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Summary. — Great recent improvements in the quality and quantity of atmospheric
dispersion datasets have highlighted the crucial importance of concentration
fluctuations. However, this has inevitably been accompanied by the realisation that
estimating the properties of concentration fluctuations accurately involves new,
difficult, but interesting, research problems. Some of these problems are discussed
and illustrated. The paper concludes with some recommendations about how
research funding agencies (such as governments, regulatory authorities and
industry) should change their present strategy in response to new knowledge.

PACS 96.60.Ek – Convection, turbulence, and diffusion.
PACS 92.60.Sz – Air quality and air pollution.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

This brief paper considers some aspects of atmospheric dispersion datasets, by
which is meant, more particularly, time series of the measured concentration of a
pollutant dispersing in the atmosphere. There will first be a discussion of some
important features of such time series, and the paper will conclude with some
comments about the uses to which they should properly be put. Reference can be made
to papers by Britter [1], Hanna [2], Mole, Chatwin and Sullivan [3], and Chatwin and
Sullivan [4], where some themes of the present paper are developed in other
directions.

There can be no doubt that over the last 10-15 years both the quality and the
quantity of available data have increased enormously. The improvements in data
quality are principally due to great progress in instrument technology resulting in

(*) Paper presented at EUROMECH Colloquium 338 “Atmospheric Turbulence and Dispersion
in Complex Terrain” and ERCOFTAC Workshop “Data on Turbulence and Dispersion in
Complex Atmospheric Flows”, Bologna, 4-7 September 1995.
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significantly enhanced spatial and temporal resolution, and the increase in data
quantity has largely arisen through the widespread use in data acquisition systems of
more and more powerful computers. Both changes were stimulated, at least partly, by
the overdue recognition of the scientific and practical importance of fluctuations in the
concentration G about its mean m .

2. – Concentration time series

2.1. General properties. – All time series now show that the magnitudes of the
perceived fluctuations about the mean m are not small, and are often large. Examples
from instantaneous releases in wind tunnels are discussed by Chatwin and
Robinson [5], and two typical examples from statistically steady releases in field trials
are shown in fig. 1, using data discussed in depth by Lewis and Chatwin [6]. Such
observations have stimulated theoretical work on models for risk assessment (both
toxics and flammables) that explicitly incorporate concentration fluctuations (e.g.
Griffiths [7], Ride [8]); a firm conclusion of all such work is that models of risk
assessment that are based solely on the mean concentration m will usually be seriously
wrong—and such models are regrettably still common.

However, in developing models that incorporate concentration fluctuations, it is
important to ensure that measurements of concentration are as reliable as possible.
Recent work has highlighted interesting questions on this topic, many of which have
not, arguably, received the attention they warrant.

2.2. Instrument smoothing and time averaging. – Important dynamics of the
concentration field occurs at spatial scales of order 1024 m (the conduction cut-off
length), and even the best modern instruments are unable to resolve accurately at such
scales. More mundanely, many commercially available instruments do not, apparently,
even recognise that a resolution problem exists.

This is well illustrated by fig. 2. In field trials in 1990 sponsored by the European
Union (EU) (Project BA; see the summary by Nielsen [9] from which the data were
taken), two different sensor systems were used to obtain measurements of G (which
was, in this case, the concentration of propane gas). One system involved the use of
simultaneous measurements of “sonic” temperature (using Kaijo Denki ultrasonic
anemometers) and “true” temperature (using adjacent fast response thermocouples);
only the former of these is affected by the presence of propane, hence by the value of G .
Both temperatures were recorded at 10 Hz, and two different calculation methods were
used to estimate G from these records. These two methods gave the results shown in
figs. 2(a) and (b), and these two “fast” measurements were averaged to give “slow
sonic” estimates of G recorded at 1.25 Hz and illustrated in fig. 2(c). The purpose of this
averaging was to give results that could be compared with those from the second
sensor system, namely a catalytic type gas detector (collocated as closely as possible
with the instruments that measured temperature) whose results were recorded at
1.25 Hz and are shown in fig. 2(d). It is clear that there are great differences between
the four estimates of G and these differences are emphasized further by fig. 3 and in
table I.

Figure 4 shows a more recent example of the same phenomenon, but with different
instruments. The fast time series in fig. 4(a) is taken with a UVIC sensor (also used to
obtain the data in fig. 1). Apart from the slow response, the Polytron trace in fig. 4(b)
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Fig. 1. – Two typical time series from statistically steady releases in field trials. a) Dugway, Utah,
November 1992; b) Landskrona, Sweden, August 1993 (FLADIS project).
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Fig. 2. – Four measurements of the time series of G at the same location: (a) fast sonic: method I;
(b) fast sonic: method II; (c) slow sonic (1.25 Hz); (d) catalytic.

shows the further complication of baseline drift at low times. Reference may be made to
Mylne and Mason [10] and Lewis and Chatwin [11] for further consideration of this
phenomenon.

