
IL NUOVO CIMENTO VOL. 20 C, N. 3 Maggio-Giugno 1997

Modelling concentration fluctuation moments for
spherically symmetric mean concentration(�)

N. MOLE, E. D. CLARKE and E. RIETZLER

School of Mathematics and Statistics, University of Sheffield
Hicks Building, Sheffield S3 7RH, U.K.

(ricevuto il 10 Gennaio 1996; revisionato il 26 Agosto 1996; approvato il 23 Settembre 1996)

Summary. — Clarke and Mole (Environmetrics, 6 (1995) 607-617) presented a model
for concentration fluctuation moments of a passive scalar dispersing in a turbulent flow.
This followed Sullivan and Moseley’s work in making use of the equation for the evolu-
tion of the concentration moments integrated over all space, together with Chatwin and
Sullivan’s (J. Fluid Mech., 212 (1990) 533-556) description relating higher moments to
the mean concentration. The model incorporated a simple closure to express the con-
centration gradient in terms of the concentration. Numerical results were presented
for 1, 2 and 3 spatial dimensions under the assumption that the spatial distribution of
the mean concentration was spherically symmetric and Gaussian. Two simple func-
tional forms were used for the spreading rate of the mean cloud. Here those results are
briefly summarised. Some asymptotic large time results are also given for spherically
symmetric mean concentration of general functional form, and numerical results are
obtained for a number of different functional forms.

PACS 92.60.Ek – Convection, turbulence and diffusion.
PACS 47.27 – Turbulent flows, convection, and heat transfer.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The concentration of a passive scalar dispersing in a turbulent flow is a random vari-
able. A proper description of such dispersion must include not only the mean concentra-
tion, but also the distribution of the concentration fluctuations about the mean. Here we

(�) Paper presented at EUROMECH Colloquium 338 “Atmospheric Turbulence and Dispersion in
Complex Terrain” and ERCOFTAC Workshop “Data on Turbulence and Dispersion in Complex
Atmospheric Flows”, Bologna, 4-7 September 1995.
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Fig. 1. – Evolution of log
10
� (solid line) and log

10
� (dashed line) in non-dimensional time log

10
� .

Results are shown for 1, 2 and 3 spatial dimensions, and for �1 = �0 = 0:1.

shall concentrate on modelling concentration fluctuation moments, since these are char-
acteristics of the distribution which can be modelled relatively conveniently from the un-
derlying physical equations. Models for the probability density function (PDF) of concen-
tration can be constructed from the moments.

Chatwin and Sullivan [1] addressed the problem of dispersing passive scalars re-
leased from a source of uniform concentration in self-similar turbulent flows. They pos-
tulated that the mean concentration � = Ef�g, the variance of concentration �2 =
Ef(� � �)2g and the higher moments of concentration Ef(� � �)ng satisfied, to a good
approximation, the following relationships:

�2 = �2�(��0 � �);(1)
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Here �, � and An are parameters and �0 is a local scale for � (e.g. the largest value of
� in a cross-section). To make physical sense we must have � � 1, and � and An non-
negative. Chatwin and Sullivan [1] presented experimental evidence in support of (1) and
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Fig. 2. – As fig. 1 but �1 = �0 = 1.

(2), and more support has subsequently emerged (Sullivan and Yip [2], Chatwin et al. [3],
Moseley [4], Sawford and Sullivan [5]), including for some non-self-similar flows. Sawford
and Sullivan [5] considered non-uniform sources, in particular a Gaussian source, and con-
cluded that, except close to the source or soon after release, only minor modifications to (1)
and (2) are required. Sullivan and Moseley constructed a model (described in Moseley [4])
for the evolution of � and �. This was based on the following equation (see Chatwin and
Sullivan [6]):

@

@t

Z
E f�ngdV = �n(n� 1)�

Z
E
�
�n�2(r�)2

	
dV;(3)

for n � 2, where the integrals are taken over all space and � is the molecular diffusivity.
Equation (3) holds exactly if � = o(jxj�(m�1)=n) in unbounded regions, where m is the
number of spatial dimensions. To obtain equations for the evolution of � and �, (3) was
combined with (1) and (2) for n = 3, using the closure assumption

(r�)2 = B

�
�� �

�

�2

:(4)

Here � is the conduction cut-off and B is a constant.
Chatwin and Sullivan [1] suggested that A1=n

n is O(1), so for simplicity A3 was taken
to be 1.
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Fig. 3. – As fig. 1 but �1 = �0 = 10.

The model required �(x; t) as an input —a Gaussian spatial distribution with pre-
scribed spreading rate was assumed. Mole [7] gives a more detailed outline of this model.

