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Summary. — In this paper it will be demonstrated that conventional measures used
to characterize contaminant concentration reduction are impractical and inadequate to
describe the important case of a contaminant cloud. A new measure, the expected-
mass-fraction function, is developed and shown to have desirable experimental and the-
oretical features. Some contaminant plume data is used to illustrate the application of
this new measure.

PACS 92.60.Ek – Convection, turbulence, and diffusion.
PACS 47.27 – Turbulent flows, convection and heat transfer.
PACS 92.10.Lq – Turbulence and diffusion.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The contaminant cloud problem is important since many industrial mishaps includ-
ing the rupture of storage containers, either fixed or in use in transportation, result in the
sudden release of contaminant fluid. The problem considered here is to describe the re-
duction of contaminant concentration values when a quantity of contaminant is released in
a miscible, turbulent, host fluid. Of particular concern will be the release of contaminant
into an environmental flow such as the Earth’s atmosphere, oceans, lakes and rivers.

The flow field is turbulent and the concentration �(x; t), in mass per unit volume at
the position located by the vector x at time t, is a random variable. The root-mean-square
value of concentration is, at least, comparable with the mean value in turbulent flows. The
equations that determine the velocity and concentration fields are not “closed”. There
is no a priori justification for any closure hypothesis so that any semiempirical approxi-
mation or simulation must be thoroughly validated by experiment. In the case of steady
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laboratory flows and contaminant release ensemble averages are found from measured,
stationary, time-series. By contrast, with a contaminant cloud, averages must be formed
from the records obtained from the repeated release of contaminant with the same ini-
tial configuration. Even in the most idealized, steady, isotropic, homogeneous, turbulent
field the concentration in a cloud is an inhomogeneous and nonstationary random vari-
able. Environmental flows, in addition, are generally time and space dependent. Because
we cannot compile ensemble averages in an environmental flow, not all statistics can be
measured (or even reasonably approximated). For example, the epoch over which mea-
surements are gathered must be adequate to compile the required statistic yet small with
respect to significant changes in the turbulent field.

The only agency to reduce concentration values is molecular diffusivity �. Turbulent
convective motions pull out the contaminant into thin sheets and strands until the thin-
ning is balanced by thickening due to molecular diffusion at the conduction cut-off length
� = (��2=�)

1

4 , where � is the kinematic viscosity and � is the rate of turbulent energy dis-
sipation per unit mass. � is of the order 10�3–10�5m in most flows. That is a contaminant
cloud may be spread out over a length scale of the order of kilometres in an environmen-
tal flow but mixing between host and contaminant fluid takes place on the small � length
scale due to �. Recent direct observational evidence of this sheet and strand texture of
the contaminant field is given in Corriveau and Baines [1] and Dahm et al. [2]. The fact
that contaminant is confined to these very thin sheets and strands gives rise to serious
experimental temporal and spatial resolution problems and evidence of this is presented
in Chatwin and Sullivan [3].

The natural way to charactarize contaminant concentration is with the one-point
probability density function, PDF,

(1) p(�;x; t) d� = probf� � �(x; t) < � + d�g;
which has moments defined as

(2) mn(x; t) = �(x; t)n =

Z 1

0

�np(�;x; t) d�;

where an overbar is used to denote an ensemble average. It is clear that the higher mo-
ments (large n in (2)) more heavily weight the relatively rare events that are described by
the “tails” of the PDF and that a longer time series record in a steady experiment, or a
larger number of realizations for clouds, is required for adequate approximations of their
ensemble average values. It is worth noting that the lowest-order moment —the ‘mean’
m1(x; t)— is reasonably insensitive to space and time averaging (whereas all, non-zero,
higher moments are significantly reduced by instrument smoothing). The mean concen-
tration m1(x; t) is also virtually insensitive to molecular diffusivity (whereas all higher mo-
ments are reduced by �). Although it is the most reliably measured and easily predicted
statistic, the mean conveys no information on mixing between host and contaminant fluid.
Practical advantages were demonstrated, in Derksen and Sullivan [4] and Derksen, Sul-
livan and Yip [5], in using the lower-order measured moments (say the first four) and an
inversion procedure, such as a maximum entropy formalism, to obtain an approximation
of the PDF. This approach will be used later in this paper.