The time-averaged data in figs. 2(c) and 4(c) were obtained for purposes of scientific
comparison, and this is also true for fig. 5, drawn in 1990 by Dr J. K. W. Davies of HSE
as part of Project BA using data taken in the laboratories of the University of Hamburg
by Professor M. Schatzmann. This figure shows the very significant effect of averaging
period on the estimated intensity of the concentration fluctuations.

Finally in this sub-section, fig. 6 and table II show a marked effect of spatial
averaging alone on s , the standard deviation of the perceived concentration
fluctuations. This work is by Sakai et al. [12], and shows an increase in s as probe size
decreases, and hence as the ability to resolve small scales increases. (It is noteworthy
that the dimension of the smallest probe is of the same order as the conduction cut-off
length.) Four different sets of measurements of s are shown, and the plots confirm that
in all cases the data satisfy the proposal by Chatwin and Sullivan [13] that

s 24b 2 m(am 02m) ,(1)
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Fig. 3. – The six possible pairwise comparisons of the results in fig. 2. In detail the plots are:
(a) x4 fast sonic, method I, y4 fast sonic, method II; (b): x4 fast sonic, method I, y4slow sonic;
(c) x4 fast sonic, method I, y4 catalytic; (d) x4 slow sonic, y4 catalytic; (e) x4 fast sonic,
method II, y4 slow sonic; (f ) x4 fast sonic, method II, y4 catalytic. If the results were identical,
each of the plots would collapse onto the line y4x .

TABLE I. – Some numerical results for the plots in fig. 3. r is the sample correlation coefficient,
and sx , sy are the sample standard deviations (rms concentration fluctuation). Perfect agreement
would give r41, and sy /sx41, in each case.

Figure x y r sy /sx

3(a)
3(b)
3(c)
3(d)
3(e)
3(f)

FS I
FS I
FS I
SS
FS II
FS II

FS II
SS
C
C
SS
C

0.865
0.536
0.225
0.452
0.461
0.185

1.192
0.453
0.481
1.063
0.375
0.398
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Fig. 4. – Three measurements of the time series of G at the same location; a) fast UVIC;
b) Polytron B; c) the series in a) filtered to be comparable with 4b). The abscissa is time in
minutes.

Fig. 5. – The effect of imposed averaging time T on i , the estimated intensity of concentra-
tion fluctuations (i is estimated s/estimated m); X is distance downwind from a steady source.
p T40.07 s; ! T40.7 s; % T47 s; { T470 s.
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Fig. 6. – Data from Sakai et al [12]. Here y4 (s 21m 2 ) /(mm 0 ), and rearrangement of eq. (1) gives
the straight line: y4ab 21 (12b 2 )(m/m 0 ).

TABLE II. – Values of a and b for the plots in fig. 6, using the formula in eq. (1). The constant d is
the cube root of the sample volume measured by the probe.

Probe No. d/mm a b

1
2
3
4

0.54
0.30
0.13
0.10

1.31
1.25
1.33
1.25

0.40
0.47
0.50
0.57

where m 0 is a scale for m , and a and b are constants. For present purposes, the
significant finding is that b increases as probe size d decreases (consistent with a
suggestion in [13]). Further details are given by Nakamura, Sakai and Miyata [14] and
by Chatwin and Sullivan [15].

2.3. Effects of noise and thresholding. – All time series of concentration are affected
by inevitable random noise. The most striking consequence of this is that some
recorded concentrations are negative; for example, this is evident in figs. 2(a) and (b).
Many concentration datasets are dominated by frequent occurrences of very low
concentrations, when this consequence of noise will be particularly significant.

A severe example is shown in fig. 7(a), where a concentration of zero corresponds to
0.2 V. This example is discussed in Lewis and Chatwin [11] to which reference should
be made for full details of the summary that follows. After pre-processing (whose
purpose was to reduce substantially the effect of instrument smoothing discussed
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Fig. 7. – (a) Data taken by Dr C. D. Jones at Dugway, Utah with a UVIC Mark I sensor. The first
30 s of this record were used to estimate noise properties. (b) The histogram of the data in (a) after
pre-processing.
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Fig. 8. – Estimated “true” histograms of G for the data shown in fig. 7 after applying two different
noise deconvolution methods. (a) Wiener filter; (b) MEI.
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above—see Mole [16]), the histogram derived from fig. 7(a) is shown in fig. 7(b); due to
noise almost 40% of the perceived concentrations are negative!

