Biocompatibility of a new pulp capping cement

Claudio Poggio, MD, DDS¹, Matteo Ceci, DMD, PhD¹, Riccardo Beltrami, DMD, PhD², Alberto Dagna, DMD, PhD, Marco Colombo, DMD, PhD¹, Marco Chiesa, DMD, PhD¹

¹ Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Italy
² Department of Brain and Behavioural Sciences, University of Pavia, Italy

Corresponding author:
Claudio Poggio
Department of Clinical, Surgical, Diagnostic and Pediatric Sciences
Section of Dentistry, Policlinico "San Matteo", University of Pavia
Piazzale Golgi 3,
27100 Pavia, Italy
Phone: +39 0382 516257, +39 3398124925
Fax: +39 0382 516224
E-mail: claudio.poggio@unipv.it

Summary

Aim. The aim of the present study was to evaluate the biocompatibility of a new pulp capping material (Biodentine, Septodont) compared with reference pulp capping materials: Dycal (Dentsply), ProRoot MTA (Dentsply) and MTA-Angelus (Angelus) by using murine odontoblast cell line and Alamar blue and MTT cytotoxicity tests.

Methods. The citocompatibility of murine odontoblasts cells (MDPC-23) were evaluated at different times using a 24 Transwell culture plate by Alamar blue test and MTT assay.

Results. The results were significantly different among the pulp capping materials tested. Biocompatibility was significant different among materials with different composition.

Conclusions. Biodentine and MTA-based products show lower cytotoxicity varying from calcium hydroxide-based material which present higher cytotoxicity.

Key words: biocompatibility, MTT test, murine odontoblast, pulp capping materials.

Introduction

Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality (1). Inducing hard tissue formation by pulp cells as an ultimate goal of capping material use is widely accepted (2).

Several materials such as calcium hydroxide-based materials and more recently mineral trioxide aggregate (MTA) are commonly used for this purpose (3,4). Calcium hydroxide is the most popular agent for direct and indirect pulp capping and maintaining pulp vitality, given its ability to release hydroxyl (OH) and calcium (Ca) ions upon dissolution (5,6). Both clinically and histologically it has been found to produce satisfactory results in indirect and direct pulp capping, because it is capable of stimulating the formation of tertiary dentin by the pulp. This is documented by basic research and clinical studies with reported success rates in excess of 80% for direct pulp capping (7,8). Currently, calcium hydroxide products are the best documented and most reliable materials for direct pulp capping and serve as the "gold standard" against which new materials have to be tested (9).

Nevertheless, calcium hydroxide has some drawbacks. Poor bonding to dentin, material reabsorption, high solubility and mechanical instability are among them. In addition, the formation of reparative dentine may not be due to the bioinductive capacity of the material but due to a defense mechanism by the pulp induced by the irritant nature of calcium hydroxide (10, 11); the high pH (12.5) of calcium hydroxide suspensions causes liquefaction necrosis at the surface of the pulp tissue with the formation of a necrotic layer at the material-pulp interface (7).

Dycal (Dentsply) is a self-setting radiopaque calcium hydroxide-based material used both as a pulp capping agent and as a liner under restorations, cements and other base materials. Its toxicity to pulp cells is well documented (12, 13).

Portland cements, commonly named mineral trioxide aggregate (MTA) cements (such as ProRoot MTA, MTA-Angelus, Tech Biosealer and others), are therapeutic, endodontic repair calcium silicate materials introduced at first as a grey cement (14). These materials promote the proliferation/differentiation of human dental pulp cells (15-17) and show calcified tissue-conductive activity with the ability to encourage new hard tissue formation in terms of dentine bridge devel-
opment over the exposed pulp (18,19). Compared to calcium hydroxide materials, MTA has an enhanced interaction with dental pulp tissue (15) with less pulp inflammation and limited pulp tissue necrosis (18, 20). Several new calcium silicate-based materials have recently been developed (21-23), aiming to improve some MTA drawbacks such as its difficult handling property (24) and long setting time (14). Biodentine (Septodont) is among these materials and it is claimed to be used as a dentine restorative material in addition to endodontic indications similar to those of MTA. This agent is characterized by the release of calcium hydroxide in solution (25, 26), which when in contact with tissue fluids forms hydroxyapatite (27-29).