In a well-controlled laboratory experiment Hall et al. [6] made up to 100 repeat re-
leases of dense gas clouds into the logarithmic boundary layer over their wind-tunnel floor.
It was found that only the mean concentration m1(x0; t) (where x0 is a fixed sampling po-
sition) was reasonably convergent. It would be impractical, even in a steady laboratory
flow, to measure the PDF for clouds.
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One further point must be made on the distinctiveness of contaminant concentration
reduction in clouds. Contaminant found in the sheet-strand structure described above is
spread out over a region of space by large-scale turbulent convective motions. Concen-
tration values are reduced through molecular transfer from high sheet and strand values
to lower ambient concentrations found between the sheets and strands. The difference
in the ‘space-filling’ nature of diffusing contaminant in a three-dimensional cloud from the
case of a steady axisymmetric point or line source will very likely provide quantitative and
qualitative differences in the respective PDFs (see Labropulu, Sullivan and Ye [7] and [8]
for a discussion of this effect). The issue here is that one cannot creditably validate a
closure hypothesis with the more convenient steady laboratory data and extrapolate to
contaminant cloud concentration reduction. Contaminant clouds must be measured.

To make progress in the important problem of describing concentration reduction
in contaminant clouds, one must have a non-subjective (see the Chatwin and Sullivan [9]
discussion of an “intermittency factor” in this regard) and representative measure that
can actually be determined experimentally.

2. – The expected mass fraction

The expected-mass-fraction function is simply described. Consider a contaminant
cloud at time t and sum the continuum scale volume elements �v that contain a particular
concentration �. Taking the numerical average of this same quantity �m(�) = ��v over
many repeat cloud releases and dividing by the conserved release mass Q provides the
expected mass fraction at this concentration. Thus, the distribution of the release mass
over various concentration levels is portrayed as the cloud evolves in time. Mixing is
evidenced by the transfer of contaminant, due to molecular diffusivity �, to lower values
of concentration.

More formally, the expected-mass-fraction function, emf, is defined as

(3) ~p(�; t) = Q�1
Z
a:s:

�p(�;x; t) dv;

where a.s. indicates an integral over all space, with moments

(4) ~mn(t) =

Z 1

0

�n~p(�; t) d� = Q�1
Z
a:s:

mn+1(x; t) dv;

and

(5)

Z 1

0

~p(�; t) d� = 1:

R �b
�a

~p(�; t) d� is the fraction of release mass Q found, on average, in the cloud in the con-
centration interval between �a and �b at time t.

There are intuitive advantages in using ‘cloud-average’ statistics (see Chatwin and
Sullivan [10] and Sullivan and Ye [11]). ~p(�; t) has no spatial reference in its definition and
uses all values of contaminant concentration in each realization in its compilation such that
convergence with relatively few realizations is expected. The definition requires only that
the contaminant be conserved. For example, it could be applied separately to describe
concentration of saline solution and heat in the same experiment. The definition could
be modified to apply to non-conserved contaminant, for example when chemical reactions
take place, by replacing Q with Q(t) in (3) and (4).
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If one were dealing with a combustible contaminant, for example, the mass of con-
taminant that is, on average, within the flammable limits �1 and �u at time t is

(6) Q

Z �u

�1

~p(�; t) d�:

The fraction of release mass that is, on average, above a noxious or dangerous concentra-
tion level �1 is

(7)

Z 1

�1

~p(�; t) d�:

There are very few published measurements on contaminant cloud concentrations
and none that could be used to compute ~p(�; t). Ye [12] describes, in detail, a feasible
experiment that could be carried out (and which to some extent mitigates the severe res-
olution problems raised in the introduction), using an extension of the litmus-fluid experi-
ments of Corriveau and Baines [1], to measure ~p(�; t). Here some meandering plume data
(Sullivan [13]) from the well-mixed surface layer of Lake Huron will be used to illustrate
the effectiveness of the above approach.

