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Summary

To progress toward understanding of the mechanisms

underlying the functional organization of the human

brain, either a bottom-up or a top-down approach may be

adopted. The former starts from the study of the detailed

functioning of a small number of neuronal assemblies,

while the latter tries to decode brain functioning by con-

sidering the brain as a whole. This review discusses the

top-down approach and the use of magnetoencephalog-

raphy (MEG) to describe global brain properties. The

main idea behind this approach is that the concurrence of

several areas is required for the brain to instantiate a spe-

cific behavior/functioning. A central issue is therefore the

study of brain functional connectivity and the concept of

brain networks as ensembles of distant brain areas that

preferentially exchange information. Importantly, the

human brain is a dynamic device, and MEG is ideally suit-

ed to investigate phenomena on behaviorally relevant

timescales, also offering the possibility of capturing

behaviorally-related brain connectivity dynamics.

KEY WORDS: brain dynamics, brain networks, magnetoen-

cephalography

Introduction

Achieving understanding of the mechanisms underly-

ing the functional organization of the human brain, a

Magnetoencephalography in the study of brain
dynamics

highly complex system featuring 1012 deeply intercon-

nected neurons (plus 1013 glia cells), is undoubtedly

one of the major challenges of this century. Although

this goal is still far from being reached, neuroscientists

have several techniques at their disposal allowing

effective advances in this direction. Overall, two pos-

sible approaches may be used: an analytical one and

a holistic one. 

The analytical approach seeks to characterize brain

functioning by understanding the details of neuronal

activity, i.e. starting from the study of the organization

of a small number of cells and scaling up to the organ-

ization of larger assemblies and eventually up to the

whole brain (bottom-up approach). On the other hand,

the holistic approach aims to decode brain functioning

by considering the brain as a whole, starting from an

analysis of its general features (top-down approach).

This latter approach stems from the idea that the brain

is not a mere (linear) superimposition of small low-

power units, and that many of its features would not

emerge if small brain units were to be analyzed inde-

pendently. 

Although the analytical approach provides an insight

into the innermost workings of the brain, it requires the

use of invasive electrophysiology, which is practically

impossible to utilize in healthy humans and poses diffi-

culties even in the absence of ethical concerns (e.g. in

low IQ animals), since the detector itself may perturb the

brain system. Moreover, it is difficult to collect data from

several distinct brain areas simultaneously. Conversely,

the holistic approach, although unable to investigate

brain activity on a sub-millimeter scale, may exploit non-

invasive methods, making it an approach that is easily

applied in humans. Moreover, it allows simultaneous

recording of data from the whole brain.

In this paper, the holistic approach to the study of

human brain functioning will be discussed. In particu-

lar, magnetoencephalography (MEG) and its use to

investigate global brain properties, including brain

dynamics, will be described. MEG is a non-invasive

technique that records the magnetic fields generated

by neuronal activity. Details of this technique can be

found in Hämäläinen et al. (1993). Here, we just

remark that from the measured magnetic fields it is

possible to infer the current density flowing inside the

brain, and consequently the neuronal activity (Baillet et

al., 2001). The neuromagnetic field is extremely small,

and its detection requires high-end instrumentation
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(Pizzella et al., 2001), yet it allows the generation of a

temporally accurate map of the neural processes impli-

cated in various aspects of brain functioning during

rest or task execution. MEG is often performed in addi-

tion to (or jointly with) electroencephalography (EEG),

since both techniques are sensitive to the same under-

lying neurophysiological phenomena, i.e. the current

flow associated with neuronal activity. However, MEG

features a higher spatial resolution than EEG and is

therefore more often used in brain mapping where the

highest achievable resolution is needed (10-15 mm).

Although, in the present paper, only MEG data will be

presented, most of the considerations put forward

herein are also applicable to EEG alone or to com-

bined EEG/MEG measurements. 

In the early years of MEG (1975-1990), the instrumenta-

tion and the available data analysis methods allowed the

mapping of only a few segregated brain areas according

to their specific function in task execution/stimulus pro-

cessing, and did not take into account their relationship

with the rest of the brain. This latter aspect, which is often

shared with other neuroimaging techniques such as func-

tional magnetic resonance imaging (fMRI) (Huettel et al.,

2009), may be questionable since the approach, as a

result, resembles a sort of modern phrenology. Indeed, it

has now been challenged by the idea that the concur-

rence of several areas is required by the brain in order to

instantiate a specific functioning/behavior, and that these

areas must cooperate in a synergistic manner. This idea

has led to the concept of the brain network, i.e. an

ensemble of spatially distinct areas that must cooperate

to accomplish a specific task. Accordingly, new approach-

es have been developed to map brain connectivity, i.e. to

build a map of how the different brain areas are intercon-

nected, and from that to identify brain networks.

To date, brain networks have been recognized and

characterized using several neuroimaging techniques.

Structural connections may be identified using diffu-

sion tensor imaging, a magnetic resonance imaging

(MRI) method that exploits diffusion to identify axonal

fibers (Le Bihan, 2003), while functional connections

may be investigated using fMRI. To these techniques,

MEG, thanks to its unmatched temporal resolution,

adds the unique capability to study the dynamics of

brain connectivity. 