As pulp capping materials will be in direct contact with pulp tissue for long periods of time, their biocompatibility is of particular importance. Several methods for the determination of biocompatibility of dental materials have been recommended, but the analysis of in vitro cellular reactions are generally considered to be the initial approach (30). This allows for the basic biological characterization of a material and for analysis of the underlying cellular mechanisms.

The aim of the present study is to evaluate the biocompatibility of a new pulp capping material (Biodentine, Septodont) compared with reference pulp capping materials: Dycal (Dentsply), ProRoot MTA (Dentsply) and MTA-Angelus (Angelus) by using murine odontoblast cell line and Alamar blue and MTT test.

Materials and methods

The following materials were used: Dycal, ProRoot MTA, MTA-Angelus and Biodentine. The components of each material and its manufacturer are reported in Table 1.

Dycal, a two-paste system made of a base paste and a catalyst paste (13), was prepared following the manufacturer’s instructions by mixing equal amounts of catalyst paste and base paste. ProRoot MTA and MTA-Angelus, composed of white Portland cement and bismuth oxide (31, 32), were prepared following the manufacturer’s instructions. Biodentine consists of a powder in a capsule and liquid in a pipette. The powder was mixed with the liquid in a capsule in the triturator for 30 seconds. Once mixed, Biodentine sets in about 12 minutes. During the setting of the cement calcium hydroxide was formed.

Odontoblast cell line culture condition

The mouse odontoblast cell line (MDPC-23) was kindly provided from Dr Jacques Eduardo (Dept. Cariology, Restorative Sciences, Endodontics; University of Michigan School of Dentistry). Odontoblast-like cell line (MDPC-23) is recommended for application to in vitro studies concerning the biocompatibility of dental materials. Mac Dougall (33), reported that the immortalized mouse odontoblast cell line is positioned in the periphery of the pulp and are the first cells affected by dental materials.

MDPC-23 cells were cultured in DMEM medium (Biowhittaker, Italy) supplemented with 10% fetal bovine serum (FBS), 2% glutamine, 2% sodium pyruvate, 1% amphotericin and 2% (w/v) streptomycin/penicillin at 37 °C in 5% CO2 atmosphere (34). The cells were routinely detached using a trypsin-EDTA solution for 2 minutes at 37°C, and resuspended in DMEM medium.

For the cytotoxicity tests, MDPC cells were deposited in the lower chamber of the 24 well culture plate and left for 4 hours at 37°C before any experiment.

Cytotoxicity tests

Cytotoxicity tests were performed with the Transwell insert (Sigma-Aldrich, St. Louis, MO) methodology and the immortalized mouse odontoblast cell line MD-

<table>
<thead>
<tr>
<th>Table 1. Characteristics of tested materials.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Material</strong></td>
</tr>
<tr>
<td>Dycal</td>
</tr>
<tr>
<td>ProRoot MTA</td>
</tr>
<tr>
<td>MTA-Angelus</td>
</tr>
</tbody>
</table>
PC-23. The advantage of using a non direct contact test for the evaluation of the dental material cytotoxicity is related to the fact that cells and materials are usually separated (35).

