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Summary. — Most models of the single-gyre, wind-driven oceanic circulation resort
to wind stress fields that are strictly antisymmetric under a parity transformation
with respect to a mid basin latitude. We show that, within the ambit of the weakly
nonlinear quasi-geostrophic dynamics with a given frictional parametrization, this
property of the wind stress implies a corresponding definite behaviour, under the
same transform, of all the correction streamfunctions that constitute the
perturbative expansion of the solution in the western boundary layer. The result
generalizes what can be observed in some truncated expansions found in the
literature and in the presence of an explicitly defined wind stress field.

PACS 92.10.Fj – Dynamics of the upper ocean.

1. – Introduction

The basic picture of the wind-driven oceanic circulation in a basin bounded by
meridional walls presupposes the matching between the southward interior flow
governed, at least in the ambit of weak nonlinearity, by the Sverdrup balance and the
western boundary layer (WBL), where a strongly intensified northward returned flow
takes place. Denoting the wind stress field as

t4t x i1t y j ,(1)

(the b-plane reference is understood) the nondimensional meridional interior velocity
n I given by the Sverdrup balance is

n I4k Qcurl t ,(2)

k being the upward unit vector.
In the single-gyre models, the functional dependence of the components t x and t y

on the spatial coordinates is demanded to take into account, at least in a rudimentary
manner, the easterlies-westerlies structure of the wind field above the gyre, in accor-
dance with a well-known phenomenology (see, for instance, Gill, 1982, sect. 2.3).
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Usually, both in analytical and numerical models, the convenience of dealing with a
mathematically simple form of t x (x , y) and t y (x , y) introduces, at the same time, a
definite symmetry property of the functions t x and t y themselves under a parity
transformation of the kind

(x , y)K (x , 2u2y) ,(3)

that affects not only the structure of the interior flow via eq. (2) but also that of the
WBL. Transform (3) represents a mirror reflection of the b-plane with respect to a
proper latitude u that can be easily singled out once the explicit form of t x and t y is
known. We are referring to the following symmetry property under transform (3):

t x (x , 2u2y)42 t x (x , y) ,

t y (x , 2u2y)4t y (x , y) .

As a consequence, the wind stress curl ¯t x O¯y2¯t y O¯x is left unchanged and the
same trivially holds also for n I given in eq. (2). For instance, Bryan, 1963, considers

t x (y)42 cos g py

2 L
h , t y

f0 , 0GyG2 L ;

analogously, Moore, 1963, puts

t x (y)42W0 cos g py

L
h , t y

f0 , 0GyGL

and Blandford, 1971, chooses

t x (x , y)42
1

2
sin (px) cos (py) , t y (x , y)4

1

2
cos (px) sin (py) , 0GyG1 .

It is trivial to check that all these examples verify the above-introduced symmetry
property. What about the behaviour of the flow pattern in the WBL in the presence of
transform (3)? Perhaps, the best known examples are given in the papers of Munk et
al., 1950, and Veronis, 1966. In the first case t x42G cos (y), t y

f0, 0GyGp so that
2u4p. The first three terms of the truncated perturbative expansion of the stream-
function in the WBL are, respectively, proportional to sin (y), sin (2y) and to a linear
combination of sin (y) and sin (3y). In the second case

t x42
W

2
sin

x

L
cos

y

L
, t y42

W

2
cos

x

L
sin

y

L
, 0GyGpL

so that 2u4pL . Also in this case the first two terms of the truncated WBL expansion
are proportional to sin (y) and sin (2y), respectively.

We see that the zeroth-order correction is invariant under transform (3) while that
of the first order is antisymmetric under the same transform. Moreover, the
second-order term of Munk’s model is again invariant. Thus, although the circulation
pattern does not seem to have a definite symmetry property under the mirror
reflection (3) on the whole, the memory of the definite symmetry property of the wind
stress field (if it exists) is separately retained in each term of the truncated expansions
of the WBL solution. This fact leads us to conjecture the existence of a sort of
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regularity in the behaviour of the single WBL corrections under transform (3) for the
whole series. The main aim of the present note is to deduce such behaviour assuming
the above symmetry property of the wind stress field with respect to a given latitude u
but releasing any explicit form of the functions t x (x , y) and t y (x , y). The result will be
obtained by resorting to the properties of the WBL correction equations and to the
mathematical induction principle.

2. – The WBL correction equations

We consider the well-known quasi-geostrophic equation (Pedlosky, 1987)

g d I

L
h2

J (c , ˜2 c)1
¯c

¯x
4k Qcurl t2

d S

L
˜2 c1 g d M

L
h3

˜4 c(4)

in the domain (xWGxGxE )3 (2QEyE1Q), with special regard to the solution for
x close to xW , and boundary conditions

c(xW , y)40 ,(5)

¯c

¯x
40 in x4xW .(6)

The unbounded latitudinal domain simply means that we are interested only in the
WBL solution, so we do not take into account possible boundary layers associated with
zonal boundaries.

