
 
ITALIAN NATIONAL RESEARCH COUNCIL 

“NELLO CARRARA” INSTITUTE FOR APPLIED PHYSICS 
CNR FLORENCE  RESEARCH  AREA 

 Italy 
 

__________________________ 
 

TECHNICAL, SCIENTIFIC AND RESEARCH REPORTS 
__________________________ 
Vol.  1 - n. 69-17 (2009) 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

ISSN 2035-5831 

 
D. Mugnai 

 
 
 
 
 
 

Applications of the Jordan’s Lemma to 
physical problems 

 
 
 
 
 
 

CNR-IFAC-TR-11-2/009 
 

 



 
 

“Nello Carrara” Institute for Applied Physics (IFAC)  
CNR FLORENCE  RESEARCH  AREA,  Italy 

 
 
 

 
 
 

D. Mugnai 
 

Applications of the Jordan's Lemma to physical problems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                    Commessa: INT.P07.004  
 
 
 
 
 
 

23 Novembre 2009 



Applications of the Jordan’s Lemma to physical problems

D. Mugnai
“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area,

Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy

The purpose of this note is to demonstrate how the Jordan’s Lemma can be applied in order to find analytical
solutions to integrals for which only numerical solutions are usually considered.

The Jordan’s lemma can be applied in evaluating integrals along the real axis from −∞ to +∞. In order to do
this, it is necessary to modify the integration path by including integrations along an imaginary axis.

In physics often we meet integrals of the type

I(t, t0,m) = exp(iω0t0)
∫ ∞

−∞
gm(ω) ρ(ω) exp[−iω(t + t0)] dω (1)

where A, a, and β are parameters which do not depend on ω; g(ω) and ρ(ω) are complex functions of the type

g(ω) =
i

ω − ω0

ρ(ω) = i
A

eaω+iβ − e−aω−iβ
. (2)

Let us see how the Jordan’s lemma can be utilized in order to solve the integral (1).
The Jorsan’s lemma can be written as: [1]

- If f(z) → 0 uniformly with regard to argz as |z| → ∞ when 0 ≤ argz ≤ π, and if f(z) is analytic when both |z| > c
(constant) and 0 ≤ argz ≤ π, then

lim
ρ→∞

∫

Γ

exp(miz)f(z)dz = 0

where Γ is a semicircle of radius ρ above the real axis with center at the origin. If the function f(z) has poles
within the closed contour, the values of the integral is different from zero and is equal to the sum of the residues.

In Eq. (1) we have to distinguish two cases:

1 - the case in which t + t0 < 0

and

2 - the case in which t + t0 > 0.

First case: for t + t0 < 0, the integration path −∞, +∞ may be closed with a line at infinity in the Imω > 0
half-plane. Hence, I(t, t0,m) may be expressed with the sum of residues R of the integrand function at the poles in
the upper half-plane, plus (one half of) a possible residue due to the function g(ω − ω0) on the real axis at ω = ω0.

Second case: for t + t0 > 0, I(t, t0,m) may be expressed with the sum of residues (with the sign changed) of the
integrand function at the poles in the lower half-plane, minus one half of a possible residue of g(ω) on the real axis at
ω = ω0.

The value of the parameter m determines the existence of a residue at ω = ω0. For m = 0, there is no pole and no
residue at ω = ω0; therefore,
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R(ω0, 0) = 0 . (3)

For m = 1, there is a first-order pole and the corresponding residue R(ω0, 1) is given by

R(ω0, 1) = −2π ρ(ω0) exp(−iω0t) . (4)

For m > 1, I(t, t0,m) diverges too rapidly at ω = ω0. However, the difference between two such integrals, correspond-
ing to different values of the parameter t0, may compensate for the m-th order divergence and present a first order
pole.

The poles in the complex ω-plane are located at

ωj = iΩj , (5)

where

Ωj =
1
a
(jπ − 2φ) (6)

hence, they are in the upper half-plane for j > 0 and in the lower half-plane for j ≤ 0.
The values of the residues, at these poles, are given by

R(Ωj) = F (m, j, t0) (−1)j exp[Ωj(t + t0)] , m = 0, 1 (7)

where

F (m, j, t0) = A′Mm
0 exp[i(mψ + ω0t0)]

A′ = − πA

a
, M0 =

1√
Ω2

j + ω2
0

(8)

cosψ =
Ωj

M0
, sin ψ = − ω0

M0
.

We conclude that for m = 0, 1 and t + t0 < 0,

I(t, t0,m) = I−(t, t0, m) =
1
2
R(ω0,m) +

∑

j>0

F (m, j, t0)(−1)j exp[Ωj(t + t0)] (9)

whereas, for t + t0 > 0,

I(t, t0,m) = I+(t, t0,m) = −1
2
R(ω0,m)−

∑

j≤0

F (m, j, t0)(−1)j exp[Ωj(t + t0)] . (10)

Equations (9) and (10) are the exact solutions of the integral (1).