Cytotoxicity of the four pulp-capping materials was assessed with MDPC-23 cells grown in the lower chamber of a 24-mm diameter Transwell plate with a 0.3 mm pore size polycarbonate membrane (Sigma) (35). In order to standardize the samples, for the various analyzes and evaluations, the materials were placed on sterile paper disks of 0.5 cm in diameter. All test materials were prepared and mixed under sterile hood following preparation methods recommended by the manufacturer. The excess material was removed using sterile spatula. Dycal, ProRoot MTA, MTA-Angelus and Biodentine were mixed on special glass plates and later will be placed with sterile carrier on paper disks. The Transwell membrane of the inner chamber, filled with the paper disks, was then placed into the lower chamber of the 24 well culture plate each containing at the bottom 5x10^4 cells and incubated at 37 °C in 5% CO_2 atmosphere for 24 h, 48 h and 72 h, respectively. In order to improve the search, the percentage of vitality of the cells was evaluated in three time intervals: 24, 48 and 72 hours. Some wells were incubated with only tissue culture media (negative control) whereas others with a 10% dilution of 30% H_2O_2 (positive control). The vitality was assessed by Alamar blue test. For a further control, the percentage of vitality of murine odontoblasts, at 72 hours, was also assessed with the MTT assay (bromide 3-(4,5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium). The vitality test to Alamar blue reagent acts as an indicator of cell health, determining the reducing power in order to measure quantitatively the proliferative capacity; the reagent was added in a ratio of 1:10 to the cell culture and then the cells were kept in the incubator for 3-4 hours at 37° C. The degree of fluorescence and the relative values of absorbance were then acquired by reading in a spectrophotometer at a wavelength of 595 nm. The MTT test is a standard colorimetric assay for measuring the activity of enzymes that reduce the MTT to formazan (a salt blue) in the mitochondria, giving the substance a blue/purple color. This reaction is assessed and measured by the spectrophotometric reading of the sample, at a wavelength of 570 nm. Five replicates for each pulp capping material were used for each experiment performed in duplicate.

Confocal Laser Scanning Microscope (CLSM)

Once performed the cytotoxicity test of the different materials, the Transwell inserts was removed and the land was eliminated from the culture plate. After washing the slides with the buffer Buffer-TES, 250 ml of 10 mM solution of the fluorescent dye PSVue TM480 were added per well, in order to detect the presence of apoptotic cells present in the culture. Apoptosis is defined as programmed, physiological cell death and plays an important role in tissue homeostasis. The loss of plasma membrane asymmetry is an early event in apoptosis, independent of cell type, resulting in the exposure of phosphatidylserine (PS) residues at the outer plasma membrane leaflet (36). PSVue reagents are a family of fluorescent probes containing a bis(zinc_2+dipicolylamine) group (Zn-DPA), a motif that has been found to bind with high affinity to surfaces enriched with anionic phospholipids, especially phosphatidylserine (PS) exposed on cell membranes. The plate was kept under gentle agitation for 2 hours at room temperature. After 2 hours, the solution of PSVue has been eliminated and the washing of the plate has been carried out with abundant Buffer-TES. The next step involved the addition of the dye Hoechst 33342, affine to DNA for viable cells. After 15 minutes the images were acquired using confocal laser scanning microscope (CLSM) (37).

Results

Cytotoxicity tests

Figure 1 shows the results obtained with the Alamar blue test at 24, 48 and 72 hours. The results obtained to 24 hours show that the higher percentage of cell vitality is found in Biodentine (106%), which shows an average of even greater compared to the negative control cells, while Dycal (8.6%) is the material that presents the lowest values, so as to become the minimum value of the range of vitality of the pulp-capping materials tested in research. ProRoot MTA and MTA-Angelus both show good percentage of vitality, which amounted to 95% and 93.6% respectively.

In the assessment performed at 48 hours, dissimilar results emerge between the various materials. Some of them show an improvement of the percentage of vitality; MTA-Angelus equals the number of cells of the negative control and Biodentine presents a cell vitality greater than 13% compared to control. Contrariwise Dycal and ProRoot MTA show a deterioration of the data.

