Institut français de Naples

Risques sismiques et transformation des paysages littoraux

La scala ESI per una corretta valutazione degli effetti degli tsunami nel Mediterraneo

Sabina PORFIDO CNR-IAMC Sabina.porfido@iamc.cnr.it

SILLAGE odyssée

Table Ronde Tavola Rotonda 20/10/2015

namazu

Namazu 鯰, l'enorme pesce gatto generatore di terremoti e tsunami

M9.0 – Costa di Honshu, Giappone terremoto e tsunami 2011

M9.0 – Costa di Honshu, Giappone Terremoto & tsunami 2011

Il numero maggiore di morti si è verificato a Iwate, Miyagi e Fukushima a causa dell'onda di tsunami del Pacifico alta 37.88 m a Miyako. *Perdita economica di 309 billion US dollars (USGS)*

Definizione

• A tsunami is a sea wave of local or distant origin that results from large-scale seafloor displacements associated with large earthquakes, major submarine slides, or exploding volcanic islands. ...(USGS)

🗧 🔿 C 🖌 🗋 maps.ngdc.noaa.gov/viewers/hazards/?layers=0#

NOAA NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION

¶a ☆ =

Natural Hazards Viewer

Year	Country	Name	Tsu Int
177	ITALY	ISLAND OF SICILY	6.00
792	ITALY	GULF OF VENICE	3.00
963	ITALY	SICILY	5.00
1169	ITALY	EASTERN SICILY	4.00
1172	ITALY	ISLAND OF SICILY	511 ······
1329	ITALY	ISLAND OF SICILY	3.00
1542	ITALY	SICILY, ITALY	
1613	ITALY	MESSINA	4.00
1649	ITALY	MESSINA STRAITS	5.00
1693	ITALY	EASTERN SICILY	2.00
1693	ITALY	ISLAND OF SICILY	4.00
1699	ITALY	CATANIA	4.00
1726	ITALY	NORTHERN SICILY	3.00
1727	ITALY	SICILY CHANNEL	3.00
1783	ITALY	MESSINA STRAITS	
1784	ITALY	MESSINA STRAITS	3.00
1817	ITALY	SICILY CHANNEL	3.00
1818	ITALY	EASTERN SICILY	3.00
1823	ITALY	PALERMO	5.00
1831	ITALY	SCIACCA	1.00
1845	ITALY	ISLAND OF SICILY	1
1879	ITALY	STROMBOLI ISLAND	
1916	ITALY	STROMBOLI ISLAND	4.00
1919	ITALY	STROMBOLI ISLAND	4.00
1926	ITALY	AEOLIAN ISLANDS	3.00
1930	ITALY	STROMBOLI ISLAND	3.00
1940	ITALY	NORTHERN SICILY	3.00
1944	ITALY	STROMBOLI ISIAND	4.00
1954	ITALY	STROMBOLI ISLAND	4.00
1988	ITALY	LA FOSSA VOLCANO, VULCANO IS.	
1990	ITALY	EASTERN SICILY	
2002	ITALY	STROMBOLLISLAND	5.00

Estratto da NOAA

National Geophysical Data Center / World Data Service (NGDC/WDS): Global Historical Tsunami Database. National Geophysical Data Center, NOAA. <u>doi:10.7289/V5PN93H7</u> 18/10/2015

	Year	Country	Name	Tsu Int			
	1114	ITALY	CALABRIAN ARC	3.00			
-	1169	ITALY	CALABRIAN ARC				
ž	1562	ITALY	REGGIO DI CALABRIA	4.00			
ž	1638	ITALY	TYRRHENIAN CALABRIA	5.00			
X	1783	ITALY	TYRRHENIAN CALABRIA	3.00			
ž	1783	ITALY	TYRRHENIAN CALABRIA	4.00			
ž	1783	ITALY	MESSINA STRAITS				
X	1783	ITALY	TYRRHENIAN CALABRIA				
X	1783	ITALY	TYRRHENIAN CALABRIA	3.00			
X	1783	ITALY	TYRRHENIAN CALABRIA				
ž	1784	ITALY	IONIAN CALABRIA	5.00			
X	1784	ITALY	TYRRHENIAN CALABRIA	3.00			
ž	1822	ITALY	CALABRIAN ARC				
ž	1832	ITALY	CUTRO	3.00			
ž	1836	ITALY	ROSSANO	4.00			
X	1868	ITALY	CALABRIAN ARC				
X	1870	ITALY	CALABRIAN ARC				
ž	1880	ITALY	CALIBRIAN ARC				
ž	1894	ITALY	CALABRIAN ARC				
ž	1903	ITALY	CALABRIAN ARC	2.00			
ž	1905	ITALY	CALABRIAN ARC	4.00			
X	1907	ITALY	IONIAN CALABRIA	3.00			
ŭ	1908	ITALY	MESSINA STRAIT, IONIAN SEA	5.00			
ŭ	1925	ITALY	CALABRIAN ARC				
X	1932	ITALY	CALABRIAN ARC				
	1939	ITALY	CALABRIAN ARC	2.00			
X	1941	ITALY	CALABRIAN ARC	2.00			