• Let us now apply the technique explained above to two particular cases in the framework of the electromagnetic
propagation.

Let us consider, for example, the electric field Et transmitted through an air slab in the case of frustrated total
reflection, that is for an incidence angle larger than the limit angle.

If the impinging wave is represented by a temporal pulse, rather than by a monochromatic wave, it is possible to
demonstrate that Et is given by [2] (apart from some unessential constants)

Et ∝
∫ ∞

−∞
g(ω)ρ(ω) exp

[
iω

n

c
[αx + γ(z − d)]

]
exp(iωt) dω , (11)
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where he parameters A, a and β depends on the slab width d and on the refractive index n of the medium surrounding
the slab; the function g(ω) is the incident spectrum, and ρ(ω) represents the transmission coefficient, which can be
written in the same form as in Eq.(2).

Equation (11) refers to a two-dimensional Cartesian system i, k (coordinates x, z) where α and γ are the components
of the incident vector of propagation. Thus by putting t0 = n[αx+γ(z−d)]/c, it is easy to verify that the transmitted
field is given by an integral like the one in Eq. (1).

Let us see how to evaluate analitically the integral of Eq. (11) by using Jordan’s Lemma.
Let us consider an incident pulse like a step function, the spectrum of which is

g(ω) = g0

[
πδ(ω − ω0) +

i

ω − ω0

]
, (12)

where g0 is the amplitude of the pulse (located at t = 0) and ω0 is the carrier frequency. By putting Eq. (12) into
Eq. (11), the field Et transmitted after the slab can be written as

Et =
1
2
g0ρ(ω0) exp(−iω0t) +

1
2π

g0

∫ ∞

−∞

i

ω − ω0
ρ(ω) exp(−iωt) dω . (13)

The integral

J =
∫ ∞

−∞

i

ω − ω0
ρ(ω) exp(−iωt) dω

is of the same type as in Eq. (1), with t0 = 0 and m = 1. Therefore, by taking into account Eqs. (4), (6), (9) and
(10), we can write,

J =
1
2
R(ω0, 1) +

∑

j>0

F (1, j, 0)(−1)j exp(Ωjt) , for t < 0 (14)

J = − 1
2
R(ω0, 1)−

∑

j≤0

F (1, j, 0)(−1)j exp(Ωjt) , for t > 0 . (15)

By introducing Eqs. (14) and (15) into Eq. (13), and considering that F (1, j, 0) = A′M0 exp(iψ), we can conclude
that

Et =
g0

2π
A′

∑

j>0

(−1)jM0 exp(iψ) exp(Ωjt) , for t < 0

(16)

Et = g0


ρ(ω0) exp(−iω0t)− A′

2π

∑

j≤0

(−1)jM0 exp(iψ) exp(Ωjt)


 , for t > 0.

This technique can be applied to more complicated functions.

• As another example, let us consider a rectangular pulse carried by a frequency ω0.
For a rectangular pulse of height g0 and duration from −T to T , the spectrum g(ω) may be written as

g(ω) = −i
g0

ω − ω0

[
exp[i(ω − ω0)T ]− exp[−i(ω − ω0)T ]

]
. (17)

By putting Eq. (17) into Eq. (11), the transmitted field is

Et = − 1
2π

g0[J1 − J2] , (18)
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where J1 and J2 are of the same type as Eq. (1), that is,

J1 = I(t,−T, 1) , J2 = I(t, T, 1) .

Therefore, by applying Eqs. (9) and (10) we can write

J1 = I−(t,−T, 1) , for t− T < 0, t < T

J1 = I+(t,−T, 1) , for t− T > 0, t > T

J2 = I−(t, T, 1) , for t + T < 0, t < −T

J2 = I+(t, T, 1) , for t + T > 0, t > −T. (19)

By substituting into Eq. (18), we obtain

Et = − g0

2π

[
I−(t,−T, 1)− I−(t, T, 1)

]
, for t < −T

Et = − g0

2π

[
I−(t,−T, 1)− I+(t, T, 1)

]
, for − T < t < T

Et = − g0

2π

[
I+(t,−T, 1)− I+(t, T, 1)

]
, for t > T . (20)

It is interesting to note that the two terms R(ω0,m) in the I-integrals cancel one another for t < −T and t > T ,
whereas they sum in the interval −T < t < T .

The two examples considered above demonstrate how Jordan’s Lemma can be a useful instrument in evaluating
analytical solutions of complex integrals.

The procedure can also be applied to more complicated integrals, provided that they are of the type in Eq. (1):
the total solution can always be expressed as the sum of functions like Eqs. (15) and (14), each of them working in a
different temporal range.

————————————–
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