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Summary

Classification methods based on machine learning

(ML) techniques are becoming widespread analysis

tools in neuroimaging studies. They have the poten-

tial to enhance the diagnostic power of brain data, by

assigning a predictive index, either of pathology or of

treatment response, to the single subject’s acquisi-

tion. ML techniques are currently finding numerous

applications in psychiatric illness, in addition to the

widely studied neurodegenerative diseases. 

In this review we give a comprehensive account of

the use of classification techniques applied to struc-

tural magnetic resonance images in autism spectrum

disorders (ASDs). Understanding of these highly het-

erogeneous neurodevelopmental diseases could

greatly benefit from additional descriptors of pathol-

ogy and predictive indices extracted directly from

brain data. A perspective is also provided on the

future developments necessary to translate ML meth-

ods from the field of ASD research into the clinic.

KEY WORDS: autism spectrum disorders, brain alterations,

machine learning, magnetic resonance imaging, translational

research

Introduction

The autism spectrum disorders (ASDs) are a hetero-

geneous group of neurodevelopmental pathologies

characterized by a strong genetic basis (Jeste and

Neuroimaging-based methods for autism
identification: a possible translational application?

Geschwind, 2014) and early altered neuroanatomical

correlates (Hazlett et al., 2011; Wolff et al., 2012).

They are considered to be among the most common

and most debilitating childhood disorders, whose fea-

tures include life-long impairments in socio-commu-

nicative abilities and narrow interests/repetitive

behaviors, which have an impact on most domains of

cognitive and adaptive functioning. In the USA, the

ASDs have an estimated prevalence of 1:68 (Centers

for Disease Control and Prevention, 2014), which is

37-fold greater than that reported in studies published

thirty years ago. The true increase in ASD prevalence

remains, however, to be confirmed, since it has been

suggested that the above prevalence is at least partly

a consequence of the inclusion of milder cases in the

ASD spectrum, as well as of the improved identifica-

tion of ASDs (King and Bearman, 2009; Liu et al.,

2010). 

Although, in the past few decades, studies using

structural magnetic resonance imaging (sMRI) have

highlighted alterations in the neuroanatomy of ASD

patients, a univocal, reliable and consistent pattern of

alterations has yet to be identified. Therefore, the

diagnosis of ASD currently remains based on behav-

ioral symptoms, i.e. impairment in socio-communica-

tive abilities, as well as on the presence of restricted

and stereotyped behaviors (American Psychiatric

Association, 2013). Specifically, the assessment of the

child is performed by expert clinicians, and it includes

the administration of a battery of psychiatric and psy-

chological tests that involve both patient observation,

e.g. the Autism Diagnostic Observation Schedule

Generic by Lord et al. (2000), and caregiver interview,

e.g. the Autism Diagnostic Interview-Revised by Lord

et al. (1994). However, these methods could lack reli-

ability, being prone to suffer from a parental recall bias

concerning the child’s first ASD symptoms or from rel-

atively low levels of diagnostic specificity in toddlers

(Ventola et al., 2006; Chawarska et al., 2007). In par-

ticular, it can be hard not only to distinguish ASD from

other developmental disabilities (e.g. intellectual dis-

ability, language disorders), but also to differentiate

ASD behavioral profiles from both normal variations in

development and temporary delays. Therefore, there

is a pressing need to develop more objective methods

of ASD detection and, ultimately, to identify quantita-

tive diagnostic markers for the disorder (Walsh et al.,

2011).
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Recently, the scientific community has partially

revised its opinion on ASD outcome. Researchers and

clinicians are starting to regard ASD as a treatable dis-

order, on the basis of the finding that some patients,

thanks to an early ASD diagnosis and a subsequent

early and intensive behavioral intervention, may reach

normal cognitive function and cease to meet the diag-

nostic criteria for ASD (Fein et al., 2013). Consequen -

tly, research into the early identification of ASDs rep-

resents a public health priority. Moreover, an early

ASD diagnosis and early intervention could have a

positive economic impact, making it possible to

reduce the lifetime cost of caring for a person with

ASD. Without early intervention, this cost is estimated

to stand at $3.2 million (Ganz, 2006).

