter.

The bandwidth of this filter can be varied by constricting

or dilating the wavelet function. The DWT of a signal x can

be regarded as the passage of this signal through a

series of filters. The sampled signal x is decomposed by

passing it through a low-pass filter with impulse response

function g resulting in the convolution between the two
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and a high-pass filter with impulse response h. Both

filters are correlated with each other and constitute a

quadrature mirror filter. At the outputs of the filters we

obtain a signal sub-sampled by a multiple of 2:

Each output signal is characterized by half of the input

frequency and twice the frequency resolution. The

decomposition can be repeated to increase the fre-

quency resolution and the approximation coefficients

decomposed by the high-pass and low-pass filters. As

shown in figure 4 (over), at each level, the signal is

split into high and low frequencies. Because of the

decomposition process the input signal must be a mul-

tiple of 2n where n is the number of levels.

ANN in Alzheimer’s disease
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Figure 1 - High-pass filter magnitude

response.

Figure 2 - Low-pass filter magnitude

response.

Figure 3 - Notch filter magnitude

response.
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In our specific case, the sampling frequency of the

EEG recordings was 1024 samples per second. Thus,

to be able to extract all the rhythms concerned and

considering that the Delta rhythm is in the frequency

range of 0-4 Hz, we performed a decomposition of the

signal over eight levels using the wavelet function

Daubechies-8. Once the rhythms had been extracted,

the mean frequency (MF) was calculated using the fol-

lowing formula:

and the fractions of total power using the formula

where P
x

is the power of the rhythm concerned and T

is the sum of the power in all frequency bands. For the

EEG analysis, the Matlab tool was used. To perform

the aforementioned filtering operations, finite impulse

response digital filters were implemented using the

Matlab “Signal Processing Toolbox” software pack-

age. Instead, for the extraction operations, a new

Matlab script was created. This script analyzes the

EEG signal free of artifacts, identifies the sampling

frequency, and performs the extraction, processing

and saving, in files, of the required features, as

described below (Fig. 5).

Artificial neural network and genetic algorithm

Part of the pool of data obtained was used to perform

the training of the ANN, whereas the remaining part

was used to conduct tests to evaluate the effective-

ness of the infrastructure created. For our purposes, it

was decided to use the Elman network, a recurrent

ANN used in many fields, including analysis of signals

such as EEG signals (Palaniappan, 2006; Srinivasan

et al., 2005). This choice was based on its good non-

linear effect of disturbance elimination and its capaci-

ty to identify patterns in a sequence of values. This

network consists essentially of an input layer, a hidden

layer and an output layer, with feed-forward links

between them. The hidden layer, moreover, is con-

nected not only to the output layer but also to a further

layer, called the context layer, with fixed weights of

unit values. To create a recurrent connection, the out-

put of the context layer is reported in input to the hid-

den layer; this allows the neural network to keep a

memory of the previous state (Holk Cruse, 2006). The

F. Bertè et al.
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Figure 4 - Block diagram of the decomposition performed by discrete wavelet transform.

Figure 5 - Flowchart of EEG analysis algorithm.
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ANN was created using the open source framework

Encog (E.M.L. Framework), whose structure is shown

in figures 6 and 7.

The data to be processed were stored in text files

using the comma-separated values format. Each file

contains a table of values in which each line of text

represents a row of the table while the fields are iden-

tified by a special separator character, in our case, a

comma “,”. The first line of the file consists of the

header, formed from the name of the features extract-

ed from EEG signals and the MMSE “score”. The next

lines of text contain the measures of data previously

collected. These measure values, once they have

been normalized to the range [0,1], and formatted in a

binary representation using tools provided by the

Encog software package, are used as input data at the

level of the index to be processed by the eight neu-

rons that constitute the input layer of the network.

After these operations, the data are processed by the

sixty-four neurons that compose the hidden layer. The

number of hidden and context units was chosen

through experimental tests. After the processing, the

ANN in Alzheimer’s disease
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Figure 7 - Real structure of the

Elman network.

Figure 6 - Block structure of the

Elman network (Lundstedt et al.,

2002).
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single neuron in the output layer provides an indica-

tion regarding the presence or absence of cognitive

impairment in the patients studied. For our purposes,

the activation functions used were tan-sigmoid and

log-sigmoid for the hidden and the output layers

respectively. A GA was used to train the ANN; GA is a

research and optimization method that mimics biolog-

ical mutations and natural evolutions. It is used in dif-

ferent fields including ANNs, and is often used in

recursive networks, such as Elman networks. The

solution of the problem is encoded in a structure

called a chromosome. Initially a certain number of

chromosomes are created randomly: these constitute

the initial population. A function that evaluates the

quality of the solution, called fitness function, is also

defined. The algorithm then proceeds to assign a

quality indicator to each solution to sort and select the

best ones, which constitute the parents of new genes

that are then generated by making random changes to

a single parent (mutation) or by suitably combining the

characteristics of a pair of parents (crossover). Figure

8 summarizes the operations used to train the ANN.

Results

The ANN was trained, trying to minimize the possibili-

ty of error. For this reason, the GA was appropriately

calibrated to obtain a percentage error of less than

one in the classification of the patients used to train.

Chromosomes encoded the matrix weights of the net-

work. In order to manipulate shorter chromosomes,

each gene on the chromosome was coded using real-

valued coding (instead of using binary notation) and

represented a weight from the neural network. The

starting network weights were initialized with random

values. After this, a size population of 100 with ran-

domly assigned values was created. The fitness func-

tion was defined as the deviation of the calculated

value from the ideal value expressed as a percentage.