In the assessment at 72 hours, the analysis of the samples show a worst general behavior of the materials which leads to a decrease in the percentage of vitality and in the average number of cells. The only exceptions are Biodentine and Dycal. Biodentine is the material with the best percentage compared to the negative control, thus demonstrating a marked biocompatibility. The average number of cells remains stable compared to the previous assessment made at 48 hours with a percentage which stabilizes at 114%. Dycal demonstrates a slight increase in the number of cells (6%), with a substantially cytotoxic behavior. ProRoot MTA and MTA-Angelus prove to have a slight negative trend, but with good percentage of vitality that are stabilized on 71% for both materials. Figure 2 shows the results of the vitality tests performed with the MTT assay at 72 hours. The MTT test confirmed the percentage ratios between the various...
after incubation with different pulp capping materials confirmed the cytotoxicity tests results: a few cells were observed in the presence of Dycal, indicating an high level of citotoxicity (Fig. 5) whereas ProRoot MTA (Fig. 6), MTA-Angelus (Fig. 7) and Biodentine (Fig. 8) did not seem to be cytotoxic.

Statistical analysis

As reported in Table 2, after 24 hours the amount of cells present in contact with MTA-Angelus is not sta-...
Figure 5. CLSM images of apoptosis assay in the transwell wells prepared with Dycal.

Figure 6. CLSM images of apoptosis assay in the transwell wells prepared with ProRoot MTA.

Figure 7. CLSM images of apoptosis assay in the transwell wells prepared with MTA-Angelus.

Figure 8. CLSM images of apoptosis assay in the transwell wells prepared with Biodentine.

Table 2. Mean ± standard deviation of Bonferroni post-hoc test of the different values of cell viability. Different superscript letters indicate a statistically significant difference (P <0.001). The same superscript letter indicates a not statistically significant difference (P> 0.001).

<table>
<thead>
<tr>
<th>Materials</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>500000 ± 0a</td>
<td>522000 ± 0d</td>
<td>466000 ± 0g</td>
</tr>
<tr>
<td>Positive control (H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;)</td>
<td>37000 ± 2738b</td>
<td>25000 ± 1850e</td>
<td>18000 ± 1332i</td>
</tr>
<tr>
<td>Dycal</td>
<td>43000 ± 2326c</td>
<td>22000 ± 5740e</td>
<td>30000 ± 1868l</td>
</tr>
<tr>
<td>ProRoot MTA</td>
<td>475000 ± 53675a</td>
<td>465000 ± 55629d</td>
<td>333000 ± 33157h</td>
</tr>
<tr>
<td>MTA-Angelus</td>
<td>468000 ± 72158a</td>
<td>522000 ± 56089d</td>
<td>333000 ± 59216h</td>
</tr>
<tr>
<td>Biodentine</td>
<td>533000 ± 60897a</td>
<td>592000 ± 20182d</td>
<td>533000 ± 42179f</td>
</tr>
</tbody>
</table>
Discussion and conclusion

Pulp capping materials should act as a barrier which protects the vitality of the entire pulp tissue by covering the minimal exposed tissue and by preventing from further endodontic treatments. Due to this fact the material used should provide an appropriate host response; this means that tissues that come into contact with the materials do not show any toxic, irritating, inflammatory, allergic, genotoxic, or carcinogenic action (38).

In the present study Dycal demonstrates the lower rates of vitality and a strong cytotoxic capability. Dycal has shown the lowest mean number of viable cells in the colorimetric assay performed with Alamar blue, with assessments at 24, 48 and 72 hours, and in the MTT assay at 72 hours. The low percentage of vitality of Dycal occurs already in the first 24 hours, manifesting small variations of 1-2 percentage points to the various measurement intervals. These results confirm the conclusions of others Authors (39, 40) on the non-complete biocompatibility of calcium hydroxide-based materials: the protective effect of these materials towards the pulp is not complete. Calcium hydroxide has an important action in protecting the pulp from thermal, mechanical and microbiological stimuli (5, 6) because of its antibacterial action and its property of stimulating sclerotic an reparative dentin formation. In clinical practice, the presence of hard tissue barrier after capping can be considered an asset, since it provides natural protection against the infiltration of bacteria and chemical products. However, the importance of calcified hard tissue barrier formation after capping has been challenged by other studies, which have shown multiple tunnel defects and cell inclusions in bridges following pulp capping with calcium hydroxide (41). This may lead to leakage and bacteria penetration into pulp tissue unlike the permanent seal produced by bonding agents. Furthermore it is equally demonstrated that, due to the alkalinity of its pH, calcium hydroxide induces cytotoxicity, causing the formation of a layer of coagulation necrosis, when it is in direct contact with the dental pulp (7). For both these reasons calcium hydroxide do not seem the eligible material to be used in case of exposed pulp tissue.