This review sets out to highlight the role of sMRI in

clinical and research applications, focusing in particu-

lar on novel analysis methodologies based on

machine learning (ML) techniques that have the

potential to impact greatly on ASD early diagnosis,

treatment monitoring and stratification of subjects for

tailored intervention (Ecker and Murphy, 2014). A ded-

icated effort is still necessary to translate these

research instruments into clinically useful biomarkers

able to predict autism risk prior to the onset of symp-

toms and even response to treatment.

The role of sMRI in ASDs: clinical and research

applications

Given its non-invasive nature, MRI could be used in

clinical practice as part of the comprehensive medical

assessment of ASD patients, in order to exclude brain

alterations. However, this role of sMRI is a subject of

debate. While the guidelines of the American

Academy of Neurology and Child Neurology Society

(Filipek et al., 2000) judged MRI scanning to be a pro-

cedure that is not recommended in the standard clini-

cal evaluation of ASD, more recently some authors

have highlighted its possible utility for revealing brain

abnormalities in these patients (Boddaert et al., 2009;

Erbetta et al., 2013). Moreover, quantitative analyses

based on sMRI have indicated the existence of wide-

spread brain abnormalities in ASDs, reporting, for

example, differences in total brain, frontoparietotem-

poral cortex, corpus callosum and cerebellar volume

between ASD patients and controls (for a review see

Chen et al., 2011). In particular, sMRI studies in the

first years of life of ASD subjects have identified an

abnormal pattern of brain growth (Courchesne et al.,

2001; Sparks et al., 2002), characterized by accelerat-

ed postnatal growth followed by a progressive attenu-

ation of the difference between patients and controls

with increasing age. While some researchers argue

that abnormal brain enlargement is mainly explained

by an excessive increase in white matter (WM)

(Courchesne et al., 2001; Herbert et al., 2003), others

think that the gray matter (GM) is involved, alone or in

association with WM involvement (Palmen et al.,

2005; Schumann et al., 2010). As regards the regions

involved in ASD brain enlargement, converging find-

ings suggest an anteroposterior gradient of severity,

with the most consistent increase reported in the fron-

totemporal regions (Carper et al., 2002; Schumann et

al., 2010).

Structural MRI applied to ASD diagnosis: machine

learning implementations

In the last few years several post-processing methods

for application to MRI brain data have been developed

and implemented to obtain diagnostic models for ASD

with the aim of improving the behavioral assessment

of the disorder. 

Traditional neuroimaging analysis approaches were

designed mainly to reveal brain abnormalities by sta-

tistically comparing data from two groups of subjects

(usually affected subjects and a control group) either

matched or controlled for possible confounding vari-

ables (e.g. age, gender, head size). The most widely

used methods include manually or automatically

traced regions of interest (ROIs) analysis, where, in

general, a prior hypothesis about the involvement of

specific ROIs is tested through a statistical compari-

son between the two groups of subjects. Manual ROI

tracing requires the intervention of experts in brain

anatomy and raises the issues of inter-rater and intra-

rater reliability. Automated tools can help in ROI trac-

ing, even though they often demand computationally

intensive sMRI data pre-processing to co-register and

harmonize brain images of different subjects. 

The availability of powerful computing resources has

allowed the implementation of whole-brain methods,

e.g. those involving the investigation of cortical thick-

ness in multiple ROIs into which, through an automat-

ed procedure, the brain is parcellated. The most wide-

ly used method for deriving the brain surface (Dale et

al., 1999) and extracting the ROI values of certain fea-

tures (e.g. cortical thickness average and standard

deviation) is implemented in the FreeSurfer analysis

suite1 (Fischl, 2012).

Whole-brain investigation at the voxel level can also be

performed with voxel-based morphometry (VBM)

approaches (Ashburner and Friston, 2000). In a compu-

tationally demanding pre-processing step the sMRI of

each subject is segmented into the GM, WM and cere-

brospinal fluid components; then, all the subjects’

images are co-registered to a common template image,

for example through the iterative DARTEL algorithm

developed by Ashburner (2007); finally, the GM (or WM)

local concentrations or volumes are statistically com-

pared between the two groups of subjects at each sin-

gle voxel location (mass univariate statistics). Two of the

most widely used software tools for performing VBM

A. Retico et al.
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1 http://surfer.nmr.mgh.harvard.edu
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analysis are SPM2 (Wellcome Trust Centre for

Neuroimaging) and FSL3 (Jenkinson et al., 2012). 