Estratto da NOAA

12 SICILIA 10 8 Eventi (N) 6 4 2 X SECOLI XV XX ٧

Geographical distribution of tsunamis reported in the European-Mediterranean Tsunami Catalogue

(Maramai et al., 2014, INGV)

European-Mediterranean Tsunami Catalogue (INGV)

- The Mediterranean basin was divided into **3 large regions**:
- Eastern (M1), M1 is definitely the most tsunamigenic region of the EM area, with a total of 127 tsunamis occurred along the coasts of Albania, Greece, Levantine countries and Marmara Sea.
- **Central (M2)** The Mediterranean coast of **France**, the **Italian** and **Croatian** coasts are included in the M2 region, **with 81 tsunami** events **mainly** concentrated along the **Italian coasts.** This region is one of the most tsunamigenic in the EM area and the majority of tsunamis were triggered by earthquakes.
- western (M₃) The M₃ region covers the coasts of Algeria, Baleares islands and the Spanish coasts facing the Alboran Sea. The majority of the 13 events of this region were generated by the Tell-Atlas thrust system.
- (INGV;Maramai et al., 2014)

Qualche numero

nel bacino del Mediterraneo almeno 221 tsunami

1/3 ha coinvolto la penisola italiana
 innescati da terremoti
 da eruzioni vulcaniche
 il resto da frane/eruzioni/oc ause sconosciute

Gli tsunami nel Golfo di Napoli

 tsunami sono riportati nelle fonti storiche: Strabone(64 B.C.-21 A.D. In Geographica the fornisce la descrizione di un improvviso collasso di una zona dell'Isola di Ischia con associate onde di tsunami recentemente datate tra ~3 ka B.P. and 2.4 ka B.P.

• l'eruzione del 79 A. D.,

• Plinio il Giovane, nelle sue famose "epistolae" fornisce una dettagliata ricostruzione dell'eruzione del Vesuvio, da cui si evince anche lo tsunami generato

«...Inoltre vedevamo il mare che si riassorbiva in se stesso e che sembrava quasi fatto arretrare dalle vibrazioni telluriche. Senza dubbio il litorale si era avanzato e teneva prigionieri nelle sue sabbie asciutte una quantità di animali marini....»

• Tsunamis linked alle eruzioni del Somma-Vesuvio negli anni 1631, 1698, 1813 e 1906

The results of this research may be relevant for studies of eruptive events in close proximity of coastlines and imply that pyroclastic flow-generated tsunamis need to be taken into account for hazard evaluation in the management of the coastal zones. (**Milia et al.**, *Journal of the Geological Society* 2008; v. 165; p. 839-848)

Cortesia di M. Sacchi, 2015

Il più recente tsunami legato all'instabilità dei versanti vulcanici è avvenuto nel **Dicembre 2002 a Stromboli**.

Stromboli 2002

Tsunami osservato nelle Isole Eolie, nell'Isola di Ustica a W, Iungo le coste settentrionali della Sicila e lungo le coste della Calabria e della Campania a Nord (Nappi et al., 2003, Maramai et al, 2005;Tinti et al., 2006;)

A. Maramai et al. / Marine Geology 215 (2005) 93-106

Dicembre 2002 tsunami a Stromboli

- Una prima frana di 17 milioni di m³ coinvolse materiale subaereo e sottomarino, seguito da una seconda frana 5 milioni di m³ alla Sciara del Fuoco[.]
- Entrambi le frane provocarono **tsunami locali** con un max di run up **lungo le coste di Stromboli** ed ebbe effetti limitati anche lungo le coste a distanze superiori ai 200km.
- maximum run-up di **11** m lungo le coste di Stromboli,
- Stromboli è un vulcano tsunamigenico (1916, 1919, 1930(2 morti) con onde fino a 2-3 m in Calabria a Capo Vaticano, 1944, 1954) (Tinti et al., 2006;Paris, 2015)

a), b) Strombolic) Panarea, d Salinae) Fiume Alentof)Marina di Camerota

Come si misura uno tsunami?