Very different results were obtained from the analysis of the MTA-based materials (ProRoot MTA and MTA-Angelus). Both materials to the evaluation of the 72 hours, with Alamar blue test and MTT assay, have reported excellent percentage of vitality, detected in a range that goes from 71% to 95% of vitality and in some samples the results were even assimilated to the negative control. This significant difference between the values of vitality of calcium hydroxide and MTA is clearly due to the structural difference of the two basic components and due to the various physiological and biochemical reactions induced on tissues. It has been demonstrated that MTA has the ability to induce the formation of a bridge of hard tissue of greater thickness compared to the bridge established in presence of calcium hydroxide, also managing to cause less inflammation in the adjacent tissues (18, 20). The dental pulp also contains progenitor cells and stem cells, which can proliferate and differentiate into odontoblasts forming dentin; Guven and Cehreli (42) reported that, probably, MTA is able to facilitate these cellular changes by inducing the secretion of morphogenetic proteins and growth factors such as BMP-2 and TGF-β1.

In the present study Biodentine proved to be the more biocompatible material. Biodentine, in measurements made at 24, 48 and 72 hours, reported percentage of vitality above the negative control. After 24 hours it recorded values equal to 106%, rose to 113% and 114% in the two subsequent analysis. Biodentine is a new bioactive cement based on calcium silicate for pulp capping, derivation of bioengineering, with anti-inflammatory behavior (43), different from the classic materials based on calcium silicate, such as Portland cement. The technology behind the manufacturing process of the active bio-silicate, the main constituent of Biodentine, removes the metallic impu-

<table>
<thead>
<tr>
<th>Materials</th>
<th>MTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>124074 ± 0a</td>
</tr>
<tr>
<td>Dycal</td>
<td>45741 ± 30098a</td>
</tr>
<tr>
<td>ProRoot MTA</td>
<td>140741 ± 30098a</td>
</tr>
<tr>
<td>MTA-Angelus</td>
<td>179444 ± 99142a</td>
</tr>
<tr>
<td>Biodentine</td>
<td>166481 ± 59317a</td>
</tr>
</tbody>
</table>
rities which are present in other cements (44). The
setting reaction involves the hydration of tricalcium
silicate, the production of a calcium silicate-based gel
and calcium hydroxide, which in contact with phos-
phate ions, it is able to create precipitated similar to
hydroxyapatite.
Considering the interface between dentin and Bioden-
tine with confocal microscopy, Atmeh et al. (45) showed
that microstructural changes occur in this area with an
increased content of carbonate at the dentin interface.
These observations suggest how the intertubular spread produced by Biodentine hydration lead to the
creation of a hybrid layer (46). Furthermore, histological
evaluations carried out on samples prepared with Bio-
dentine have demonstrated the ability of the material to
induce the differentiation of odontoblasts starting from
pulp progenitor cells, forming a mineralizing matrix with
the characteristics of dentin (47).
In conclusion Biodentine has shown to be the materi-
al with the best qualities and characteristics, that are
the basis of biocompatibility. Because of the lower cy-
totoxity and the higher bio-inductive ability, Bioden-
tine can be considered an ideal cement for pulp-capp-
ning. Nevertheless, especially for the new generation
materials, further studies must be started to demon-
strate the clinical efficacy and illustrate the actual
mechanisms of action, both in vitro and in vivo.

Acknowledgments

Nothing to declare.

Conflict of interest statement

The authors of this study have no conflict of interest to
disclose.