In the following sections, the MEG technique is

described in relation to the different stages necessary

for achieving an understanding of brain functions.

First, MEG is introduced as a tool for imaging brain

activity; second, brain networks as revealed by MEG

are discussed; finally, the authors discuss brain

dynamics as characterized by MEG. A series of boxes

is provided to help the reader (see Appendix).

Magnetoencephalography as a tool for imaging

brain activity

Neuronal electric currents generate magnetic fields,

as all electric currents do (see Box 1). Given the low

strength and the high temporal specificity of neuronal

electric signals, hundreds of thousands of neurons

must be synchronously active to generate a field

detectable outside the head. Even when this condition

is met, ultra-sensitive devices are required to detect

the magnetic field in a practical and usable way (see

Box 2 for a quick glance at MEG instrumentation).

The easiest way to elicit detectable neuromagnetic

activity is to stimulate the sensory systems, e.g. with a

tone burst, a flash or a somatosensory (low-intensity)

electric shock. The stimulation synchronizes the neu-

rons of the corresponding primary sensory cortices in

the first 100-150 ms after the stimulus. To enhance the

signal-to-noise ratio, the stimulation must be repeated

several (~100) times and the corresponding signals

must be averaged. The resulting magnetic field distribu-

tion (event-related field) may thus be used to identify the

active brain area(s). To this end, i.e. to estimate the cur-

rents generating the recorded magnetic field, an inverse

problem must be solved (see Box 3). Finally, active neu-

ronal pools can be described in terms of current

dipole(s) latency and strength (see Boxes 1 and 3).

Given the characteristics of neuronal pools and the

physics of electromagnetism, the spatial resolution of

the MEG technique is limited to about 5 mm. However,

thanks to the exquisite temporal resolution (~1 ms) of

MEG it is possible to study the dynamics of brain

sources by investigating multiple aspects of the event-

related (as well as the spontaneous) activity of the brain. 

Event-related signals have been analyzed in the differ-

ent sensory domains, and a few examples will be pro-

vided herein. In the visual domain, mechanisms of

visual perception have been analyzed through study of

the sequence of activation of brain areas, with the find-

ings suggesting early top-down priming of the primary

visual cortex (V1) (Vanni et al., 2001). In the sensori-

motor domain, evidence from MEG studies has sug-

gested that the secondary somatosensory cortex plays

an integrative role during the processing of different

classes of stimuli, ranging from simple painful/non-

painful stimuli (Torquati et al., 2003) up to complex

bimanual object manipulation (Jung et al., 2012). In the

auditory domain, selective response modulations have

been found in the primary auditory cortices at middle

latencies, namely during dichotic listening when com-

pared to non-dichotic stimulation based on vowels

(Della Penna et al., 2007). Another study in which deaf

native signers were compared with normal-hearing

signers during processing of concrete nouns delivered

through videos and speech, analysis of early and late

responses showed that similar frontotemporal net-

works are involved in semantic processing, irrespec-

tive of the modality or the subject population (Leonard

et al., 2012). At a higher level, analysis of conscious

perception of an auditory illusion and the sequence of

activation elicited by the perception has shown that

neural correlates of consciousness are stimulus

dependent (Brancucci et al., 2011).

Massive neuronal pool synchronization is less likely to

take place when higher-level brain functions, i.e. lan-

guage processing, are under investigation or when

considering long-latency responses. In this context, it

is instead useful to analyze the oscillatory activity of

the brain (see Box 4). Oscillatory brain activity is mod-
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ulated during task execution according to two different

phenomena: decreased synchronization of brain oscil-

latory activity, or event-related desynchronization

(ERD), and increased synchronization of brain oscilla-

tory activity, or event-related synchronization (ERS)

(Pfurtscheller and Lopes da Silva, 1999) (Fig. 1).

These modulations have been extensively used to

analyze specific aspects of brain activity and have

proven to be frequency specific and related to the par-

ticular processing occurring in the brain. For example,

cognitive processes involving the motor system have

been extensively studied, e.g. to infer and decode

movements (Waldert et al., 2008). Similarly, motor

planning in decision making is encoded by increased

gamma oscillations and decreases of alpha and beta

power in the motor cortex before the execution of the

motor response (Donner et al., 2009). Oscillatory

brain activity and its modulation have also been linked

to visual attention. In particular, site-specific gamma

oscillations have been linked to the individual’s atten-

tion capacity, whereas suppression of theta to beta

amplitudes has been correlated with attentional load

(Rouhinen et al., 2013). In addition to the visual

modality, auditory attention has been shown to modu-

late alpha power in auditory regions, and specifically

in relation to the information content of the auditory

cue (Weisz et al., 2014). Modulations of the power of

oscillatory brain activity have also been linked to men-

talizing processes such as those related to non-verbal

communication (Brunetti et al., 2014).