Clearly such data should not be used as they stand to analyse concentration
fluctuations, and it is appropriate to draw attention to some recent work on this
problem. Mole [16] discusses methods of removing noise in general, with emphasis on
Wiener filter methods. The Wiener filter has the important theoretical advantage of
minimising the mean-square difference between the recorded and true concentrations,
but does not ensure that negative estimates of concentration do not remain after its
use. An application of a Wiener filter method to the data shown in fig. 7 results in the
histogram shown in fig. 8(a). Although the percentage of estimated concentrations that
are negative has been substantially reduced from nearly 40% to about 12%, the latter
figure is still uncomfortably high. A different technique which does ensure that all
estimated concentrations are non-negative is MEI (Maximum Entropy Inversion); see
Lewis and Chatwin [11]. In brief, this technique maximizes an entropy function to
obtain estimates of the real concentrations, where there are elementary constraints
applied that are based on characteristics of the data. The entropy function contains a
logarithmic term that guarantees the recovery of positive estimates of concentrations
from the data. Applied to the data in fig. 7, one version of MEI gives the histogram
shown in fig. 8(b). Note that both techniques are applied so as to preserve the
measured value of m , the mean concentration, but do give different estimates for the
value of s .

These methods involve choice about, for example, how to estimate the noise
spectrum and, for any one dataset, there is no independent criterion for assessing
whether either is acceptable or, assuming both are, which is the better. Therefore, the
techniques were applied to some time series generated artificially, and then corrupted
by random noise. Table III, adapted from results given in Lewis and Chatwin [11],

TABLE III. – Comparison of three methods for removing/reducing noise applied to two artificial
datasets corrupted by the addition of random noise. See [11]. Upper part: raw data from gamma
distribution. Signal-to-noise ratio 10.12. Lower part: raw data from lognormal distribution.
Signal-to-noise ratio 3.42. (The signal-to-noise ratio is here defined as the variance of the
corrupted signal divided by the variance of the noise.)

Properties
of datasets

Raw Corrupted
(raw plus noise)

Wiener MEI Thresholding

mean m
S.D. s
skewness
kurtosis
% of negative

concentrations

1.00
0.76
1.94
8.69

0

1.00
0.80
1.67
7.66

3.55

1.00
0.74
1.93
8.75

0.73

1.00
0.75
1.84
8.34

0

1.01
0.79
1.73
7.82

0

mean m
S.D. s
skewness
kurtosis
% of negative

concentrations

0.50
0.78
6.83

96.46

0

0.50
0.93
4.03

48.38

26.25

0.50
0.75
5.60

62.80

8.30

0.50
0.76
6.30

89.14

0

0.59
0.86
5.29

67.22

0
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summarizes some results of applying the techniques discussed above. In brief, the
results of the MEI method appear to be more robust. However, for the data in table III,
upper part, with the larger signal-to-noise ratio, the Wiener filter method gives
somewhat better estimates of the moments than MEI, but this is offset by the fact that
about 0.73% of the estimates are negative.

Also shown in table III are results obtained by thresholding, an old (but non-
scientific) technique in which all measured values of concentration G below an
arbitrarily chosen and subjective threshold value u T are set equal to zero. For the data
in table III, this method is obviously inferior to either of the other two methods, and
some even more striking examples are given by Robinson, Lewis and Chatwin [17].

(It should be noted that neither of the time series shown above in fig. 1 displays
negative values of G because the MEI method has already been applied.)

2.4. Intermittency factor. – In some work on atmospheric dispersion, it has been
traditional to use the concept of the intermittency factor p4p(x , t), where x and t
denote position and time, respectively. The conventional definition is

p4prob ]G(x , t)D0( ,(2)

but see below. Use of this definition is however complicated by the presence of noise
(and incidentally by binning) and, in practice, (2) has usually been replaced by

p4prob ]G(x , t)Du T( ,(3)

where u T is a positive threshold value of concentration with the disadvantages stated
above. It is therefore not surprising that a dedicated examination shows that use of

Fig. 9. – Variation of the intermittency factor p , defined in eq. (3), with threshold concentration
u T ; s N is the standard deviation of the noise. The experiment (ASL 10) was part of a series
conducted by Dr C. D. Jones in White Sands, New Mexico in 1989 using an ion collector sensor
with a steady source. C1-C4 are the separate results from 4 ion collectors.
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(3) gives values of p sensitively dependent on u T This is illustrated in fig. 9, taken
from Mole and Chatwin [18], where many similar examples can be found.