All these analysis techniques, in addition to their

undoubted ability to assess brain involvement in a

pathological condition at group level, are also able to

provide information at single subject level (e.g. ROI- or

voxel-wise tissue characterization and computation of

volumetric changes). However, these kinds of analyses

have so far had a limited impact on clinical practice,

which would benefit mostly from methods specifically

developed to allow the drawing of inferences on the

outcome of each individual (Orrù et al., 2012).

More recently, ML techniques, e.g. those based on

support vector machines (SVMs) (Vapnik., 1995),

have been shown to be valuable instruments both for

conducting group studies in a multivariate fashion and

for making predictive diagnoses in single subjects. For

a large variety of diseases, two-class classification

problems, either for diagnosis prediction or for transi-

tion and treatment prognosis, have been solved with

ML techniques. 

Machine learning refers to all procedures in which the

learning by example paradigm is implemented. They

require a training set, from which to learn the differ-

ences between the groups of subjects (e.g. patients

and controls), and a validation set in order to make an

unbiased evaluation of the classifier performance on

previously unseen data, i.e. data not entered in the

training phase (Fig. 1). 

These techniques can be applied to analyze image fea-

tures extracted either at the voxel or at the ROI level. In

neuroimaging studies the image features can generally

be reported in a N × P matrix of numbers, where N is

the number of subjects (typically less than 100) and P

the total number of available neuroimaging measures

for each subject (typically about either 106 voxel fea-

tures or 103 ROI features). Since, in general, N « P, par-

Neuroimaging-based methods for autism identification
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2 http://www.fil.ion.ucl.ac.uk/spm
3 http://www.fmrib.ox.ac.uk/fsl

ticular caution should be applied to the classifier train-

ing phase and to the checks necessary to establish its

generalization ability. Among the ML techniques, the

SVMs have shown themselves to be particularly suit-

able for handling high dimensional patterns (large P) in

the presence of a limited number of cases (small N). 

The vector of features x extracted from the sMRI of

each subject i can be expressed as {xi
1
, …, xi

P
} ∈ ℝN×P,

where i=1, … N. In the simplest case, where there are

only two different classes, a classifier can be formalized

as a decision function f : ℝN×P
→ {-1, +1}, which assigns

an observation xi to one of the classes denoted with the

+1 and -1 labels, respectively. The decision function f,

chosen among a class of parameterized functions, has

to be learned from data during the training phase. If the

class of linear functions is chosen, as in linear-kernel

SVM applications, the decision function f corresponds

to a separating hyperplane parameterized in terms of

its normal vector w and a bias term b. The class label l

of a new subject characterized by the feature vector x

is thus predicted as l = f(x; w,b) = sgn(wT·x + b). By

learning the input (x)–output (l) relationship on known

examples, the classifier is trained. To find the optimal

separating hyperplane, suitable loss functions have to

be implemented and particular care should be taken to

avoid overfitting the data (because in that case, the sat-

isfactory performance obtained during the training

phase would not be generalized in the validation phase

on new data). The classifier performance is usually pro-

vided in terms of both the sensitivity (percentage of

subjects with disease correctly identified, i.e. true-posi-

tive rate) and the specificity (percentage of control sub-

jects correctly identified, i.e. true-negative rate), or of

the accuracy (overall percentage of subjects correctly

classified). However, by varying the classifier decision

threshold, the trade-off between the sensitivity and the

rate of false-positive detection can be shown as the

Figure 1 - Machine learning

approach: scheme of the training

and validation phases of a classi-

fier that uses subject’s informa-

tion extracted from structural MRI

data during the classifier training

to predict the class membership

of cases not involved in the train-

ing procedure. 
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receiver operating characteristic (ROC) curve (Metz,

2006), and the area under the ROC curve (AUC) repre-

sents a quantitative index for comparing the ROC

curves of different classifiers (Hanley and McNeil,

1982). In particular, the AUC represents the accuracy of

the instrument in predicting subjects who will or will not

have the disease: an AUC ≥ 0.9 suggests ‘high’ diag-

nostic accuracy (Swets and Pickett, 1982). Moreover,

to ensure an unbiased estimate of the classifier per-

formance it is appropriate to implement a cross-valida-

tion scheme, both in the model selection phase (e.g.

the estimate of free model parameters) and in the final

evaluation of the classification accuracy, possibly

implementing nested cross-validation loops.