In the experiment dyed fluid is continuously released from a small-diameter source
into the surface layer of a lake. The dye plume so formed is contained above the ther-
mocline and below the free surface. At fixed downstream distances x = Ut, where U is
the uniform mean flow velocity, the plume is repeatedly traversed with a small boat con-
taining a sample probe. Although the statistical properties of the plume are taken to be
depth independent, the probe samples at only one fixed depth during each traverse. To
reinforce the statement made in the Introduction, few repetitious plume crossings could
be made (at most 25 at 2 downstream locations) over a period for which the flow conditions
remained reasonably unchanged. Of course the ~p(�; t) given in (3) is the same whether the
p(�;x; t) is measured in a fixed (absolute diffusion) or center-of-mass (relative diffusion)
reference frame. The conserved quantity in this experiment is the flux of contaminant
across a plane,

(8)

Z
U�(x; t) dA

:
= U

Z
�(x; t) dA;

where the integral is over the plume normal to the constant mean flow velocity U . Ideally,
one would like to use a planar version of ~p(�; t) where a concentration record over the
entire plume is available rather than the record over one line through the plume in each
realization, as is the case in these experiments. Inevitably there is a considerable variation
in the total contaminant mass recorded in the individual traverses in these experiments.

In fig. 1 the p0(�) is shown for 20 plume crossings at one downstream sampling station.
The p0(�) are compiled by accumulating all of the contaminant in a given concentration
interval �� (in arbitrary concentration units) from the digitized concentration record,

(9) rj(�) =
X
i

�i �t for � < �i < � +��

and normalizing such that

(10) p0(�) = rj(�)=
X
j

rj(�) :
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Fig. 1. – The expected-mass-fraction function for Experiment 1, Section 1 of Lake Huron plume
data.

The shape of p0(�) appeared to be not much changed from realization to realization
(see Ye [12]). The root-mean-square bars included in fig. 1 indicate a relatively small
quantitative variation from realization to realization and this variation would be expected
to be much less if concentration values over the entire sample plume cross-section were
incorporated. Similar results were found at other sample stations.

The variability of p0(�) must be assessed in the context of any alternative representa-
tion of contaminant dilution. The experiments were originally conducted to assess mean
concentration values in center-of-mass coordinates. There are insufficient realizations
to adequately measure the distributed second moment as shown in Chatwin and Sulli-
van [14]. It would be out of the question to attempt to compile, for example, the probability
density function, even in center-of-mass coordinates.

Experimental data on contaminant clouds is usually in the form of a concentration
record taken as the cloud passes over a fixed sampling position, say x0. Heagy and Sulli-
van [15] have developed a fixed-point version of the emf and used this to analyze the Hall
et al. [6] data. The fixed-point emf is defined by

(11) p̂(�;x0) = d�1(x0)

Z 1

0

�p(�;x0; t) dt;

with moments

(12) m̂n(x0) =

Z 1

0

�np̂(�;x0) d� = d�1(x0)

Z 1

0

mn+1(x0; t) dt

and

(13)

Z 1

0

p̂(�;x0) d� = 1:

The value of d(x0) is found from taking the ensemble average of the random variable
“dosage”,

(14) d(x0) =

Z 1

0

�(x0; t) dt ;

as
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(15) d(x0) =

Z 1

0

�(x0; t) dt =

Z 1

0

m1(x0; t) dt :

A discussion of the variability of p̂(�;x0) from realization to realization is given and
that variability is shown to be comparable with the variability of the (low information
statistic) dosage. It is worth mentioning that p̂(�;x0) can also (instead of using a direct
binning procedure) be easily approximated from experimental data by simply measuring

(16)

Z 1

0

�n(x0; t) dt

for some few small values of n (say n � 5) and, from (12), use these in an inversion
procedure, as mentioned in the Introduction, to arrive at p̂(�;x0).