The conclusion once again is that the use of a threshold concentration is
unacceptable, essentially because it has no connection with real concentrations.

It must be noted that there are also, however, fundamental objections to the
definition (2), and these are discussed by Chatwin and Sullivan [19] where an
alternative definition is proposed.

2.5. Stationarity and length of record. – Although the factors mentioned in this
sub-section have hardly received study, they are included because such study would
certainly appear to be merited. Since atmospheric turbulence is subject to systematic
trends because the weather is changing (on scales of hours at most), so also will the
statistical properties of G change with t on the same scale, even when the pollutant is
being released at a steady rate. This factor is usually ignored, i.e. a time series from a
steady source is regarded as a realisation of a stationary process. However the graphs
in fig. 10, also taken from Mole and Chatwin [18], show that estimates of some
elementary statistical properties made on this assumption show significant trends over
a period of 50 minutes. Anderson, Mole and Nadarajah [20] also find significant trends

Fig. 10. – Estimates of m , s , skewness S and kurtosis K as a function of accumulated time t for
ASL 10 (see caption to fig. 9). —— C1; - - - - - C2; Q Q Q Q Q C3; – P – P – C4.
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in the parameters of a model to estimate the frequencies of occurrence of large
concentrations.

But, by contrast, a sufficient length of record (depending on the digitisation rate) is
needed even in strictly stationary conditions to obtain stable estimates of such
statistical properties. (The term “stable” means that the inevitable statistical noise is
acceptably small.) Thus quantitative work is needed on these conflicting problems.

For instantaneous releases, considered in Chatwin and Robinson [5] but not
elsewhere in this paper, the requirement of length of record is no longer relevant but is
replaced by the need for an adequate number of replications.

3. – Conclusions

An overall conclusion of the previous section must be that data analysis techniques
have not yet adjusted appropriately to the recent improvements in data quality and
quantity. In what was written above there was emphasis on quality, but the increase in
quantity has also brought problems. To the authors’ knowledge, there are large and
potentially valuable datasets available which have not been (and may never be)
analysed. The principal reason is that the resources needed (above all staff time) were
not adequately funded at the time the experiments themselves were funded. Ultimately
this is wasteful. A necessary condition for improvement is that:

Experiments, especially large experiments, must now be planned with
data analysis and modellers as full members of all teams from the outset.

Although it is now indisputable that proper consideration of concentration fluctuations
is essential for the satisfactory evaluation of risk associated with atmospheric
dispersion (often following accidental release), recognition of this fact by governments
and regulatory authorities (such as the EU) is still largely absent. It is certainly
overdue. Therefore

Those scientists working in atmospheric dispersion should, at every
opportunity, emphasize the crucial importance of concentration fluctuations
in models of associated risk assessment. Since no-one other than scientists
can do this, it could be regarded as a duty.

Unfortunately governments and regulatory authorities have responded to the advent
of vastly increased computing power by funding almost exclusively research in
modelling that develops old and out-of-date models, making them more sophisticated
and complicated. Thus they ignore the abundant evidence that

Many, if not most, models of atmospheric dispersion and associated risk
assessment now used by governments and regulatory authorities are, quite
simply, wrong, both scientifically and practically, since they place undue
emphasis on mean concentrations. Little or no recognition is given to
fluctuations.

A different objection to making mathematical models more complicated is technical and
less fundamental, but important nonetheless. It is made clear in quotes from two
papers referred to earlier, namely a) “In a broad sense, there is generally an
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over-confidence in the ability of mathematical models to provide accurate prediction. In
particular, there is significant over-confidence in the ability of very large numerical
models to provide accurate prediction” (Britter [1]), and b) The performance of a model
is “not related to its cost or complexity” and, in general, “it is very difficult to
demonstrate improved model performance as enhancements in model physics are
added” (Hanna [2]).

Consistent with all that has been written above, the correct response to
improvements in data quality and quantity, and the consequent new knowledge should
be different. In summary

Research and development funding strategy should now be devoted to
developing new, scientifically correct, models, and to testing these against
good data. Such models must be probabilistic, and should be simple.

4. – Further information

Further details of the two multinational EU projects referred to extensively in this
paper are given in Chatwin and Goodall [21] (Project BA; First Framework
Programme, Major Technological Hazards), and in Chatwin et al. [22] (Project
FLADIS; Second Framework Programme, Major Industrial Hazards), as well as in
many of the other papers cited above. See also Chatwin, Lewis and Mole [23].

* * *
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