The application of a linear classifier in neuroimaging

studies, referring in particular to linear-kernel SVMs,

has an additional advantage. The weight vector w can

be represented as a map with the same dimensions

as the original data (discrimination map), where the

map intensity is proportional the discriminant power of

each voxel (Mourão-Miranda et al., 2005). The possi-

bility to localize the most discriminant areas of the

brain in a case-control study allows the single subject

predictive information provided by the SVM classifiers

to be complemented with an anatomical description of

the brain involvement in that particular pathology. 

Most applications of ML to neuroimaging data were

originally developed within the Alzheimer’s disease

research community, starting with the first automated

classification efforts of Fan et al. (2008) and Klöppel et

al. (2008). More recently, they have been implement-

ed in large-scale analyses of the multicenter MRI data

collected within the prospective Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Weiner et al., 2012).

The main contribution the ML technique can make in

this field of research is to favor early diagnosis, by

predicting the outcome of subjects with mild cognitive

impairment (Chincarini et al., 2011; Hinrichs et al.,

2011; Cho et al., 2012; Retico et al., 2014). 

Even though some authors have highlighted critical

aspects of ML techniques as applied to brain data

(Lemm et al., 2011; Orrù et al., 2012), these methods

are becoming widespread analysis instruments also in

psychiatric disease investigations. Machine learning

has already been applied to sMRI data of patients with

schizophrenia (Castellani et al., 2012), major depres-

sion (Costafreda et al., 2009) and autism (as reported

in Table I, and detailed below).

In their pioneering work, Akshoomoff et al. (2004) per-

formed manual tracing anatomical parcellation of six

pre-selected brain regions and analyzed volume-

based features to discriminate ASD toddlers from con-

trols. Neeley et al. (2007) performed a multivariate

analysis of 26 temporal lobe structures and used clas-

sification and regression tree analysis and discrimi-

nant analysis to identify structures with possible dis-

criminatory power. They found that the volumes of the

GM and WM of the left fusiform gyrus, of the GM of the

right inferior temporal gyrus, and the volume of the

right temporal stem discriminated ASD subjects from

controls with 85% sensitivity and 83% specificity.

Surface-based morphometry methods based on corti-

cal thickness revealed 90% classification accuracy in

distinguishing ASD subjects from controls, evaluated

in cross validation (Singh et al., 2008). Multiparameter

classification approaches on cortical thickness meas-

ures also provided very good discrimination perform-

ances: accuracy of 87% (Jiao et al., 2010) and of up

to 90% in the left hemisphere (Ecker et al., 2010a).

Among the voxel-wise volume-based classification

methods, the SVM classifiers were used to discrimi-

nate ASD from control female children on the basis of

the altered GM volumes, achieving an AUC of 80%

and identifying a highly discriminant brain circuit

involving bilaterally the superior frontal gyrus and the

right temporoparietal junction (Calderoni et al., 2012).

Both GM and WM have been analyzed in a study of

adult subjects, obtaining a best classification accura-

cy of 81% when GM images only were utilized (Ecker

et al., 2010b), and accuracies of up to approximately

90% when regions within the default mode network

only were considered in a group of younger subjects

(Uddin et al., 2011). 

In the work of Sato et al. (2013), the support vector

regression (SVR) method with radial basis function

was applied to inter-regional cortical thickness corre-

lations with the aim not of distinguishing ASD from

control subjects, but of predicting the Autism

Diagnostic Observation Schedule (ADOS) autistic

symptom severity score. They obtained a correlation

between predicted and observed ADOS scores of

r=0.362 (p<0.001).