The expected mass fraction provides a view of the state of a cloud as frozen at a fixed
instant in time, whereas the fixed point version records the state as the evolving cloud is
convected past the fixed point. The important point to be made here with respect to ex-
perimental validation is that the fixed point version of the emf converges with sufficiently
few realizations that it is practical to measure it in a laboratory experiment such as that
of Hall et al. [6]. For example, predictions of m2(x0; t), the emf and the fixed point emf
for clouds released in the neutral atmospheric boundary layer are given in Labropulu and
Sullivan [16], Sullivan and Ye [17] and Heagy and Sullivan [18], respectively. The fixed
point emf and m2(x0; t) could be measured, for example with some slight modifications
to the experimental design of the Hall et al. [6] experiments, and direct inferences made
about the validation of the emf.

3. – Moments

Chatwin and Sullivan [10] provide an exact and rather general equation for the mo-
ments

(17)
d

dt

Z
a:s:

�n+1(x; t) dv = �n(n+ 1)�

Z
a:s:

�n�1(x; t)(r�(x; t))2 dv;

which, using the definition of (12), provides

(18) ~mn(t) = �n(n+ 1)�

Z t

0

f(t0) dt0 + ~mn(0);

where

(19) f(t) = Q�1
Z
a:s:

�n�1(x; t)(r�(x; t))2 dv :

The idea is that if all of the moments are known then, generally, one can reproduce
~p(�; t) and one expects to get a good approximation from the first few low-order moments
~mn(t). One apparent advantage is the relatively simple form of eqs. (17) and (18) and
the prospect of affecting closure on the (r�)2 term that appears in the right-hand side of
(17) under an integral over all space. This has been shown to have promise, in conjunction
with the simple moment prescription given in Chatwin and Sullivan [19], in Labropulu and
Sullivan [16] and Clarke and Mole [20] and will not be pursued further here.

It is of interest to consider the implications of the sheet-strand texture of the con-
taminant distribution mentioned in the Introduction. Specifically, that virtually all of the
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Fig. 2. – A sketch of a patch of an isolated contaminant sheet. The x axis is normal to the sheet and
the (y; z) plane is tangent to the sheet. The thickness is comparable with the Batchelor conduction
cut-off length.

contaminant was found to be in sheets of a thickness comparable with the conduction cut-
off length � by Corriveau and Baines [1]. The fine-scale inhomogeneity is seen to be more
pronounced in the observations of (r�)2 in Dahm et al. [2] where it also appears that the
sheet separation is much larger than the sheet thickness.

Consider the isolated segment of a contaminant sheet sketched in fig. 2. The only
significant gradients are taken to be those in the direction x across the sheet. It will be
assumed that the concentration distribution across a sheet will be of the self-similar form

(20) �(x) = �0F (�) ; � = x=� :

This self-similarity presumes that the straining-diffusive mechanism that generates the
sheets is very much the same for all sheets. �0 is taken to be a representative, say local
sheet maximum, concentration and � is taken to be a length scale that is approximately �
throughout the cloud at a given time. Relevant terms that appear in (17) become, in each
realization,

(21)

Z
a:s:

�n+1(x; t) dv = �(t)a(n)R(t) ;

(22)

Z
a:s:

�n�1(x; t)(r�(x; t))2 dv =
b(n)R(t)

�(t)
;

(23) R(t) =

Z
s

�n+1
0 d� ;

where the integral is over all of the sheets surface area.

(24) b(n) =

Z 1

�1

Fn+1

�
F 0

F

�2

d� ;
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Fig. 3. – The expected-mass-fraction function for a cloud with a Gaussian-sheet texture.