Brain functional information gathered by MEG by

means of the above-mentioned analysis strategies can

be integrated with the information obtained using other

functional imaging techniques such as fMRI. Indeed,

fMRI features a very high spatial resolution (~1 mm),

since it relies on the same principles as MRI. However,

functional information is obtained from the blood oxy-

genation level-dependent (BOLD) effect, i.e. a signal

linked to the hemodynamic response that is much

slower than the neuronal response, and is indirectly

linked to the neuronal electric activity. Integration of the

two techniques is possible at the data processing level,

when either the fMRI maps are used to constrain MEG

sources (Ahlfors et al., 1999) or both functional maps

are projected into a common space and interpreted

simultaneously (Del Gratta et al., 2002). MEG-fMRI

integration allows the disentangling of sources that are

closer than the spatial resolution of MEG. For example,

the latency and amplitude of the different activities of

two populations in the secondary somatosensory cor-

tex, responding either to nociceptive or to non-nocicep-

tive stimuli and lying close to one another, have been

revealed through spatial priors obtained from fMRI

(Torquati et al., 2005), as MEG alone was not able to

discriminate between them. Other multimodal studies

were able to disclose the temporal signature of higher-

order functional areas, and thus to estimate the

sequence of brain activation in more complex net-

works. As an example, the activation sequence in the

circuit devoted to spatial re-orienting of attention was

obtained from MEG-fMRI during passive listening to

stimuli coming from random directions (Brunetti et al.,

2008). More sophisticated approaches for multimodal

imaging, such as representational similarity analysis,

allowed analysis of transient and persistent activities in

the V1 during object processing (Cichy et al., 2014).

Additionally, the spatial consistency of MEG power

modulations and BOLD activity made it possible to

investigate the near-miss effect, which is a marker of

pathological gambling in pathological and non-patho-

logical gamblers (Dymond et al., 2014). 

Finally, MEG has also proven to be useful in clinical

studies, see Stufflebeam et al. (2009) for a review.

The most important clinical results obtained using

MEG derive from the detection and localization of

pathological activity in patients with epilepsy, as well

as from surgical planning in patients with brain

tumors. Indeed, in surgical planning, knowledge of the

position of critical brain regions (e.g. primary sensory

areas, and areas involved in speech production and

comprehension) is a prerequisite for avoiding potential

neurological deficits induced by the surgery.

Magnetoencephalographic connectivity and brain

networks

One of the central issues in neuroscience is the organi-

zation of communication in the brain, both in healthy,

physiological conditions and in neurological diseases.

Indeed, in the last decade it has become clear that

depicting brain functioning as the overlapping of the

activities of segregated areas is no longer sufficient to

properly describe system behavior. A more factual theo-

ry describes the brain as a complex structurally and func-

tionally integrated system. Although this concept is well

defined, the idea of brain connectivity in neuroscience

refers to several different and interrelated aspects of

MEG and brain dynamics
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Figure 1 - Event-related synchronization and desynchroniza-

tion in the right secondary somatosensory area after galvanic

stimulation.
Power changes in the right secondary somatosensory area as a func-

tion of time (seconds) and frequency (Hz) relative to the baseline peri-

od (-0.1s–0s), zero being the onset of a galvanic stimulation delivered

to the index of the left hand in a single right-handed subject). Blue indi-

cates a power decrease, i.e. ERD, and red indicates a power increase

(ERS). ERD/ERS phenomena show different latencies and spectral

contents, with ERD in the alpha-frequency range (8-12 Hz) and ERS in

the beta range (15-25 Hz).
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Figure 2 - Schematic representation of signal propagation from brain sources to MEG sensors (a) and of channel-level interactions

for a subset of MEG channels (b).
a) signal propagation to the sensors is assumed to be instantaneous in comparison to the timescales of signal propagation within the brain (t1<<t2);

at a given time instant, the different MEG sensors capture a weighted sum of the activities of all brain sources. b) Schematic representation of chan-

nel-level interactions for a subset of MEG channels. The larger black circle indicates the system layout and each smaller circle indicates the cou-

pling of one sensor (black dot) with all the others. The spread of the source activity to the sensors artificially enhances the degree of coupling

between channels independently of the actual brain source interaction. Indeed, in this toy example all channels appear to be highly coupled with all

the others although only two interacting sources were simulated (a). 

brain organization (Horwitz, 2003; Friston, 2011). In par-

ticular, the term anatomical connectivity refers to the

study of patterns of anatomical links between brain

areas; the statistical dependence between functional

data (measured by a variety of approaches) is referred to

as functional connectivity; and causal (or directed) inter-

actions are studied by effective connectivity approaches.

See Lang et al. (2012), Stam and van Straaten (2012),

and Sakkalis et al. (2011) for an overview. We will here

concentrate on the exquisite contribution of MEG to func-

tional connectivity. 

From a historical perspective, the first attempts to

investigate pairwise interactions between MEG and

EEG data were performed at the sensor level. Although

these first results constituted a conceptual break-

through in the systemic approach to brain functioning,

MEG and EEG sensor-level connectivity might not be a

sensitive index of brain functioning due to the severe

bias induced by volume conduction effects (Nolte et al.,

2004, Marzetti et al., 2007, Nolte and Marzetti, 2014).

Volume conduction effects are smearing distortion

effects on the MEG/EEG signals generated by the low-

pass spatial properties of the mapping of source to sen-

sor activities (Fig. 2a). Therefore, when studying the

interaction between signals, the spread of the source

activity to the sensors artificially enhances the degree

of coupling between channels independently of the

actual interactions between brain sources (Fig. 2b).