The process of mating occurs by splitting the parent

gene sequence into three splices. These three splices

are then used to build the new gene. The mutation

process is completely random. Two random genes are

chosen, and then swapped as part of the mutation

process. Only part of the gene population will be sub-

ject to the gene mutation and mating process. After

various experiments the best results were obtained by

setting the following parameters:

- Learning Rate: 5000

- Mutation Percent: 0.1

- Percent to mate: 0.25

With these settings, after 170 iterations, the error was

decreased below the predetermined level (Fig. 9), and

the network had balanced the weights to obtain a

result that was as near to the ideal one as possible

(Fig. 10). After the training phase, tests were conduct-

ed to verify the reliability and the goodness of the clas-

sification. As shown in table I only thirty-eight EEG

recordings out of a total of forty-three were used in the

tests; the dropouts showed significant alteration due

to artifacts. 

If the training set is appropriately balanced in such a

way as to have equal numbers of healthy subjects and

subjects with cognitive impairment, the network is able

to determine with absolute certainty the presence or

absence of cognitive disturbance. By contrast, it was

seen that an imbalance of the training set increases

the percentage error (Fig. 11, over), and decreases

the ability to classify the subjects, as reported in table

II (over). A tolerable imbalance occurs when the differ-

ence between the number of healthy people and the

number with deficits does not exceed 15%; converse-

ly, if variation tends to exceed 30% the network has

difficulty distinguishing between the various cases.

Nevertheless, in the worst cases, the method

appeared to have a precision of classification of 70%,

with a p value < 0.05. Moreover, taking into consider-

ation the five tests conducted and given a generic

EEG pattern, it was found to be possible to distinguish

healthy from non-healthy individuals with an accuracy

of 85%.

F. Bertè et al.
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Figure 8 - Flowchart of the training of the artificial neural network.
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Figure 9 - Error chart showing the number of iterations before the error falls below the threshold (red line) and the improvement in

identifying the optimal result (blue line).

Figure 10 - Validation chart showing how the results obtained by the neural network (blue line) deviated from the ideal results (red line).

Table I - Tests with different training sets.

Groups Training sets Subjects evaluated Results %

A 14 → No Dementia 5 → No Dementia
100%

14 → Dementia 5 → Dementia

B 16 → No Dementia 3 → No Dementia
90%

12 → Dementia 7 → Dementia

C 12 → No Dementia 7 → No Dementia
90%

16 → Dementia 3 → Dementia

D 18 → No Dementia 1 → No Dementia
70%

10 → Dementia 9 → Dementia

E 10 → No Dementia 9 → No Dementia
70%

18 → Dementia 1 → Dementia

Iteration: 170(Max Error Reached)

Current Error: 0,665138%

Validation Error: n/a

Error Improvement: 0,000000%

Message:

Elapsed Time: 00:00:00

Performance: (calculating performance)
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Discussion

Diagnosis of cognitive impairment requires a clinical

judgment, obtained by clinical observation, as well as

blood and neuropsychological tests, and a proper

instrumental evaluation. The current challenge for

clinical research in this field is to diagnose dementia

earlier and with higher accuracy. An earlier diagnosis

would allow a more efficient clinical treatment, capa-

ble of delaying the progression of the illness. In this

work we proposed an automatic system for detecting

cognitive deficit that uses ANN combined with signal

wavelet decomposition and GA, to analyze continuous

EEG recordings during resting state eyes-closed and

eyes-open conditions. Recurrent neural networks (like

the Elman network used in our work), being capable of

detecting linear and non-linear changes in the signal,

have been shown to be valuable tools for detecting

and analysing EEG features, and thus for demonstrat-

ing the presence of dementia. In the work proposed by

Petrosian et al. (2001), the use of a recurrent ANN

allowed identification of patients affected by AD

through analysis of long-term EEG. However, a disad-

vantage of this specific approach is that it uses a large

pool of data in the analysis of the ANN. 

The combined use of ANN and GA allowed Kim et al.

(2005) to correctly classify normal patients, distinguish-

ing them from those with AD. Indeed, the use of GA

reduced the size of the pool of data needed to identify

the minimum set of features required for distinguishing

between subjects. Our approach was based on the use

of distinctive features extracted from EEG traces and

their correlation with the results obtained from the

MMSE, in order to start with a restricted data set to be

processed by the ANN. The combined use of GA allows

further reductions in the number of the features needed

for the identification of the pathology without compro-

mising the efficiency of the system. In this regard, the

network proved able to recognize healthy subjects, ver-

sus non-healthy ones, with good precision (p<0.005).

The best results were obtained by configuring the train-

ing set in order to have an equal number of features

from healthy and non-healthy subjects. Training the net-

work with this set, the system was able to correctly dis-

tinguish the five healthy patients from the five patients

suffering from dementia with a detection rate of 100%.

Nonetheless, the system performance is worse when

the training set used is not well-balanced because of the

small number of items it contains, which do not allow

proper configuration of the weights of the neural net-

work; this is a direct consequence of the small number

of patients enrolled. Therefore, more time and further

data are needed before the proposed system can be

used in common practice and lead to a proper diagno-

sis. However, the early results are encouraging, and it

seems reasonable to conclude that the suggested

approach is a valuable tool for identifying patients with

dementia and for supporting the clinician in the diagnos-

tic process, by providing a “second opinion”.

In conclusion, we proposed a combined ANN/GA

approach and wavelet decomposition to analyze contin-

uous EEG for automatic and early detection of patients

suffering from dementia. The results obtained by this

promising system are positive, but this approach should

be extended to a larger patient population in order to

properly assess its effectiveness.

F. Bertè et al.
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Figure 11 - Graph of percentage error using

different training sets to train the artificial

neural network.

Table II – Number of errors in different test groups.

Groups Errors (in 10 tests)

A 0
B 1
C 1
D 3
E 3
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