Limitations of existing studies

In the last few years, as reported in table 1, several

studies have implemented sMRI-based predictive

models in ASD patients, but none of these focused on

very young ASD children. Current understanding of

the cerebral alterations in ASDs is indeed based on

brain imaging studies performed mostly in adolescent

and adult subjects. Therefore, the distinctive brain

profile of ASD when symptoms start constitutes a neg-

lected area of research.

On the other hand, previous studies performed using

ML techniques applied to sMRI in ASD patients are

often found to present several limitations. First, the

wide age range of previously investigated patient sam-

ples [e.g. 8-18 years in the study by Uddin et al. (2011);

20-68 years in Ecker et al. (2010a); and 18-42 years in

Sato et al. (2013)] could represent a major weakness

as regards the analysis of ASD patients, in whom the

atypical brain development is an age-dependent effect.

Second, including only high-functioning ASD patients in

the study sample (e.g. Neeley et al., 2007; Jiao et al.,

2010; Ecker et al., 2010b; Uddin et al., 2011; Sato et al.,

2013) makes it impossible to extend the conclusions to

ASD subjects with intellectual disability, who represent

approximately one third of this population (Centers for

Disease Control and Prevention, 2014). Third, previous

studies have mainly included samples made up only of

male subjects (e.g. Akshoomoff et al., 2004; Neeley et

al., 2007; Ecker et al., 2010a,b), or of males and

A. Retico et al.
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Table I - Implementation details and classification performance achieved by MRI-based autism detection procedures.

Study Number Age Classification Features Subjects Validation Performance
of range method in scheme
subjects (years) training/

test set

Akshoomoff 52 male 1.7-5.2 Discriminant GM and WM All None Sensitivity=95.8%
et al., ASD subjects function volumes; area Specificity=92.3%
2004 and 15 age- analysis of the anterior 

and gender- and cerebellar 
matched vermis; 
controls cerebellar GM

and WM
volumes

Neeley et al., 33 male ASD only the Classification Volumes of 26 56/1 Leave-one- Best performance
2007 subjects; 24 average and structures out cross in ASD vs TD

age- and 14±6 is regression (either GM validation separation 
gender- provided tree (CART) or WM) of the (obtained in
matched TD and logistic temporal lobe the classification
controls; 24 regression of LFG-GM,
age- and RTS, RITG-GM):
gender- Sensitivity=85%
matched RD Specificity=83%
subjects (all
high
functioning)

Singh et al., 16 ASD and 11 not Linear Cortical 24/3 10 iterations Accuracy ≈90%
2008 TD controls provided Programming thickness of 9-fold

Boosting computed at cross 
(LPBoost) each vertex validation

of the cortica
surface

Ecker et al., 20 male ASD 20-68 SVM Five 38/2 Leave-pair- Best performance
2010a subjects and (linear kernel) morphometric out cross (obtained in

20 age-, features for validation classification
gender- and each vertex of cortical
IQ-matched of the cortical thickness of the 
controls; 19 surface right hemisphere):
ADHD matched Sensitivity=90%
to the ASD Specificity=90%
group Accuracy=90%
(validation set)

Ecker et al., 22 male ASD 18-42 SVM Voxel-wise GM 43/1 Leave-one- Best performance
2010b subjects and (linear kernel) and WM maps out cross obtained in

22 age- and validation classification:
gender- GM Sensitivity=77%
matched Specificity=86%
controls Accuracy=81%
(all high
functioning)

Jiao et al., 22 ASD 6-15 Four ML Regional 90%/10% 10 iterations Best classification
2010 subjects and techniques: cortical of 10-fold performance

16 age- and SVM, thickness cross obtained by LMT 
gender- MLPs, FTs, and volumes validation on cortical
matched LMTs for 66 brain thickness:
controls structures AUC=93%
(all high Sensitivity=95%
functioning) Specificity=75%

Accuracy=87%

continued
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females together, but without separate gender analyses

(Uddin et al., 2011). In this way, gender differences in

the brain anatomy of ASD patients [see, for example,

Schumann et al. (2010) and Nordahl et al. (2011)] could

not be detected. A first study fully dedicated to the

investigation of brain alterations in female ASD subjects

was conducted by Calderoni et al. (2012). Fourth, little

is currently known about the influence of behavioral and

pharmacological treatments on brain structure and

function in ASD patients. Comparing pre- and post-ther-

apy data from the MRI scans of ASD subjects can help

to reveal how therapy affects cerebral plasticity. Two

reports dealing with this approach have recently been

published (Pardini et al., 2012; Voos et al., 2013).

