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Summary. — We carefully discuss the two-dimensional ballistic aggregation
process. Studying the microscopic discrete process, we theoretically derive the
probability density function describing the single-particle accretion. Using this
function, we describe the properties of the “fan”, obtained for ballistic aggregation on
the single seed, and we predict its mean density and its opening angle. We discuss
the shadowing effect on a microscopic scale, between the single particles and, on a
larger scale, between grown structures, deriving the columnar microstructure
direction law. Comparisons with numerical experiments are shown.

PACS 92.60.Jq – Water in the atmosphere (humidity, clouds, evaporation, preci-
pitation).
PACS 68.70 – Whiskers and dendrites (growth, structure, and nonelectronic
properties).

1. – Introduction

In seed accretion problems, objects are produced from the subsequent aggregation
of elementary units, subject to different motions (gravitational, chaotic, diffusive).
Theoretical deterministic studies of these phenomena are not feasible for the high
number of variables involved. Interesting results have been obtained with statistical
studies of numerical simulations.

The very first numerical models were pure ballistic [1] or diffusion-limited [2]; later
models have been adjusted to specific problems (thin-film growths, colloidal aggregates,
atmospheric-ice growth, electrical deposits). Ramanlal and Sander [3], Limaye and
Amritkar [4] and Rambaldi et al. [5], following different statistical techniques, explain
some aggregates features (growing angle, mean density) theoretically, in agreement
with values obtained from numerical simulations. Liang and Kadanoff [6] and Porcú
and Prodi [7] show scaling properties of structures produced by aggregation.

Ballistic models have been used profitably to study atmospheric ice formation, due
to aggregation of supercooled droplets. Atmospheric-ice deposits are found on artificial
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structures, relative ly moving with respect to a supercooled droplet cloud: for example,
ice deposits are found on electric wires, sea platforms, ships, metallic structures,
aircraft portions, etc. Ice deposit features (size, shape, density) depend on atmospheric
conditions. The pioneer paper of Buser and Aufdermaur [8] shows that a tridimensional
pure ballistic simulation gives aggregates with realistic density. Ballistic models have
been used from cloud physicists to study the atmospheric ice growth and the resulting
precipitation element formation (graupel, hailstones). Improved ballistic models, with
mechanical, hydrodynamic and thermodynamic effects, simulate field and laboratory
results, see Prodi et al. [9], Porcú et al. [10], Lozowski et al. [11, 12], Szilder [13], with
good agreement.

The pure ballistic model proves to be basic to understand atmospheric-ice deposits
grown at “low density regime”, see Prodi et al. [14]. With “low density regime” we
mean in the presence of low-speed droplets hitting a low-temperature seed, so that the
droplets freeze immediately at contact.

In this paper we focus our attention on the basic mechanisms underneath two-
dimensional ballistic aggregation on a point seed. This simple but realistic problem
contains all the accretion mechanisms. The first part of this paper develops a theory
predicting the opening angle of the growing aggregate, which results to be in good
agreement with the outcomes of a two-dimensional ballistic numerical model; the
second part extends the theoretical reasoning to the interior of the aggregate,
considering the influence of close-by particles to give a theoretical upper bound to the
mean density value. Then in the final section, through simple geometrical arguments,
we derive a law predicting the slope of air inclusion channels in the aggregates. The
analytical results described in the present paper have been verified by numerical
simulations.

2. – Numerical model

We consider particles of different shapes, moving on a two-dimensional plane. We
compute the motion of these particles, assuming they start far from the aggregate with
initial positions uniformly random distributed and they all move on straight parallel
lines without being affected by any fluid motion or turbulence. We further assume that,
when a particle hits the aggregate, it freezes in that position, becomes part of the
aggregate and the positions of all other particles of the aggregate are not modified by
this process of accretion.

Figure 1 shows a graphic comparison of the accretion of a seed, obtained with
circular and square particles. Through an ensemble average of 104 evolutions, each of
them similar to the one shown in fig. 1, we find values of 26 and 33 degrees for the
opening angles of square and circular particles, respectively. How to determine the
“mean” opening angle of numerical aggregates will be discussed later, together with
the mean density.

To understand how the aggregate opens up, we study the accretion process of its
boundary. Let us consider a particle P on the left boundary of the aggregate. The
opening angle u is determined by the average position of the particles, aggregating on
the particle P.

In the following pages we work with square particles, then we extend our results to
circular particles, each one having a diameter equal to the side of the square particles.
This can be easily done in two dimensions, because we consider a ballistic aggregation
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Fig. 1. – Numerical evolution of a ballistic accretion on a point seed, using square particles (a) )
and circular particles (b) ).

of particles that all move on straight parallel lines and because both square and circular
particles have the same cross-section; this can be seen in fig. 1, where the two
aggregates are generated from the same particle sequence. We notice that each
particle has a different vertical coordinate, but it retains the same horizontal
coordinate and it touches exactly the same particles.