Sieberg-Ambraseys (1962)

La scala per misurare l'Intensità degli tsunami fu pubblicata da Sieberg (1923), e più tardi modificata da Ambraseys (1962), basata su 6 gradi di Intensità (da molto debole a disastroso).

Soloviev and Go, 1974 (Valid values: -5 to 10) I = log₂(2^{1/2} * H), where H is the maximum runup height of the wave)

Papadopoulos-Imamura (2001)

Papadopoulus and Imamura(2001) proposero una nuova scala basata su 12 gradi simile alla scala macrosismica MM (da not felt a Completely devastating)

Esi SCALE 2007 (Michetti et alii, 2007) basata su 12 gradi , come le scale macrosismiche tradizionali

intensità

La scala ESI 2007 è strutturata in dodici gradi. Il titolo di ciascun grado riflette la severità del terremoto ed il ruolo degli effetti sull'ambiente. Nella descrizione sono riportate in primo luogo le caratteristiche degli effetti primari ossia la fagliazione superficiale e le altre deformazioni di origine tettonica. Quindi gli effetti secondari sono descritti in termini di area totale di occorrenza ,raggruppate nelle diverse categorie e ordinate in senso crescente a seconda del grado in cui essi iniziano a manifestarsi

CHART OF THE INQUA ENVIRONMENTAL SEISMIC INTENSITY SCALE 2007 - ESI 07

by The Spanish Working Group (modified from Silva et al., 2008)

Michetti et al., 2007. Environmental Seismic Intensity scale - ESI 2007. Memorie Descrittive della Carta Geologica d'Italia, 74. Servizio Geologico d'Italia, APAT, Rome, Italy Silva et al., 2008. Catalogue of the geological and environmental effects of earthquakes in Spain in the ESI-2007 Macroseismic scale. Cong. Geol. Esp. Gran Canaria, Spain

La scala ESI 2007

- **Da I a III**: Non ci sono effetti sull'ambiente che possono essere usati come diagnostici per la valutazione del grado di intensità
- IV AMPIAMENTE AVVERTITO / Primi inequivocabili effetti sull'ambiente
- V FORTE / Effetti ambientali marginali
- VI LIEVEMENTE DANNOSO / Effetti ambientali modesti
- VII DANNOSO / Significativi effetti sull'ambiente
- VIII ASSAI DANNOSO / Estesi effetti sull'ambiente
- IX DISTRUTTIVO / Gli effetti sull'ambiente costituiscono una diffusa causa di elevata pericolosità e divengono importanti per la valutazione dell'intensità
- X MOLTO DISTRUTTIVO / Gli effetti sull'ambiente rappresentano una causa sostanziale di pericolosità e divengono basilari per la valutazione dell'intensità.
- XI DEVASTANTE / Gli effetti sull'ambiente divengono decisivi per la valutazione dell'intensità poiché i danni alle strutture giungono a saturazione
- XII TOTALMENTE DEVASTANTE / Gli effetti sull'ambiente sono l'unico strumento per valutare l'intensità

L'échelle d'Intensité Sismique Environmentale – ESI 2007 (Translated: BAIZE S, 2015).

Les *effets primaires* sont directement liés à l'énergie du tremblement de terre et notamment à l'expression en surface de la source sismogénique. La taille des effets primaires est généralement

exprimée par deux paramètres : i) La longueur totale de la **rupture de faille en surface** et ii) **le déplacement maximal**. Leur occurrence est le plus souvent associée à une valeur d'intensité minimum de VIII, sauf en cas de séismes très peu profonds dans les zones volcaniques. L'ampleur de la déformation tectonique en surface par soulèvement ou subsidence est également prise en compte.

Les *effets secondaires* sont les phénomènes induits par la secousse et sont classés en huit catégories principales.

a) Les *anomalies hydrologiques* : b) Les *vagues anormales et tsunamis* , Les *fissures et fractures*, d) Les *mouvements de pente*, Le *tremblement des arbres*, Les *liquéfactions*, Les *nuages de poussière*, Les *sauts de pierres* Tab. 2.1 - Gamme de valeur des paramètres de failles de surface (effets primaires) et extension superficielle typique deseffets secondaires pour chaque degré d'intensité.