An important step forward toward understanding of

true brain connectivity is constituted by the evaluation

of interaction at the level of brain sources, either by

first estimating brain activity from the electromagnetic

field through an inverse approach (Schoffelen and

Gross, 2009; de Pasquale et al., 2010; Marzetti et al.,

2013) (see Box 3), or by projecting coupling matrices

(e.g. cross-spectral density, covariance) into the brain

source space (Marzetti et al., 2008; Nolte et al., 2009;

Chella et al., 2014). Although this approach greatly

reduces the self-coupling effects, it does not solve the

issue of spurious connectivity per se. Indeed, neigh-

boring sources share a common activity that results in

spurious auto-interaction patterns. Great care should

thus be taken in designing connectivity metrics robust

to this effect in source space (Sekihara et al., 2011;

Brookes et al., 2012; Marzetti et al., 2013) and in inter-

preting the results in relation to the specific connectiv-

ity metric properties and to the spatial filtering proper-

ties of the inverse operator used to estimate source

activities (Hauk and Stenroos, 2014).

Among the large spectrum of metrics used for estimat-

ing pairwise MEG functional connectivity, we will here

describe two major strategies that aim to capture con-

nectivity information from MEG at different timescales:

coupled aperiodic fluctuations of signal envelopes and

phase coupling of band-limited oscillatory signals (Fig.

3). These two coupling modes differ in their dynamics,

their origins and their putative functions. Envelope

couplings are observed on slow timescales, ranging

from several seconds to minutes, and share several

common features with structural connectivity as well

as with fMRI connectivity. Phase couplings, on the

other hand, have been observed in multiple defined

frequency bands, i.e. from ~1 Hz to 150 Hz, are less

constrained by structural coupling, and show strong

condition-specific modulations. At present, the rela-

tionship between these two types of coupling is not yet

understood. An intriguing hypothesis by Engel et al.

(2013) is that envelope couplings represent coherent
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behavior, in spontaneous activity at the brain source

level (de Pasquale et al., 2012; Hipp et al., 2012;

Hillebrand et al., 2012; Marzetti et al., 2013). In this

framework, the study of coupled aperiodic fluctuations

of MEG signal envelopes highlighted correlated pat-

terns that resemble fMRI RSN topographies, whereas

phase coupling of band-limited oscillatory MEG sig-

nals revealed a more sophisticated picture in which

different frequency-specific communication channels

allow the binding of different networks. In the near

future, efforts will need to be made to achieve full

characterization of these phenomena through MEG. 

Magnetoencephalography in the study of brain

dynamics

The human brain is a self-evolving system whose

structure and function are able to adapt and reorgan-

ize over time. Long-term modifications are induced by

learning throughout one’s lifespan, but changes can

also occur on much shorter timescales. Temporal fluc-

tuations of brain activity show properties that are

informative about the functional characteristics of the

brain itself. These temporal variations are the result of

the integration at multiple scales of the local temporal

fluctuations of individual neuronal populations.

Although it is not yet fully understood how the local

activity of an ensemble of neurons is bound to the

“macroscopic” electrophysiological patterns generat-

ed by huge groups of neuronal pools (see Box 4), evi-

dence has emerged that neuronal temporal dynamics

show similar characteristics at various spatial and

temporal scales. In fact, signal temporal fluctuations

show statistical similarities across a wide range of

timescales, from seconds to hundreds of seconds,

namely a scale-free behavior (He, 2014). This behav-

ior has also been observed with MEG for amplitude

fluctuations of brain oscillations, and long-range tem-

poral correlations (Palva et al., 2013).

Moreover, at a shorter (millisecond) timescale and at

a local level, neuronal populations self-organize in

such a way that their activity comprises cascade-like

neuronal avalanches. The distribution of the size of

excitability fluctuations that lead to coordinated

changes in the activation of brain areas, thus possibly

regulating the availability of neuronal populations for

participation in an upcoming task. By contrast, the

putative role of phase coupling is to facilitate commu-

nication between separate neuronal populations dur-

ing stimulus or cognitive processing, which may serve

to regulate the integration and flow of cognitive con-

tents on fast timescales relevant to behavior.

These two connectivity strategies make it possible to

highlight ensembles of brain regions that in a synergis-

tic manner participate in the execution of a given task

or show coherent activations during ongoing sponta-

neous activity. Such ensembles are characterized by

spatially organized topographies referred to as brain

networks. Importantly, although the brain network con-

cept provides a unifying framework for understanding

brain functioning, it is not univocally determined.

Indeed, the available evidence suggests that a number

of factors such as structural connectivity, conduction

delays, level of neuromodulators, as well as previous

task-related activation or coupling, contribute to a net-

work-like behavior. Thus, brain networks are not invari-

ant patterns, but rather patterns that change in a use-

dependent as well as in a context-dependent manner.

In this framework, it is not surprising that different neu-

roimaging modalities, by capturing different aspects of

information integration in the brain, may lead to differ-

ent operative definitions of brain network. 

To begin with, we should mention that the first demon-

stration of spatially organized networks in ongoing

activity in the brain was achieved by using fMRI

(Biswal et al., 1995) and it raised the idea of resting-

state networks (RSNs). Using fMRI, different RSNs –

including the default-mode network (DMN), the dorsal

attention network (DAN), as well as executive control,

visual, auditory and sensorimotor networks – were

identified as networks of brain areas that show corre-

lated fluctuations in the infra-slow frequency range

(<0.1 Hz) in the absence of a stimulus or task

(Raichle, 2010; Deco and Corbetta, 2011). 