To further simplify our discussion, in this section we consider square particles, of
side l, moving on a lattice, of grid size d, equal to half the square side, lOd42, (see
fig. 2). The lattice will be used only in this Section.

As falling particles are uniformly random distributed, the three configurations of
fig. 2 have the same likelihood; if only these configurations existed, the average posi-
tion of the new particle would be the same as P and the aggregate would not open up.

Fig. 2. – Possible accretions of particle P.
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Fig. 3. – Possible accretion of particle P, once particle P3 is in place.

The reason why it opens up is that, once particle P3 is in place, a new particle P4 , see
fig. 3, can still get to its left side and now this new particle becomes the extreme left
side of the aggregate. It follows that the probability of P3 to be the extreme left side of
the aggregate is smaller than the probability of P2 which, in turn, is smaller than the
probability of P1 ; therefore the average position of the new particle, forming the
extreme left side of the aggregate above P, is on the left of P.

3. – Theoretical model

To quantify our discussion on the opening angle, we use now an off-lattice
continuous model with square particles; the choice of square particles has been
previously justified and will be extended to circular particles later on.

To compute the probability of a particle to aggregate, we must take into account
several possibilities. As we have already seen, the particle hitting P on its left boundary

Fig. 4. – Fall of a particle P1 partially shadowing P, once particle P0 is in place, with s0F0.
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may be the first falling particle or the second or any following one. All these particles
have different probabilities and we must consider all of them.

We consider the first particle hitting P and we recall the uniform random
distribution of the falling particles; the probability density that the orthogonal
projection of the center of this first added particle is at a distance s0 from the
orthogonal projection of the center of the particle P, with 2lEs0E1l, is a constant,
P041O2 l, independent of the value of s0 .

If s0 is less than or equal to zero, then the extreme left side of the aggregate is
formed, but if s0 is greater than zero, we will consider the next falling particle, calling s1

the distance between the orthogonal projection of the center of this new falling particle
and the orthogonal projection of the center of particle P. The situation for s0D0 is
shown in fig. 4. In this case we want to know the probability that a new particle will hit
P on the left of P0 . Only particles with centers in the stripe of fig. 4 can influence this
probability; they can hit P, if 2lEs1Es02 l, and become the extreme left side of the
aggregate, or they can hit P0 and completely shadow P, if s02 lEs1E0, and in this case
P0 is the extreme left side of the aggregate, or they can hit P0 and partially shadow P, if
0Es1Es0 , and leave some room for a new particle to hit P. The probability for this
second falling particle to hit one of these three regions is proportional to the width of
these regions and it is, respectively, given by
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Fig. 5. – Fall of a particle Pn going to hit P, once particle P0 is in place, with s0E0.

where all terms in higher positions of parentheses represent the probabilities of
particles hitting P, all terms in central positions represent the probabilities of particles
completely shadowing P and all terms in lower positions represent the probabilities of
particles partially shadowing P. Adding all terms describing direct impacts on P, we
find that the probability of hitting again P, after a particle hits P at a distance s0 , is
given by
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Removing the contributions of all these particles, we find that the probability density
for a particle to hit P at a distance s, with sD0, and form the extreme left side of the
aggregate, is given by

P(s)4 P0 (12 P(s) ) sF0 .

To derive P(s), if sE0, we consider the situation shown in fig. 5. For any
realization with a particle P0 already in place over P at a distance s0 , there is a family of
similar realizations with a particle hitting P at a distance sn , with s01 lEsnE l; it
follows that the probability of hitting P at a distance sn , after a particle has hit P at a
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Fig. 6. – P(x) represents the probability density function of a particle to hit the left boundary of
the “fan” (dark segment) in x and to become the new left boundary.

distance s0 , is the same for any sn, with s01 lEsnE l. Using this property together with
the conservation of particles, the probability P(s) of hitting at a distance s, after a
particle has hit P at any distance s0 , is

P(s)42 s
d

ds
( P(s1 l) )42

s

2 l1s
g l

2 l1s
1 ln

2 l1s

l
h .

Adding the contributions of all these particles, the probability density that a particle
hits P at a distance s, with sE0, and forms the left boundary of the aggregate, is given
by

P(s)4 P0 (11 P(s) ) sE0 .

Introducing the new variable x4sOl, the probability density function can be
rewritten as:
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This function, shown in fig. 6, agrees with the results of an ensemble average of 106

numerical simulations with differences on the fourth decimal place.