When restricted to 1 spatial dimension (corresponding to a continuous line source
in real three-dimensional space, with the temporal evolution in the model converted to a
downwind evolution through the relationX = Ut, whereX is the downwind distance from
the source and U is the mean velocity) this model generally predicted a rise in � from its
initial value of 1 to a maximum, and a subsequent decrease to a value between 1 and 2.
However, in 2 and 3 spatial dimensions (corresponding to a continuous point source and to
an instantaneous release, respectively, in real space) it gave the unphysical result � < 1
(implying negative variance at the cloud centre from (1)), and breakdown of the numerical
solutions. Clarke and Mole [8] showed the latter to be associated with a singularity in the
evolution equations for � and �, and overcame both these problems by using the following
closure, instead of (4):

�2
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E
�
�n�2(r�)2
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2
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�
�n�2(�� �)2
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E
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Clarke and Mole [8] showed that this closure (and (4) also) fitted some atmospheric bound-
ary layer data reasonably well, with �=

p
B approximately in the range 0.3–0.5 m (but note

that this does not guarantee that a model incorporating these closures will produce a good
fit to experimental data, or even give physically sensible solutions).
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2. – Numerical results for Gaussian mean concentration

Clarke and Mole [8] assumed (following Moseley [4]) that the mean concentration
had a Gaussian spatial distribution with width L

�(x; t) = �0(t)e
� 1

2

�
jxj
L

�
2

;

where L was defined by

�
L

L0

�2

= 1 + �0�
3;

the inertial subrange relative dispersion result for intermediate times (Batchelor [9]),
or by the large time result for absolute dispersion in homogeneous turbulence (Batche-
lor [10])

�
L

L0

�2

= 1 + �1�:

L0 is the source width and � = 2B�t=�2 is the non-dimensional time. Experimental evi-
dence in many cases (e.g. Becker et al. [11], Birch et al. [12], Gad-el Hak and Morton [13])
supports the Gaussian form for the mean concentration some time after release.

The initial conditions suitable for modelling a source of uniform concentration are
� = 1; � = 1. For more discussion of initial conditions, and of the appropriateness of
modelling a uniform source with Gaussian �, see Mole [7].

This model then applies to the case of uniform flow in an unbounded fluid, with an
idealised form for �(x; t). However, (3) is satisfied in the presence of solid boundaries,
and the available evidence suggests that (1) and (2) apply to more general flows such as
boundary layers and jets. Therefore, to apply the model to these more realistic cases
may only require the use of a realistic model for �(x; t) (possibly with minor changes to
the closure scheme). This would also avoid any problems associated with using Gaussian
mean for a uniform source. The use of more general forms for �(x; t) is discussed in the
following sections.

Figures 1-3 show the evolution of � and � using this model, for �1;�0 = 0:1; 1; 10. In
nearly all cases � increases, reaches a peak (in all cases shown this is for � less than 20)
and then decreases, in all cases reaching a value between 1 and 2 before � = 50. (� = 2
is significant in that for � < 2 the variance attains its peak off the centreline, and the
centreline skewness is negative. For � > 2 the variance is largest on the centreline, and
the centreline skewness is positive.) The exceptions are m = 2; 3 for �1 = 0:1, when
� increases monotonically. � decreases towards zero, often with a subsidiary maximum.
The peaks in � are larger and later for higher dimensions, and for �0 as opposed to �1,
and also for larger � values. (The only exception to this is that in 1 dimension the peak is
earlier for larger � values.) The larger � is, the smaller � tends to be.

The largest value of � shown in figs. 1-3 is about 5:3 � 106 (for �0 = 10;m = 3).
While values of � so far observed are all O(1), it is not clear that large values can be
ruled out. In the model the concentration moments remain finite even if � ! 1. Large
values of � correspond to a linear rather than quadratic relationship between the variance
and the mean (see eq. (1)). Furthermore, it has not yet even been tested experimentally
whether the ��� formulation holds form = 3 (because of the greater difficulty in making
the required measurements), so observed � values are not available. Also, �0 = 10 is
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Fig. 4. – Evolution of centreline intensity, skewness and kurtosis in non-dimensional time log
10
� .

Results are shown for m = 1 (solid lines), m = 2 (short dashes) and m = 3 (long dashes), and for
�1 = �0 = 0:1.

probably unrealistic. For �1 = 1 the largest value of � achieved is about 6, which is
certainly consistent with observation.