Hereafter we assume

d S4d Mfd F ,(7)

g d I

d F
h2

E1 ,(8)

g d F

L
h2

b1 ,(9)

and define the boundary layer coordinate j of the western boundary through the
equation

d F j4L(x2xW ) ,(10)

so that

¯

¯x
4

L

d F

¯

¯j
(11)

and so on. In the WBL, transform (3) becomes (j , y)K (j , 2u2y).
For x close to xW , the total solution c can be written as

c4c I (x , y)1f W (j , y) ,(12)
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where f W (x , y) is the WBL correction while c I satisfies the Sverdrup balance (2),
c I being the interior streamfunction. Note that c I (x , y)42 sx

xE n I (h , y) dh is
symmetric in the presence of an antisymmetric wind stress. Substitution of position
(12) into eq. (4) gives, to the zeroth-order in (d F OL)2 and recalling hypothesis (7),

g d I

d F
h2yJjygf W ,

¯ 2

¯j 2
f Wh2 ¯c I

¯y

¯ 3 f W

¯j 3
z1 ¯f W

¯j
42

¯ 2 f W

¯j 2
1

¯ 4 f W

¯j 4
.(13)

The Jacobian determinant Jjy operates on the variables j and y.
Because of inequality (8), f W can be expanded as

f W4f (0)1 g d I

d F
h2

f (1)1R .(14)

By substituting expansion (14) into eq. (13) and equating like order terms in
(d I Od F )2n, the equations for f (0) , f (1)

R can be found. Boundary conditions are the
following:

c I (xW , y)1f (0) (0 , y)40 ,(15)

or

f (n) (0 , y)40 , if nF1 ;(16)

lim
jK1Q

f (n) (j , y)40 , nF0 ;(17)

¯

¯j
f (n)40 in j40 , nF0 .(18)

Boundary conditions (15) and (16) easily follow from eqs. (5), (12) and expansion
(14). Boundary condition (17) expresses the matching condition between the WBL
solution and the interior solution far from the western coast (recall position (12)) and
finally boundary condition (18) comes from the corresponding boundary condition (6),
eq. (11) and inequality (9).

Putting

Lj42
¯

¯j
2

¯ 2

¯j 2
1

¯ 4

¯j 4
,

the problem for f (0) is given by the equation

Lj f (0)40(19)

plus boundary conditions (15) and (17), (18) with n40.
In the same way the problem for f (1) is given by the equation

Jjygf (0) ,
¯ 2

¯j 2
f (0)h2 ¯c I

¯y

¯ 3 f (0)

¯j 3
4Lj f (1)(20)

plus boundary conditions (16) and (17), (18) with n41.
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Using the identiy

Jxyg !
nF0

a n f (n) , !
kF0

a k g (k)h4 !
lF0

a lk !
n1k4 l

J( f (n) , g (k) )l ,

where a is a real parameter and f (n) , g (k) are functions of x and y; it follows that, in
general, the problem for f (l11) is given by the equation

!
n1k4 l

Jjygf (n) ,
¯ 2

¯j 2
f (k)h2 ¯c I

¯y

¯ 3 f (l)

¯j 3
4Lj f (l11) , lF0 ,(21)

plus boundary conditions (16), (17) and (18). In this way we have deduced for every
lF0 the problem for the individual WBL corrections.

3. – The parity-transformed corrections

In this section we prove the main result, that is the relation

f (m) (j , 2u2y)4 (2)m f (m) (j , y) , mF0 .(22)

First, we prove that relation (22) holds for m40 and m41. Then, assuming its
validity for mG l , we show that it is true also for m4 l11.

Relation (22) for m40 can be directly checked by resorting to the explicit solution
of problem (15), (17), (18) and (19). The general integral of eq. (19) is

(23) f (0)4C1 (y)1C2 (y) e (S1T)j1C3 (y) e
2(S1T)

j

2 sin g k3

2
(S2T) jh1

1C4 (y) e
2(S1T)

j

2 cos g k3

2
(S2T) jh ,

where

S4 g 1

2
1 g 23

108
h1O2h1O3

and T4 g 1

2
2 g 23

108
h1O2h1O3

.

Boundary condition (17) demands C1 (y)4C2 (y)40, while boundary condition (18)
implies

C3 (y)4
S1T

k3 (S2T)
C4 (y) .(24)

Finally boundary condition (15) gives

c I (xW , y)1C4 (y)40(25)
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so both functions C3 (y) and C4 (y) can be expressed via c I (xW , y) and we have

(26) f (0) (j , y)4

42c I (xW , y) e
2(S1T)

j

2 y S1T

k3 (S2T)
sin g k3

2
(S2T) jh1cos g k3

2
(S2T) jhz .