We notice that s
21

11

P(x) dx41; this means that, in our model, a new particle always

hits the external particle forming the frontier. This implies that the new frontier is
always connected with the old frontier and never comes from a branch starting in the
interior of the aggregate. The growth probability is higher on the left, as expected (we
are considering the left boundary) and, in particular, the middle position of the
aggregating particle is given by

axb4 �
21

11

x P(x) dx42 0.27 .
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In the case of square particles, ayb41, this implies a growth angle

u4arctg
axb

ayb
430.27 .

This result can be extended to the case of circular particles; we consider circular
particles with a diameter equal to the side of square particles. As all falling particles
move on straight parallel lines, these circular particles move and shade exactly as their
corrisponding square particles (they have the same cross-section); only the
aggregating position along the y-axis changes; in particular we have

ayb4 �
21

11

k12x 2 P(x) dx40.78 ,

which brings to a growth angle u438.37. We notice that the high value of the x variance

ka(x2 axb)2 b4q�
21

11

(x2 axb)2 P(x) dx40.52 ,

similar to the variance measured in numerical simulations, justifies the need of
ensemble averages over huge sets of realizations.

The average opening angle computed from the mean displacement of the boundary,
for square particles, has the value of 30.2 degrees, to be compared with the value of 26.6
degrees, obtained with ensemble averages of numerical accretions, while the value of
the opening angle for circular particles is 38.3 degrees, compared with the value of 33.6
degrees computed with the numerical model.

These differences are mainly due to the fact that some branches of the aggregate
forming the boundary stop growing and the new boundary is formed by a branch
directly coming from the interior of the aggregate. This event, present in the numerical
evolutions, is not included in our theoretical model and leads to consistent larger
estimates of the opening angle. Numerical computations show that, over a thousand
cases, the boundary of the aggregate is formed by a branch connected with a particle of
the previous boundary in 955 cases, by a branch connected with the first internal
particle in 43 cases and by a branch connected with a more internal particle only in 2
cases.

Our theoretical model is based on the calculation of the angular probability
distribution of particles aggregating to a given one. Our analytical study of this
distribution leads to an overestimate of the fan opening angle of the original seed.

An interesting theoretical paper by Joag et al. [15] estimates the fan opening angle
with a quite different approach; they study the probability distribution of the lengths of
particles chains (fingers), in particular the number of particles lying between a point on
the boundary and the next further boundary point.

4. – Growth in the interior

In the preceding sections, we have discussed the microscopic laws determining
the opening of the accretion on a seed. In this section, we describe, by numerical
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Fig. 7. – P2 (x) represents the probability density function to hit a particle in the presence of a
nearby particle, located at a distance d.

results, some properties of the interior of a “fan”, obtained through the aggregation
of square particles, of side l.

As we pointed out by the end of the preceding section, boundary growth is mainly
due to the accretion of the boundary itself; nearby particles can be neglected, as they
play a role only in 5% of cases. On the other hand, accretion laws of a particle in the
interior are strongly influenced by the presence of nearby particles. This is pointed out
in fig. 7, where P2 (x) is the probability density function for a particle to be hit in the
position x, in the presence of a nearby particle, located at a distance d; we notice that
the probability density function P(x), discussed in the preceding section, differs from
P2 because it represents the probability density for a particle to be hit in x and to
become the more left particle (the new frontier particle on the left).

In the case of dc l, the chosen particle is essentially isolated, and the probability
density function is symmetric with respect to x40; in this case the mean value of the
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Fig. 8. – Frequency of three possible realizations, with 0 (dotted line), 1 (heavy line), or 2 particles
(dashed line) directly connected with a seed, part of a horizontal line of infinite, equispaced seeds.
The frequency is computed over ensemble averages of 105 aggregates.

number of particles, aggregating on the chosen particle, is larger than one,

g s
21

11

P2 (x) dx41.39h; this is due to those realizations collecting two particles. As d gets

smaller, dD2 l, the nearby particle, together with its accretion “fan”, has a shadowing
effect and the mean number of particles aggregating on the chosen particle becomes
lower, but still larger than one (see fig. 7). As d gets even smaller, dG2 l, the value of
the probability density function P2 stays constant, P240.5, the collection area also
becomes smaller and the mean value of the number of particles aggregating on the
chosen particle can get lower than one.

To retain a constant density in the average, each particle must collect exactly one
particle; the previous argument implies that the average distance between particles
must be d42 l.

From a numerical calculation of the probability density function P2 run over a large
set of aggregates, this function turns out not to be constant as the preceding analysis
suggests, but it presents a minimum in the central part and two equal maxima at the
boundaries. This difference is due to the fact that, in the preceding analysis, we start
with particles on the same level.