Figures 4-6 show the corresponding evolution of centreline intensity I (= �(��1)1=2),
skewness S (= (�� 2)(�� 1)�1=2) and kurtosis K (= S2 +1, if we take A4 = 1, see Mole
and Clarke [14]). As � ! 0, I ! 0; S ! �1 and K !1. With increasing � , I increases
to a maximum and then decays to zero as the variance is dissipated, while S increases
rapidly (the more so the greater �). For rapidly spreading clouds (large � and m) �, and
hence S also, reaches large values before declining again. For all � values so far explored,
� drops below 2 and S becomes negative again. If cloud spread is sufficiently slow (for
the cases shown this is for �1 = 0:1 with m = 1; 2, and �1 = 1 with m = 1) then � never
exceeds 2 and S is always negative.

3. – Large time behaviour

Suppose that the mean concentration is spherically symmetric, with the same func-
tional form for all time. We can then write, in centre-of-mass coordinates,

�(x; �) = �0(�)g(s);

where s = jxj2=2L2. Thus the Gaussian form used above has g(s) = e�s.



MODELLING CONCENTRATION FLUCTUATION MOMENTS ETC. 405

Fig. 5. – As fig. 4 but �1 = �0 = 1.

Let

Qn =

Z
�ndV = �n0

Z
gn(s)dV

and Q = Q1 (Q is a constant —the amount of pollutant released). In general the evolution
of � and � in the model depends on _Q2 and _Q3, where _ denotes d

d� . However, in the
spherically symmetric case this reduces to a dependence on _L=L, as shown below.

In spherical polar coordinates (r; �; �) we have

dV =

8<
:

2dr = 2L(2s)�1=2ds; m = 1;
r dr d� = L2 ds d�; m = 2;

r2 sin � dr d� d� = L3(2s)1=2 sin � ds d� d�; m = 3;

where m is the number of spatial dimensions in the model. Therefore

Qn = amInL
m�n0 ;

where a1 =
p
2, a2 = 2�, a3 = 4

p
2� and

In =

Z 1
0

s
1

2
m�1gn(s)ds:
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Fig. 6. – As fig. 4 but �1 = �0 = 10.

The In are constants determined by the function g. Thus

_Qn =

 
m _L

L
+
n _�0
�0

!
Qn:

Since Q1 = Q is a constant, _�0=�0 = �m _L=L so

_Qn

Qn
= �(n� 1)m

_L

L
:

If we let
Q̂n =

Qn

�n�10 Q
=
In
I1
;

then the evolution equations for � and � are
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where D is defined by

D

�3
= ���(� � Q̂2)� 6(1� �)(Q̂3 � Q̂2

2):

Thus the evolution of � and � is completely determined by _L=L, Q̂2 and Q̂3. Mole [7]
showed that � ! 0 as � !1, so at large time there is an approximately stationary state
� = �S, where

�S =
Q̂2Q̂3

3Q̂2
2 � 2Q̂3

=
I2I3

3I22 � 2I1I3
:

While �S can take unphysical negative values, it turns out that � cannot attain such nega-
tive values at large time. It can be shown (paper currently in preparation) that as � !1

�!
�

�S; �S > Q̂2;

1; �S < �Q̂2:

(Note that it is not possible for �Q̂2 < �S < Q̂2 —see appendix A.) This result is inde-
pendent of the form of _L=L.

For the Gaussian form g(s) = e�s we have

In =

8><
>:

(�=n)1=2; m = 1;

1=n; m = 2;�
�=4n3

�1=2
; m = 3;

so Q̂n = n�m=2 and

�S =

8>>>><
>>>>:

p
2

3
p
3� 4

� 1:182; m = 1;

2; m = 2;

2
p
2

9
p
3� 16

� �6:873; m = 3:

These results are supported by the numerical integrations. Correspondingly, centreline

skewness tends to a limit S1, where

S1 =

8<
:
�1:915; m = 1;
0; m = 2;
1; m = 3:

The corresponding limits for K are 4.668, 1 and1. However, these limits are approached
extremely slowly, so it is not clear how much relevance they have to problems of practical
interest.
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Fig. 7. – Evolution of log
10
� (upper curves) and log

10
� (lower curves) in non-dimensional time

log
10
� , with Gaussian mean g(�) = e�� (solid line), g(�) = g1(�) (short dashes), g(�) = g3(�)

(medium dashes), g(�) = g5(�) (long dashes). Results are shown for 1, 2 and 3 spatial dimensions,
and for �1 = 1 and 10.