Only recently, novel EEG/MEG methods have become

available that allow the characterization of frequency-

specific coupling, possibly leading to network-like

Figure 3 – Dynamic information of the

MEG signal.
MEG signal estimated at one brain location

(black dot) shows a rich temporal structure at

the millisecond timescale (black curve).

Fluctuations of signal envelope capture slowly

varying MEG power dynamics (red curve) with

a timescale similar to fMRI signal fluctuations.
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these avalanches exhibits a power-law behavior, i.e.

the number of avalanches observed in the data scales

inversely with the size of the avalanche (Beggs and

Plenz, 2003). These dynamics characterize sponta-

neous neuronal activity in organotypic cultures, brain

slices in vitro, and monkey and human cortex in vivo

(Petermann et al., 2009; Tetzlaff et al., 2010).

Additionally, the brain’s dynamic properties proved to

be behaviorally relevant. Indeed, the long-range tem-

poral correlation recovered from source-reconstructed

MEG oscillatory activity correlates with both behav-

ioral performance fluctuations and neuronal ava-

lanche occurrences in anatomically well-identified

brain regions (Palva et al., 2013).

The existence of scale-free dynamics at different spa-

tial and temporal scales and at different levels of

organization has been interpreted as a sign of brain

complexity reflecting the ability of the system to effi-

ciently adapt to upcoming demands (Deco and Jirsa,

2012). The term complexity reflects a rich, temporally

ordered structure found in the brain signal at different

levels. Brain complexity ranges between a situation of

pure randomness, associated with dysfunction, and of

pure absence of variability, associated with the inabili-

ty to facilitate state changes (Zappasodi et al., 2014).

In this framework, metrics able to capture non-linear

dynamics of EEG/MEG signals are an invaluable tool

for addressing the system-level complexity of the brain.

Importantly, the characterization of brain complexity can

improve the ability to distinguish between a healthy,

physiological state and a pathological one, opening up

new perspectives for the comprehension of normal and

altered brain functions (e.g. epilepsy, schizophrenia,

Alzheimer’s disease; for a review see Stam, 2010).

Not only brain activity per se, but also brain activity

coupling as measured by functional connectivity has

been shown to exhibit dynamic properties. Indeed,

brain structural organization shows a highly sophisti-

cated wiring architecture, but only a small fraction of

all the possible connections is employed at any time.

This allows dynamic changes of functional and effec-

tive connectivity, giving rise to short-lived oscillations

which are built and destroyed by the brain’s internal

dynamics. Interestingly, neuronal ensembles switch

between interference-prone states to oscillatory syn-

chrony. This behavior seems to represent an efficient

Figure 4 – Brain networks as observed by magnetoencephalography.
(a) Phase coupling of band-limited oscillatory signals as identified by multivariate interaction measure between the dorsal attention network (DAN)

and the motor network in the beta band. (b) Correlated fluctuations of band power envelopes of resting-state MEG show time-variant profiles, e.g.,

when the within-DAN connectivity is computed in two different temporal epochs. Time windows of stronger connectivity alternate with periods of lower

connectivity. (c) Correlated fluctuations of band power envelope for various RSNs show different behaviors for different frequencies. Notably, the

default mode network plays a central role in brain functional connectivity in the beta band. Modified from de Pasquale et al. (2012) and Marzetti et

al. (2013).
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way for the brain to detect changes in the body and in

the surrounding physical world while maintaining its

internal organization (Buzsáki and Draguhn, 2004). In

this scenario, MEG is a very promising tool for captur-

ing the dynamics of network coupling since its high

temporal resolution allows the study of within- and

across-network interactions and their modulation

across frequencies and over time on behaviorally rel-

evant timescales (Varela et al., 2001).

In this framework, frequency-specific functional con-

nectivity patterns have been observed using phase

coupling of band-limited oscillatory signals by the mul-

tivariate interaction measure (Ewald et al., 2012) in

the resting human brain. Specifically, coupling of

regions in the DAN was revealed by the delta and

alpha rhythms and coupling of the DAN with the visu-

al and the sensorimotor networks was observed in the

alpha and beta bands respectively. This indicates that

the interaction between the attention control system

and sensory systems is served by the same frequen-

cy bands in which the sensory system’s task-related

response is known to occur (Marzetti et al., 2013).

Additionally, with the same approach, coupling of the

posterior cingulate cortex to nodes of the executive

control brain network and of the default brain network

in the alpha-frequency band was shown to be related

to different attentional and cognitive control processes

in meditating Buddhist monks, thus suggesting the

importance of the alpha rhythm for attention and con-

sciousness (Marzetti et al., 2014).

The slow fluctuations of band power envelopes of

resting-state MEG have shown close similarities to the

topography of the reported resting-state BOLD fMRI

(de Pasquale et al., 2010). Indeed, MEG revealed

fluctuations in the temporal dynamics of coupling of

RSN nodes, i.e. periods of high coupling alternated

with periods of low coupling. 