	EFFETS PRIM	AIRES	EFFETS SECONDAIRES
\mathbf{I}_0		DÉPLACEMENT	
	LONGUEUR DE RUPTURE DE	MAXIMAL DE	A IDE TOTALE
	SURFACE	SURFACE /	AIKE IUTALE
		DÉFORMATION	
IV	-	-	-
\mathbf{V}	-	-	-
VI	-	-	-
VII	(*)	(*)	10 km^2
VIII	Plusieurs centaines de	Centimétrique	100 km^2
	mètres		
IX	1- 10 km	5 - 40 cm	1000 km^2
Х	10 - 60 km	40 - 300 cm	5000 km^2
XI	60 – 150 km	300 –700 cm	10000 km^2
XII	> 150 km	> 700 cm	$> 50000 \text{ km}^2$

La sequenza sismica del 1783 in Calabria

ary Perspectives on <u>Change Natural Hazards and Civilizatio</u>

39.8

39.6

39.4

39.2

39.0

38.8

38.6

38.4

€ 15.5

S. Eufemia Gul

G.Tauro bas

16.0

16.

 ✓ una sequenza sismica catastrofica caratterizzata da 5 main shocks tra il 5 Febbraio e il 28 Marzo colpì un'area di 100 x 30 km.

		C S - R M PARADO		
Magnitude 5.5 ○ → 7	Date	Epicentral area	Maw	Io
217 BC - 1992	1638 03 27	Calabria	7.0	XI
20	1638 06 08	Crotonese	6.9	Х
1638	1783 02 05	Aspromonte	7.0	XI
A (83)	1783 02 06	Scilla	5.9	IX- X
IONIAN	1783 02 07	Soriano Calabro	6.6	X- XI
SEA	1783 03 01	Central Calabria	6.0	Х
y and	1783 03 28	Catanzaro	7.0	XI
	1832 03 08	Crotonese	6.5	Х
	1905 09 08	Mt. Poro	7.0	XI
5 17.0	1908 12 28	Messina Straits	7.1	XI

La sequenza sismica del 1783 in Calabria

6 Fe	b.
M _{aw}	5.9
Fault segment	Scilla Fault
Strike	N70°

✓ Area epicentrale : traScilla e Messina

✓ tsunami (max altezza
16 m) causato dalla
frana di M. Pacì.

Veduta della costa prima e dopo l'evento sismico(da Minasi A., 1783).

2. Margine della ruina. 2.3. Apparsi Rivi due perenni di Acqua 4 Enorme maiso calcareo da quell'alto rotolato sul granifoso Capo Pasci.5.6. Nuovo prodotto lido, che urto e co. pri lo scoglio formica.28.9. altre ruine dopo iprimi tremoti digiorno

View of the Scilla landslide scar area from the Tyrrhenian sea.(Bozzano et al., 2010)

BLUMETTI A.M. - GUERRIERI L. - PORFIDO S.

Tab. 4.1. - MCS and ESI local intensity values for 38 localities affected by EEEs associated to the 5th February 1783 Calabria earthquake. ori di intensità locali second le scale MCS ed ESI per 38 località interessate da EEEs associati al terremoto della Calabria del 5 Febbraio 1

	MCS Local intensity	ESI Local Intensity		MCS Local intensity	ESI Local Intensity
Santa Cristina di Aspromonte	11	11	San Fili	10	9
San Giorgio Morgeto	10	11	Laureana di Borrello	9.5	9
Molochio	11	11	Maropati	10	9
Oppido Mamertina	11	11	San Procopio	10.5	9
Cittanova	11	10	Santa Anna	10	9
Polistena	10.5	10	Radicena	11	9
			Scrofario	11	9
Varapodio	11	10	Scido	11	9
Terranova Sappo Minulio	11	10	Gioia Tauro	10	9
Cosoleto Vecchio	11	10	Drosi	10	8
Castellace	11	10	Nicotera	9	8
Cinauefrondi	10.5	10			

0

Information about EEE is available for 76 sites in 39 localities

Terremoto del 1908

Effetti ambientali del terremoto del 28 Dicembre 1908

The December 28, 1908, earthquake (Mw 7.1, epicentral intensity MCS XI) was the most destructive disaster of the twentieth century in Italy.