In view of these considerations, there is a need to per-

form ML studies of sMRI data in large samples of clin-

ically well characterized ASD subjects falling within

narrow age ranges (both males and females, high-

functioning and low-functioning) who should be

scanned longitudinally in order to highlight neu-

roanatomical differences, similarities and distinctive

features of each ASD subgroup. 

Among the algorithms for the analysis of sMRI data, the

surface-based methods (e.g. Singh et al., 2008; Jiao et

al., 2010; Ecker et al., 2010a; Sato et al., 2013) are not

optimal instruments for ASD studies, despite their abili-

ty to investigate expected abnormalities in the cortical

thickness of ASD subjects. They are unable to analyze

subcortical structures (e.g. amygdala, basal ganglia),

which instead constitute crucial neuroanatomical sub-

strates of the ASD symptomatology. Machine learning

studies focused on specific ROIs require an a priori

hypothesis of the brain involvement in ASD, and they

are particularly time consuming, especially when the

ROI tracing is performed manually. By contrast, whole-

brain approaches risk failing to detect subtle ASD signs

due to confounding effects within the data. 

To overcome the limitations that differently affect all

analysis methods, a more general framework could be

implemented, wherein the ML classifications of both

whole brain and ROI-based features are performed at

the same time, and the results of the two classifiers

are then combined to enhance the classification per-

formance. In general, there is no reason to assume

that any single classification scheme might be optimal

for the detection of pathological subjects. It is more

likely that different methods have complementary

strengths, and the availability, in the same subject, of

the outputs of multiple systems will allow a direct com-

parison between different classification schemes (e.g.

voxel-wise vs ROI-based approaches) and possibly

improve the overall performance. In addition, when

the combination of the two classifiers is carried out,

this novel strategy would allow simultaneous micro-

scopic-scale (voxel level) and macroscopic-scale (ROI

level) analysis of the brain. 

A. Retico et al.
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Uddin et al., 24 ASD 8-18 SVM (with Voxel-wise 90%/10% 10-fold Best performance
2011 subjects (22 radial basis GM and WM cross obtained in

males and 2 function maps validation classification of
females) and kernel) GM in the posterior
24 age-, cingulate cortex:
gender- and Accuracy ≈90%
IQ-matched
controls (all
high
functioning)

Calderoni 38 female ASD 2-7 SVM Voxel-wise 74/2 Leave-pair- AUC=80%
et al., subjects and (linear kernel) GM maps out cross 
2012 38 age-, validation

gender- and 
IQ-matched
controls

Sato et al., 82 male 18-42 support vector Inter-regional 165/1 Leave-one- r=0.362 (p<0.001)
2013 subjects and regression cortical out cross correlation 

84 age- with radial thickness validation between
matched basis function correlation predicted and 
controls observed ADOS 
(all high score
functioning)

Abbreviations: ADHD=attention deficit hyperactivity disorder; ASD=autism spectrum disorder; ADOS=Autism Diagnostic Observation Schedule; AUC=area

under the receiver operating characteristic curve; FTs=functional trees; GM=gray matter; IQ=intelligence quotient; LFG=left fusiform gyrus; LMTs=logistic

model trees; ML=machine learning; MLPs= multilayer perceptrons; RD=reading deficit; RITG=right inferior temporal gyrus; RTS=right temporal stem;

SVMs=support vector machines; TD=typical development; WM=white matter.

Table I - (cont.). 