References

1. European Society of Endodontology. Quality guidelines for
endodontic treatment: consensus report of the European So-
2. Obied M, Saber Sel D, Ismael Ael D, Hassani E. Mes-
enchymal stem cells promote hard-tissue repair after direct
3. Dominguez MS, Witherspoon DE, Gutmann JL, Opperman
LA. Histological and scanning electron microscopy assess-
ment of various vital pulp-therapy materials. Journal of En-
4. Camilleri J, Pitt-Ford TR. Mineral trioxide aggregate: a re-
view of the constituents and biological properties of the ma-
5. Desai S, Chandler N. Calcium hydroxide-based root canal
6. Mohammadi Z, Dummer PMH. Properties and applications of
calcium hydroxide in endodontics and dental traumatol-
7. Duda S, Dammaschke T. Maßnahmen zur Vitalerhaltung der
Pulpa. Gibt es Alternativen zum Kalziumhydroxid bei der di-
8. Duda S, Dammaschke T. Die direkte Überkappung – Vo-
russetzungen für klinische Behandlungserfolge. Endodontie.
of human pulps with a dentin bonding system or with
Pathology Oral Radiology Endodontontology. 2009;96:591-
600.
10. Goldberg M, Six N, Decup F, Lasfargues JJ, Salih E, Tomp-
kins K, Veis A. Bioactive molecules and the future of pulp
11. Almushayt A, Narayanakan V, Zaki AE, George A. Dentin ma-
trix protein 1 induces cytodifferentiation of dental pulp stem
12. Furey A, Hjelmhauj J, Lobner D. Toxicity of Flow Line, Du-
rafill VS, and Dycal to dental pulp cells: effects of growth fac-
13. Shen Q, Sun J, Wu J, Lu C, Chen F. An in vitro investiga-
tion of the mechanical-chemical and biological properties of
calcium phosphate/calcium silicate/bismuthite cement for den-
tal pulp capping. Journal of Biomedical Materials Research
14. Torabinejad M, Pariroukh M. Mineral trioxide aggregate: a com-
prehensive literature review part ii: leakage and biocom-
patibility investigations. Journal of Endodontics. 2013;36:190-
202.
15. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsu-
ka K, Ito K. Effect of mineral trioxide aggregate on prolifer-
aton of cultured human dental pulp cells. International En-
16. Sawicki L, Pameijer CH, Emerich K, Adamowicz-Klepalska B.
Histological evaluation of mineral trioxide aggregate and cal-
cium hydroxide in direct pulp capping of human immature per-
17. Gandolfi MG, Shah SN, Feng R, Prati C, Akintoye SO. Bio-
mimetic calcium-silicate cements support differentiation of
human orofacial bone marrow stromal cells. Journal of En-
18. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDon-
ald NJ, No¨r JE. Effect of ProRoot MTA on pulp cell apop-
19. Okiji T, Yoshiba K. Reparative dentinogenesis induced by
mineral trioxide aggregate: a review from the biological and
physicochemical points of view. International Journal of Den-
20. Hauman CHJ, Love RM. Biocompatibility of dental materi-
als used in contemporary endodontic therapy: a review. Part
2. Root canal-filling materials. International Endodontic Jour-
nal. 2003;36:147-60.
properties of a new endodontic material. International En-
22. Gandolfi MG, Pagani S, Perut F, Ciapetti G, Baldini N, Mon-
giorgi R, Prati C. Innovative silicate-based cements for en-
dodontics: a study of osteoblastlike cell response. Journal
of Biomedical Materials Research. 2008;87:477-86.
23. Gomes-Filho JE, Rodrigues G, Watanabe S, Estrada Bern-
abé PF, Lodi CS, Gomes AC, Faria MD, Domingos Dos San-
tos A, Silos Moraes JC. Evaluation of the tissue reaction to
fast endodontic cement (CER) and Angelus MTA. Jour-
24. Johnson BR. Considerations in the selection of a rootend fill-
ing material. Oral Surgery Oral Medicine Oral Pathology Oral
25. Camilleri J. Characterization of hydration products of min-
2008;41:408-17.