In this scenario, different measures of interactions

between RSN nodes exhibited a peak at ~0.1 Hz

(Brookes et al., 2011a,b; de Pasquale et al., 2010,

2012; Hipp et al., 2012; Liu et al., 2010), supporting the

theory that the low-frequency spontaneous BOLD fluc-

tuations are of neural origin (Palva and Palva, 2012). 

Subsequent studies have begun to uncover rules gov-

erning the variability of functional connectivity within and

across networks. For example, the DMN (especially its

posterior cingulate node) was identified to be the net-

work most strongly interacting with all the other exam-

ined networks, specifically when its internal coupling

was high (de Pasquale et al., 2012). This cross-network

interaction requires a partial decoupling of some nodes

in other networks that become functionally coupled with

the DMN. However, this functional relationship breaks

down when the DMN internal correlation is relatively low.

Similarly, viewing natural scenes modulated functional

connectivity in a dynamic fashion according to the

scenes perceived as “event boundaries” by the partici-

pants, who were asked to segment the movie into tem-

poral chunks that they found natural and meaningful

(Betti et al., 2013). Such data suggest that the DMN

serves to transiently integrate systems, likely via beta-
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band synchronization, which might be linked to the tran-

sient periods of strong within-network synchronization,

reported using fMRI (Hutchison et al., 2013).

Future trends

Magnetoencephalography is an invaluable tool for

understanding brain dynamics and addressing the issue

of functional connectivity as a mechanism for instantiat-

ing specific behavior/functioning. MEG indeed captures

several aspects of functional integration in the brain

through a large spectrum of metrics for estimating pair-

wise functional connectivity. The richness of MEG

makes it possible to bridge slow power fluctuations relat-

ed to large neuronal assemblies as seen, e.g. by fMRI,

with small-scale, fast-occurring signals like those gener-

ated by local neuronal pools. For this reason, in the near

future MEG is expected to play a more central role in

characterizing brain networks and to significantly con-

tribute to the construction of the human connectome, i.e.

a comprehensive map of the human brain circuitry.

Several large cooperative projects are endeavoring to

provide a detailed description of the human connec-

tome, e.g. the NIH Human Connectome Project (R01

MH091657), an ambitious effort to map the neural path-

ways that underlie human brain function. To reach this

goal, there must be cooperation, anatomical and func-

tional, between different imaging techniques. In this

framework, MEG, thanks to its excellent time resolution

and its non-invasiveness, is ideally suited to investigate

phenomena on behaviorally relevant timescales, includ-

ing the possibility of capturing behaviorally-related brain

connectivity dynamics (Larson-Prior et al., 2013). The

understanding of global and local network properties

can also be further increased by the use of graph theo-

ry metrics (Stam, 2010; Di Lanzo et al., 2012). Finally,

the integration of human connectome maps with other

important information, like genetics, may lead to a com-

prehensive characterization of functional brain connec-

tivity even at the individual level. This would represent a

first step toward understanding the basis of network

alterations in patients, e.g. in Alzheimer’s disease, mul-

tiple sclerosis, Parkinson’s disease or stroke. In fact, in

several disorders, clear and testable hypotheses on

causal relations between functional network changes

and clinical phenotype have been formulated, which

cannot be straightforwardly predicted from structural

alterations (Stam, 2010). 
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BOX 1 – MEG signal generation

MEG (and EEG) signals are generated by the ionic currents flowing inside and outside neurons. These currents are

driven mainly by excitatory postsynaptic activity, and can be modeled as current dipoles, i.e. short segments along

which the current flows from a source to a sink. It is worth noting that action potentials do not usually produce an

observable field, mainly because the currents associated with action potentials flow in opposite directions and the

magnetic fields are canceled out. However, action fields have been measured from peripheral nerves. The current

dipole thus models only the intracellular (or primary) current and is the basic element for building up the observed

signals. 

The magnetic field generated by a current dipole may be easily computed using Maxwell’s equations in the quasista-

tic approximation. The current flowing along one dendrite is far too weak to produce a measurable signal. The mag-

netic field strength at 4 cm from the neuron (a realistic distance, given the typical skull+scalp thickness and a typical

MEG cryostat geometry) is about 2·10-18 T, thus hundreds of thousands dendrites need to be active synchronously in

order to produce an observable signal. Among all neurons, cortical pyramidal cells have similar orientations and thus

generate magnetic fields that reinforce each other. The spatial and temporal summation of all individual current

dipoles is called equivalent current dipole (ECD), and can be interpreted as an active portion of cortex. Because this

activity directly reflects processing involving specific neurons, EEG and MEG are the most direct correlates of on-line

brain processing that can be detected non-invasively.

The neurons are embedded in a conductive medium, i.e. the brain tissue and CSF. Therefore, the primary current

generated by neuronal functioning induces a current which flows through these media, as well as through the skull

and scalp. This current is referred to as secondary or volume current. EEG would not be possible without volume

currents, which reach the scalp surface and cause voltage differences at the scalp that can be picked up by EEG

electrodes. 

Both primary and volume currents produce magnetic fields, which sum up and can be measured, by means of detec-

tion coils placed over the head, using MEG devices. However, if the conductive medium has homogeneous conduc-

tivity and has a spherical shape, it can be shown that only primary currents contribute to the external magnetic field.