Study Number Age Classification Features Subjects Validation Performance
of range method in scheme
subjects (years) training/

test set
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Even though this review focuses on the diagnostic

power of sMRI of the brain, ML techniques can easily

be extended to accommodate data acquired with dif-

ferent modalities, e.g. diffusion tensor imaging, func-

tional MRI (fMRI), electroencephalography and near-

infrared spectroscopy. Data fusion approaches, i.e.

encoding information extracted from fractional

anisotropy (FA) and mean diffusivity maps, or from FA

and fMRI connectivity, in a single vector of features to

be classified, have been attempted in the field of ASD

research too (Ingalhalikar et al., 2011; Deshpande et

al., 2013). Such within-modality approaches can obvi-

ously be extended to accommodate image features

extracted by other modalities, e.g. sMRI, fMRI and

non-imaging features. When dealing with large data

samples and multiple data sources for each subject a

powerful e-infrastructure could be useful to efficiently

handle the computational effort. A publicly accessible

grid-/cloud-based infrastructure has been developed

within the neuGRID initiative4. It provides researchers

with suitable computing resources and the software

packages most widely used within the neuroimaging

community (Redolfi et al., 2009; Redolfi et al., 2013).

In conclusion, the combination of complete clinical

information with innovative and powerful data analysis

techniques would provide a deeper knowledge of the

neurobiological basis of ASD.

MRI classification methods as future diagnostic

biomarkers? Potential benefits and drawbacks

Machine learning methods applied to sMRI could help to

improve the efficiency of an early ASD diagnosis

through the identification of a peculiar pattern of brain

alterations. Early ASD identification allows inclusion in

intervention programs that, in turn, impact on outcome,

improving socio-communicative skills, reducing mal-

adaptive behaviors (Vismara and Rogers, 2010), and

normalizing patterns of brain activity (Dawson et al.,

2012). In fact, greater knowledge of the brain profile

characteristics of very young children with ASDs could

help not only in ASD early identification, but also in the

implementation of tailored intervention protocols. 

On the other hand, several critical aspects of MRI-based

ML classification techniques must be taken into account.

First of all, in order to suggest the complementary use of

ML classification approaches in the ASD diagnostic

process, a high accuracy (over 90%) is required. This

should derive from high degrees of both sensitivity and

specificity of the ML algorithms. As far as sensitivity is

concerned, the high heterogeneity of ASD clinical

expression necessarily hinders the capability of a single

biomarker to detect a high percentage of ASD patients

(Grzadzinski et al., 2013). However, despite showing a

wide variation in phenotype severity and expression,

ASD patients share strong and consistent commonali-

ties, possibly underpinned by alterations in the same

brain regions and thus potentially detectable using ML-

based approaches. On the other hand, the degree of

specificity of distinctive ASD brain patterns could suffer

because of the overlap between ASD and other neu-

ropsychiatric pathologies (e.g. intellectual disability, lan-

guage disorders, attention deficit hyperactivity disorder,

regulatory disorders). Even though the brain MRI exam-

ination is performed with a clinical indication in ASD sub-

jects (to complete the assessment pathway, with the aim

of excluding brain alterations), a major limitation to the

wider use of MRI is the fact that it frequently needs to be

performed under general anesthesia. In fact, some ASD

patients, especially young children and lower function-

ing individuals, are not able to stay still in the scanner

without anesthesia. In these cases, brain MRI acquisi-

tion becomes a more complicated, uncomfortable and

not completely risk-free procedure. In order to overcome

this critical aspect, a possible option is to perform MRI

without sedation, during natural sleep. The “sleep MRI”

method has been validated and successfully used to

examine brain function in toddlers with ASD (Pierce,

2011; Redcay et al., 2007; Nordahl et al., 2008; Dinstein

et al., 2011). 

In addition, even though encouraging results are pro-

vided by ML-based approaches, caution is required in

the interpretation and dissemination of their findings,

in order not to raise false promises for a technology

that is still far from able to substitute the traditional

diagnostic approach (Walsh et al., 2011).

In conclusion, the application of ML classification tech-

niques to sMRI data of ASD subjects is still in its infan-

cy and will not soon be able to replace the tailored

information provided by a multidisciplinary assess-

ment. Several steps still have to be completed before

an ML tool able to support the diagnosis of ASD, even

one showing optimal performance, can make the tran-

sition from the laboratory to the clinic. However, as ML

techniques are valuable tools for uncovering relation-

ships hidden within the complexity of imaging and

non-imaging data, dedicated efforts to refine and stan-

dardize the analysis strategies should allow them, in

the future, to provide significant insights able to con-

tribute to the early diagnosis of ASDs and the stratifi-

cation of ASD individuals.
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