(25) a(n) =

Z 1

�1

Fn+1 d� :

This provides the equation, after taking an ensemble average,

(26)
d

dt
(�aR) =

��n(n+ 1)

�
2

�
b

a

�
(�aR) ;

which, using (12), provides the solution

(27) ~mn(t) = ~mn(0) exp

�
��n(n+ 1)

�
b

a

�Z t

0

dt0

�(t0)2

�
:

To be more specific, for the purpose of illustration, if the self-similar concentration is
taken to be the Gaussian form

(28) �(x) = �0 exp

��(x� x0)
2

2�
2

�
;

then

(29)
b(n)

a(n)
=

1

n+ 1
:

In situations where � is independent of t, for example a cloud dispersing in the inertial
subrange or in steady homogeneous turbulence, the solution (27) becomes

(30) ~mn(�) = ~mn(0)e
�n� ; � =

t�

�
2
:

It is shown in Ye [12] that the moments provided by (30) satisfy the conditions required for
a unique representation, through inversion, of ~p(�; �). ~mn(0) = �n0 =

p
n+ 1 in (30). The

~p(�; �) shown in fig. 3 are compiled by setting �0 = 1 and using the lowest four moments
from (30) with the maximum entropy method given in Derksen and Sullivan [4].
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Fig. 4. – The expected-mass-fraction function for a steady plume in grid-turbulence at three down-
stream locations.

Figure 3 clearly shows the migration of mass to lower concentration values as � in-
creases. At � = 0 one does not observe a delta function at �=�0 = 1 since, physically, the
process requires a finite ‘fragmentation’ time for the sheet-strand structure to develop.
The bimodal shape that appears at large � could be an anomaly associated with the inver-
sion procedure, however this feature does appear in some measurements to be discussed
presently.

The adequacy of the above, simple, presentation of the emf can only be determined
by experiment. There are no suitable cloud data available, however, a planar version
for use with the steady-source, uniform flow, homogeneous, wind-tunnel, grid turbulence
experimental data can be developed. Equation (17) with downstream distance x = Ut,
where the integrals and gradients are taken to be over planes normal to the mean velocity
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U and mixing in the streamwise direction is neglected, becomes

(31) U
d

dx

Z
A

�n+1 dA = ��n(n+ 1)

Z
A

�n�1(r�)2 dA :

The conserved quantity is the flux as given in (8) and, provided the variation of � in the
streamwise direction is neglected, the solutions are as given in (30) with t replaced by
x=U .

In fig. 4 the planar version of the emf is compiled for the plume generated by a
heated wire, steady, line-source in the grid turbulence measurements of Sawford and
Sullivan [22]. Measured moments at fixed locations across the plume are used to com-
pile the planar emf at three downstream locations. The basic shapes shown in fig. 4 are
qualitatively similar to those of fig. 3 and the migration of mass to lower concentration
values at further downstream locations is clearly in evidence. To compile the integrated
moments, and hence the smooth emfs shown in fig. 4, the Chatwin and Sullivan [19] mo-
ment prescription, which was shown to be a very good representation of the experimental
data, was utilized. The procedure is discussed in Ye [12]. A discussion of measured, low-
concentration, values is difficult due to an inevitable ‘thresholding’ factor (see Lewis and
Chatwin [21]). It would be very instructive to compare data from experiments specifically
targeted to measure the spatially integrated concentration moments. Measurements, for
example, taken in the approximately homogeneous central region of a large diameter,
high Reynolds number, pipe flow (where � is constant) and where appropriate measures
are taken to account for thresholding effects, would be especially enlightening.

4. – Concluding remarks

It was shown in the Introduction that conventional measures of contaminant mixing
in clouds are not directly practical or adequate due to the problem of taking averages and
the essential requirement that all approximations must be experimentally validated. A
new measure, the expected-mass-fraction function, is introduced. This new function has a
clear and immediate interpretation and the (fixed-point version of) emf can be measured,
in that reasonable ensemble averages can be approximated from conventional laboratory
experiments. Ideally, one would like a joint multipoint probability density function to de-
scribe turbulent mixing in contaminant clouds. The emf is a more modest measure that
can be derived from approximations on a relatively simple differential equation. This de-
gree of simplicity is consistent with the information that would be available on release
and flow conditions in describing the accidental spill of contaminant into an environmen-
tal flow. Reasonable, physical, approximations are shown to lead to qualitatively sensible
forms of the emf, however, further progress is inhibited by the need for specifically tar-
geted detailed experimental data.
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