To further quantify the influence of nearby particles, we consider the growth of an
ideal situation with infinite equispaced seeds and we evaluate the distributions of
particles directly connected with these seeds. Three realizations are possible with zero,
one or two particles collected by the seed. Figure 8 shows the frequency of these
realizations, computed over ensemble averages of 105 aggregates.

When particles are joined, dOl41, it is impossible to collect two particles; in 50% of
cases one particle is collected and in the other 50% no particles are collected; in this
case, each particle collects half particle on average and the particle density, propor-
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Fig. 9. – Mean density of a seed “fan”; u is the angle between a considered line originating from
the seed and its central one.

tional to the total number of particles of that line, is reduced to half on the next line.
Here density represents the fraction of space occupied by particles.

Increasing the distance between seeds, the number of cases with zero particles
collected rapidly decreases, while the number of cases with one or two particles
collected increases. When dOl gets closer to 2, the number of cases with zero particles
collected equals the number of cases with two particles collected; for this particular
value of the ratio dOl, each particle collects one particle on average and the particle
density stays constant on the next line.

It is interesting to notice that, running a statistical calculation over a large set of
aggregates, we get that each particle collects 0 particles in 17% of cases, 1 particle in
66% of cases, 2 particles in 17% of cases; these values are very similar to fig. 8
values.

Increasing the distance beyond this value, dOlD2, the number of cases with zero
particles collected keeps decreasing, while the numbers of cases with one and two
particles collected become constant. For these values of the ratio, each particle collects
more than one particle on average and the particle density increases on the next
line.

The case in which the density is constant, dOl close to 2, represents a stable
equilibrium for our system, with a density value close to 0.5.

This result is similar to the previous one, obtained with a single nearby particle; this
shows that all other particles of the line play a minor role.

This density value of 0.5 is larger than the value of 0.38, observed near the center of
the “fan” (see fig. 9); these differences should be attributed to the presence of regions
with empty channels, with zero density, due to the shadowing effect that will be
discussed later. Instead, in the preceding theoretical section, the considered region is
assumed to be uniformly occupied by particles.

Figure 9 is obtained through ensemble averages of 106 aggregates; the density
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Fig. 10. – Two-seeds growing evolution scheme with d width channel formation, due to shadowing
effects. P and P 8 are point seeds, Q is a point at the left boundary and Q 8 is its shadow, u is the
opening angle of the fan, a is the angle that gives the direction of incoming particles and b is the
angle that gives the direction of the empty channel.

mean value is constant on each line originating from the seed and it is symmetrical with
respect to the central line, which goes through the seed along the direction of falling
particles. The density values of these lines are shown in fig. 9, where u is the angle
between the considered line and the central one. Density variations do not correspond
to density variation in the single aggregates but to differences in their geometric
shape; the density is about constant in each aggregate till its edge, where it vanishes
abruptly in few particles.

5. – Air inclusion channels

A distinct columnar morphology is evident in bidimensional simulations, see Meakin
et al. [16], and in real experiments, see Ramanlal and Sander [3]. These columnar
structures are clear and become clearer with the increase of the angle of incidence.

In this section, we propose a law for the angle of growth of the columnar structures
observed both in real experiments and in numerical simulations; this law is supported
by the following argument based on the contemporary accretion of two seeds.

In fig. 10, we consider some random uniformly distributed particles, moving along
parallel trajectories, toward two point seeds. Both seeds develop their “fan”
independently, till the P fan starts shadowing the P 8 fan and, in particular, the point
Q 8 is shadowed by the point Q. Then, as fans keep growing, Q moves on the right
boundary of the P fan and its shadow Q 8 moves with the same speed on the P 8 fan,
defining its left boundary. This argument implies that P 8 fan left boundary grows
together with P fan right boundary and a channel is formed; the width and the
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direction of the channel are, respectively, given by

d4PP 8sin (a) sin (a2b) , b4a2uO2 ,

where u is the opening angle of the fan, see fig. 10. This law explains the relation
between the direction of incoming particles (a) and the direction of the empty channels
( b) present in the interior of the aggregates; in particular it shows how the channels
have generally the same “fan-opening angle”. This has been shown in two-dimensional
numerical aggregates, see Porcú and Prodi [7], and in tridimensional laboratory and
numerical aggregates, see Ramanlal and Sander [3].

We notice how our law agrees with eq. (8) of Meakin et al. and our argument
supports their empirical law. Our law explains the experimental data of table I of
Meakin et al.; the agreement is quite good for large angles of incidence, when channels
are well defined; for medium and small angles of incidence, the agreement is much
better than the tangent rule predictions, even if the calculation of b is ambiguous.
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