Although the head is not spherical, the effect of volume currents may be negligible for some brain areas (where the

head shape can reasonably be approximated by a spherical surface such as in the occipital part), thus it is conceiv-

able that MEG may constitute a technique able to sense mainly true neuronal activity.

Finally, it is important to note that dipole orientation is crucial for the generation of the MEG signal. Indeed, radial

dipoles produce a negligible magnetic field outside the head (an exactly zero field if a spherical head model is used),

thus only tangential dipoles, i.e. only sources located in the cortical sulci, produce magnetic fields that are detected

through MEG measurements (Hämäläinen et al., 1993).

(a) Post-synaptic activity of a sin-

gle neuron can be effectively mod-

eled by a single current dipole

(orange arrow); (b) when many

pyramidal neurons are synchro-

nously active and spatially well

aligned, an equivalent current

dipole may be used to model cor-

tical activity (red arrow); (c) if a

spherical model for the head is

used, only dipoles located in the

fissures generate a magnetic field

outside the head.
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BOX 3 – MEG inverse problem 

The inverse problem framework is a well-known concept in a variety of scientific fields (Tarantola, 2004).

Predicting observations from a model by assuming a given set of parameters is called solving the forward prob-

lem. The reverse situation, i.e. the use of observations to estimate the model parameters, is the inverse problem.

In MEG, the estimation of the neural sources that generate the electromagnetic signals observed outside the

head is an inverse problem in which the unknown parameters are the source locations and their amplitude as a

function of time/frequency. Forward modeling in this context consists of predicting the electromagnetic field gen-

erated by an arbitrary source configuration given some other a priori fixed parameters, e.g. head geometry, sen-

sor locations, etc. The MEG forward problem has a unique solution that can be derived by using the laws of clas-

sical physics. Unfortunately, the same does not apply to the inverse problem for which a set of observations can

be associated with multiple (infinite) solutions, thus making the MEG inverse problem inherently ill-posed.

Although this could, at a first glance, seem to be a major limitation for the impact of MEG/EEG on brain imaging,

the situation is in practice less dramatic thanks to the use of other information about source configuration. In this

framework, the use of suitable constraints (e.g. suitable regularization techniques) makes it possible to recover

solution uniqueness. MEG source imaging has thus reached a technical maturity that allows neural activity to be

reliably estimated.

BOX 2 – Instrumentation for MEG 

Detection of the tiny magnetic field generated by cerebral activity demands ultra-sensitive magnetic detectors in the

DC to 1 kHz band. The only practical magnetic sensors meeting this requirement are the superconducting quantum

interference devices (SQUIDs). An extensive description of the theory, design and applications of SQUIDs can be

found in Clarke and Braginski (2006). Briefly, the SQUID is a superconducting magnetic flux-to-voltage transducer

featuring extremely low noise, with a field sensitivity of about 1fT/√Hz. At present, all commercial MEG systems use

low-Tc SQUIDs, i.e. SQUIDs operating at a temperature of 4.2 K. The SQUIDs building up a MEG system must there-

fore be enclosed in a non-magnetic (fiberglass) cryostat. As a result the sensor array has to be rigid and is therefore

not adjustable to the patient’s head (as it is for EEG measurements, for example). The neuromagnetic field is sensed

by the SQUID through a pick-up loop with a diameter ~ 1 cm coupled to the SQUID loop through a flux transformer.

Different pick-up loops may be used to maximize noise reduction (gradiometric configuration) or field sensitivity (mag-

netometric configuration). The geometry of the pick-up loops is one of the distinguishing characteristics of the differ-

ent MEG systems currently in operation. 

A typical MEG system comprises several hundred channels arranged on a helmet surface, making it possible simul-

taneously sample the brain magnetic field at multiple points over the scalp. Each sampling point consists of one (mag-

netometer or axial gradiometer) or multiple (magnetometer and two orthogonal planar gradiometers) detection chan-

nels. A review of the existing MEG systems can be found in Della Penna et al. (2014).

To reduce the contribution of the environmental magnetic field (noise) to the measured field, MEG systems are

usually operated inside a magnetically shielded room. The shielding consists of an aluminum layer designed to

attenuate external electromagnetic field noise at frequencies ranging from 50 Hz to the radiofrequency band, and

by two or more layers of high permeability material to reduce low-frequency external noise (e.g. the earth mag-

netic field).

The 153-channel MEG system installed at ITAB -

University of Chieti. It consists of 153 channels arranged

on a helmet surface, so as to simultaneously record the

brain magnetic field at multiple sampling points. Each

channel is based on superconducting devices acting as

magnetic field sensors. The sensor array is contained in a

non-magnetic cryostat. The whole system is installed in a

high quality magnetically shielded room.
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More specifically, the MEG forward problem solution requires the definition of a model of neural sources and of the

surrounding conducting medium. The former is based on the concept of the equivalent current dipole (ECD) as a

building block for cortical current distributions. The ECD is the reference source model of the primary intracellular

current within a neuronal ensemble. The latter includes the modeling of the head geometry and of the electromag-

netic properties of head tissues. As a general principle, given a model of neural currents (e.g. ECD), the physics of