Reggio Calabria and Messina were almost totally destroyed. Few minutes after the earthquake, both sides of the Messina Straits were inundated by a disastrous tsunami, whose effects often overprinted those directly caused by the earthquake

The run-up reached **11.70** m at Sant'Alessio, in Sicily, and **13** m at Pèllaro, in Calabria

Da Comerci et al.,2014DOI 10.1007/s11069-014-1573-x

Da Comerci et al.,2014DOI 10.1007/s11069-014-1573-x

Ground crack along Marina Street, Reggio Calabria (Baratta 1910)

Messina waterfront before the "Palazzata" was damaged by the combined action of the earthquake

and the tsunami. Seismic shaking, liquefaction, and lateral expansion presumably induced the failure of the bearing structure of the wharf (photograph: L. Comerio 1908)

1743

Www.ngdc.noaa.gov/nndc/struts/results?EQ_0=3164&t=102978&s=31&d=34,32

Since the second second

NOAA > NESDIS > NGDC > Natural Hazards

privacy policy

Tsunami Event associated with Tsunami Deposits

Tsunami Cause							Tsuna	ami Cause			Tsunami Parameters						
			Dat	e						I sunami Source Locati	Max	Magr	itude	Тси			
Year	Мо	,	Dy	Hr	Mn	Sec	Val	Code	Country	Name	Latitude	Longitude	Height	Abe	Iida	Int	Warn Status
1743	3	2	20	23	30		1	1	ITALY	IONIAN AND ADRIATIC SEAS	39.000	20.300					

Citation	Event	Geologic Age	Earliest Year	Latest Year	Latitude	Longitude	Location Name	Country	Body of Water	Narrative Description	Setting During Event	Upper Contact	Lower Contact	Underlying Material	Overlying Material
<u>Mastronuzzi</u> <u>et al (2004)</u>	1667 and 1743 Earthquake Tsunami	Quatemary	1667	1743	40.000	17.000	SE Salento (Apulia region, Italy)	ITALY	Mediterranean Sea	deposits overlay platform, 2 boulder ridges			unconformable	boulder on marine terrace	
<u>Mastronuzzi</u> <u>et al (2007)</u>	1743 Earthquake and tsunami	Quaternary	1743	1743	40.000	17.000	SE Salento (Apulia region, Italy)	ITALY	Mediterranean Sea	boulders					

Tsunami Deposits

INGV, I=2

The 1743 Salento earthquake caused about180 dead, of which 150 in the town of Nardò. Heavy damage affected particularly the towns of Nardò(Lecce)and Francavilla Fontana (Brindisi). The seismic event was also felt on the western coast of Greece, on the Malta island, in Southern Italy and in some localities of Central and Northern Italy. The 1743 earthquake also generated a tsunami, which deposits are distributed along the southern Adriatic coastline of Salento (Mastronuzzi et al., 2007;

Da Gaudiosi et al., 2015; Nappi et al., 2015

http://www.um.edu.mt/events/georisks2015/proceedings

por figlio di this: Caravaglio more dopo ore, per esserti ca. juste un muro sopra, di una casella, avanti il palarro Plasiale Blasi alla Marina, il novo Gerninario precipio tele dalla facciata, d' cosè sure tre camere del palarro di Monsignor Drievescovo Madalena, è mosta pure avante Wonserva una fighiola di tre anni coricata in letto dor. mendo, du le caseo la casa sopra), el finalmente è stato wid spaventoso, the ritirandosi it mare, faceansi vedere a perture della terra, et il molo di porta Reale diviso in tre faceansi vedere parti; noi col Clero Capitolare) il di sequente andassimo ad officiare a) (for Chiara, et il di 25 poi siamo andali al W Chiera delle Moonache degli Angioli, dove stiamo conti. nuando lutti i Treti sentra eddomada, dealla pontatura. I 26 2° venne qui il Vig? Mauro Manieri di Lecce

..è stato così spaventoso, che ritirandosi il mare aperture della terra, et il molo di Porto Reale diviso in tre parti..

".....it was so much dreadful, that when the sea retreated, breaks in the ground were visible, and the Porta Reale mole broke into three parts....." from Cagnes and Scalese, Coeval document of Church Archive of Brindisi, 1529 to 1787.

Tsunami landfall and deposits along sandy shores (a) . Tsunami landfall at rocky coasts (bottom) (b)

Revisione critica delle fonti storiche

Miscellanea INGV, Volume: ISSN 2039-6651 Anno 2015_Numero 27 Da Nappi et al., 2015

Grazie per l'attenzione