4. – Effect of differences in the mean

Figure 7 compares the previous results for � and � with those using the following
polynomial approximations to the Gaussian:

g1(s) = 1� s;

g3(s) = 1� s+
1

2
s2 � 1

6
s3;

g5(s) = 1� s+
1

2
s2 � 1

6
s3 +

1

24
s4 � 1

120
s5:

Each of these polynomials was truncated at its zero. For moderate times the differences
are not significant, but the asymptotic results show greater deviations. For g1(s), �S = 1
for m = 1; 2; 3; for g3(s), �S takes the values 1.011, 1.007 and 0.986 for m = 1; 2 and 3,
respectively; and for g5(s), �S takes the values 1.059, 1.130 and 1.183 (the values of In
used to derive these are given in appendix B). For m = 1; 2 these values are less than
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those for Gaussian g(s), and for m = 3 they are positive, so that � has a finite limit, unlike
the Gaussian case. g3(s) in 3 spatial dimensions shows that the closure does not ensure
� � 1 in absolutely all cases —in this case the minimum value of � is 0.96759 at a non-
dimensional time of about 137. Mole et al. [15] consider the effects of non-Gaussian mean
in more detail.

5. – Discussion

The model presented here has the advantage of being simple and computationally in-
expensive. It is based on the exact eq. (3) for the concentration moments, together with the
simple closure (5). Since the closure is applied within an integral over all space, one might
expect the results to be more robust than for pointwise closures. Clarke and Mole [8]
present experimental evidence in support of the use of the closure, and demonstrate that
it satisfies some desirable properties for the parameter �.

The model results for � and � are in qualitative agreement with observation, but
more detailed comparison is required. In general the evolution of � and � in the model
is completely determined by �0, Q1, Q2, Q3, _Q2 and _Q3. Thus, if the experimental cover-
age is sufficient, the moments predicted by the model can be compared with observation
by using the experimentally measured �(x; t) to supply the above quantities. Extension
of the model to realistic shear flows can be accomplished by incorporating appropriate
models for the mean concentration.

For instantaneous releases (corresponding to m = 3 in the model) the greater diffi-
culty of obtaining appropriate data means that direct verification of the validity of (1) and
(2) has not yet been attempted. Given the importance of such releases for practical hazard
assessment, it is vital for the validation and development of this model that suitable data
are obtained for this purpose. Some indirect support for the validity of (1) and (2) in this
case has been provided by Heagy and Sullivan [16], and further such work is in progress
by ourselves.

Finally, a simpler version of the models described here has been developed by
Labropulu and Sullivan [17]. They make use of (3) for n = 2 only, by making some further
assumptions. Comparison between this model and ours is currently being carried out.
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APPENDIX A.

Schwarz’s inequality (see, e.g., 3.2.11 of Abramowitz and Stegun [18]) states that for
two real functions f and g �Z

fg

�2

�
�Z

f2
��Z

g2
�
;

with equality if and only if g is proportional to f . If we choose f = �1=2 and g = �3=2, then
we get

Q2
2 � QQ3;
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with equality if and only if �1=2 is proportional to �3=2, i.e. � is uniform throughout the
cloud. Dividing through by �20Q

2 gives

Q̂3 � Q̂2
2 � 0:

At large time we cannot have uniform mean concentration within a cloud in unbounded
fluid, so the inequality is strict. Thus we must have

Q̂2Q̂3 > Q̂2(3Q̂
2
2 � 2Q̂3):

If 3Q̂2
2 � 2Q̂3 > 0, this gives �S > Q̂2, and if 3Q̂2

2 � 2Q̂3 < 0 it gives �S < �Q̂2.

APPENDIX B.

For g = g1 we have

In =

8>>>>>>>><
>>>>>>>>:

22n+1(n!)2

(2n+ 1)!
; m = 1;

1

n+ 1
; m = 2;

22n+2n!(n+ 1)!

(2n+ 3)!
; m = 3:

For g = g3 the symbolic mathematical calculation package MAPLE was used to derive
the following values:

I1 =

8<
:

1:5815; m = 1;
0:7296; m = 2;
0:4871; m = 3;

I2 =

8<
:

1:2115; m = 1;
0:4500; m = 2;
0:2515; m = 3;

I3 =

8<
:

1:0096; m = 1;
0:3187; m = 2;
0:1543; m = 3:

For g = g5 MAPLE was used to derive the following values:

I1 =

8<
:

1:6807; m = 1;
0:8507; m = 2;
0:6368; m = 3;

I2 =

8<
:

1:2425; m = 1;
0:4846; m = 2;
0:2909; m = 3;

I3 =

8<
:

1:0213 m = 1
0:3307 m = 2
0:1671 m = 3:
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