MEG is ruled by Maxwell’s equations under quasistatic assumptions (i.e., the propagation delay of the electromag-

netic signal from sources to sensors is negligible) (Hämäläinen et al., 1993). Indeed, such assumptions determine

the existence of an analytical, closed-form solution to MEG forward modeling for a spherical homogeneous head

geometry, which thus constitutes the simplest model of head geometry (Sarvas, 1987). Although mathematically

and computationally convenient, spherical head models represent a poor approximation of the head shape. More

realistic geometries have been developed that require the magnetostatic problem to be solved using numerical

methods, such as the boundary element (Fuchs et al., 1998) or finite element methods (Wolters et al., 2006;

Stenroos et al., 2014). Approximate analytical solutions for the magnetic field in a realistic volume conductor can

also be derived using spherical harmonic expansions (Nolte et al., 2001). To model a realistic head, a geometric

tessellation of the head tissues is derived from high quality individual MRI data by accurate segmentation algo-

rithms (Dale et al., 1999). 

The MEG inverse problem is usually solved by using one of the two following strategies: the localization approach or

the imaging approach. The former assumes brain activity at any time point to be generated by a small number of brain

regions (usually less than 10), each represented by an ECD, the location, orientation and amplitude of which need to

be estimated. The latter aims at estimating the overall distribution of neural currents by discretizing the brain into a

finite set of locations. This is typically achieved by using a grid of ECDs, fixed in location and, possibly, in orientation,

in the brain volume or limited to the cortical gray matter surface. The inverse problem solution for the imaging

approach results in the estimation of the amplitudes of all these elementary currents. 

In the first case, only a restricted number of parameters needs to be estimated, thus solving the ill-posedness of the

inverse problem since the number of unknowns is smaller than that of the instantaneous observations of the magnet-

ic field. Numerical approaches are used to estimate the unknown source parameters generally on the basis of the

least-squares technique, i.e. finding the set of parameter values that minimizes the square of the difference between

observations and predictions from the model.

In the second case, a larger set of linear parameters needs to be estimated, the size of which depends on the source

space discretization. Among imaging approaches, several strategies have been developed, such as distributed

source imaging methods, scanning methods and spatial filter methods. For a review on the different imaging

approaches see Baillet et al. (2001).

(a) Individual MRI data and superim-

posed results of tissue boundary seg-

mentation (yellow contours). 

(b) Realistic volume conductor head

model reconstructed from the geo-

metric tessellation of the head tissue.

(c) Source and volume conductor

model are used to identify brain

sources from MEG data. Images

derived from the Curry 6.0 (Neuroscan)

analysis software.
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BOX 4 – Brain rhythms 

Brain rhythms are the product of synchronized activity between and within neuronal assemblies, and rhythmic mod-

ulation of signal power is assumed to reflect the underlying changes in neuronal synchrony. Indeed, in the central

nervous system, oscillations have been observed at various spatial levels, from spike train activity in single cells to

local field potentials and to oscillations involving the activity of a more spatial diffuse neural network (see Buzsáki,

2006 for a comprehensive review). These oscillations are fully described by their amplitude, frequency and phase. In

particular, time-frequency analysis of MEG signals provides information on the dynamic modulation of rhythmic brain

activity at various frequencies. 

Traditionally, brain rhythms have been classified on the basis of their frequency content. Even though there is no

hypothesis of a single physiological origin and a unique functional relevance of rhythms, the different frequency bands

of brain oscillations are believed to have functional significance and probably represent the brain strategy for process-

ing parallel information and handling the co-occurrence of multiple processes at different spatial and temporal scales. 

Oscillations in the alpha band (8-12 Hz), the first discovered and best-known frequency band, constitute the function-

al correlate of drowsiness. They are the sign of a disengagement of task-irrelevant brain areas. For example, alpha

suppression during the execution of a task is correlated with the activation of the recruited cortical areas (Pfurtscheller

and Lopes da Silva, 1999). Recently, evidence also points toward the functional relevance of alpha power modula-

tion in the sensory gating mechanism deployed by attention and related to mechanisms reflecting the advancing of

task-related neurocognitive strategies (van Dijk et al., 2010) as well as for conscious perception (Palva and Palva,

2007). The beta band (15-25 Hz) has traditionally been related to motor processing, sensorimotor control, sensory-

motor integration, corticospinal coupling and proprioception. A recent theory suggests that a beta-band power

increase could be the functional correlate of a sort of inertia of cortical areas that maintain the status quo during infor-

mation processing (Engel and Fries, 2010). 

Theta-band power (4-7.5 Hz) has been described to increase in emotional arousal and working memory tasks. A sig-

nificant delta band activity (1-4 Hz) has been observed during sleep in the healthy population, while the presence of

high slow activity in rest EEG/MEG of waking adults is often interpreted as a sign of neurological disorders. Finally,

a high-frequency band, namely the gamma band (above 30 Hz), has been related to activity of limited cortical areas

for stimulus selection, feature integration, pattern recognition, attention, multisensory integration, sensorimotor inte-

gration, pain processing, empathy and memory.

Neuronal oscillations can be observed at

different spatial scales: from single units, to

local field potential, intracranial EEG, and

MEG (modified from Varela et al., 2001).

Oscillations generated by a large amount of

cells, like those recorded by scalp EEG or

MEG, have a spectral content that can be

divided into different bands. Modified from

Varela et al. (2001).
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