At this point, from the invariance of c I under transform (3), the same invariance
immediately follows for f (0) :

f (0) (j , 2u2y)4f (0) (j , y) .(27)

About relation (22) for m41, we observe that transform (3) applied to eq. (20)
gives

2yJjygf (0) ,
¯ 2

¯j 2
f (0)h2 ¯c I

¯y

¯ 3 f (0)

¯j 3
z4Lj f (1) (j , 2u2y) ,(28)

where use has been made of the invariance of f (0) and c I and the antisymmetry of the
y-derivative. Therefore, addition of eq. (20) with eq. (27) gives

Lj [f (1) (j , y)1f (1) (j , 2u2y) ]40 .(29)

Putting

s(j , y)4f (1) (j , y)1f (1) (j , 2u2y) ,(30)

the boundary conditions for s easily follow from those of f (1), that is to say

s(0 , y)40 ,(31)

lim
jK1Q

s(j , y)40 ,(32)

¯s

¯j
40 in j40 .(33)

In general, the integral of eq. (29) coincides with the r.h.s. of eq. (23). Again,
boundary condition (32) demands C1 (y)4C2 (y)40 and boundary condition (33)
implies C3 (y)4 ((S1T)Ok3 (S2T) ) C4 (y). The basic difference with respect to the
problem for f (0) is that, now, boundary condition (31) is satisfied by C4 (y)40, so
problem (29), (31), (32), (33) has only the null solution s(j , y)40, that is, recalling
position (30),

f (1) (j , 2u2y)42f (1) (j , y) .(34)

The antisymmetry of f (1) is thus proved.
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To prove relation (22) for mF2 consider transform (3) applied to eq. (21):

(35) 2 !
n1k4l

Jjygf (n) (j , 2u2y),
¯ 2

¯j 2
f (k) (j , 2u2y)h1

1
¯c I

¯y

¯ 3

¯j 3
f (l) (j , 2u2y)4Lj f (l11) (j , 2u2y) .

Now assume l even and relation (22) for mGl. In this case eq. (35) takes the form

2 !
n1k4l

Jjygf (n) (j , y),
¯ 2

¯j 2
f (k) (j , y)h1 ¯c I

¯y

¯ 3

¯j 3
f (l) (j , y)4(36)

4Lj f (l11) (j , 2u2y) .

Addition of eq. (21) to eq. (36) gives

Lj [f (l11) (j , y)1f (l11) (j , 2u2y) ]40 .(37)

Following the same way as for f (1), we can easily check that eq. (37) with boundary
conditions (16), (17), (18) has only the null solution, that is to say

f (l11) (j , 2u2y)42f (l11) (j , y) , for l11 odd .(38)

Finally, assume l odd and relation (22) for mG l . Now eq. (35) takes the form

!
n1k4 l

Jjygf (n) (j , y),
¯ 2

¯j 2
f (k) (j , y)h2 ¯c I

¯y

¯ 3

¯j 3
f (l) (j , y)4Lj f (l11) (j , 2u2y) .(39)

Subtraction of eq. (39) from eq. (21) gives

Lj [f (l11) (j , y)2f (l11) (j , 2u2y) ]40 .(40)

Equation (40) with boundary conditions (16), (17), (18) has only the null solution,
that is to say

f (l11) (j , 2u2y)4f (l11) (j , y) for l11 even .(41)

According to the mathematical induction principle, we conclude that relation (22)
holds for every integer m.

4. – Discussion and concluding remarks

Equation (22) is obtained with assumption (7) that corresponds to a well-defined,
particular frictional parametrization, that is 2(d F OL) ˜2 c1 (d F OL)3 ˜4 c. However, if
bottom dissipation only is taken into account, i.e. d S4d F and d M40 or if lateral
diffusion of relative vorticity only is considered, i.e. d S40 and d M4d F , then equa-
tion (22) still holds. In fact, if d M40 we have only to redefine the operator Lj as
Lj42¯O¯j2¯ 2 O¯j 2 , while if d S40, then we put Lj42 ¯O¯j1¯4 O¯j 4. Obviously,
if d M40, boundary conditions (6), (18), (33) must be released but, in any case, the
method to prove eq. (22) is left unchanged. So, what was observed in sect. 1 about the



F. CRISCIANI560

approximated solutions of Munk et al., 1950, and Veronis, 1966, in the WBL can be
immediately fit into our result (22).

The actual streamlines coming from expansions (12) and (14) can be imagined as the
superposition of virtual paths, each produced by the single terms f (k) of the expansion.
Unlike the linear solution c4c I1f (0), the so-obtained overall solution is able to take
into account both the northward splitting of the gyre due to inertial effects and the
dissipation of the surplus of relative vorticity acquired in the WBL, by means of the
formation of meanders in the North-western region of the basin. Relation (22) gives
some features of the current field associated with the different streamfunctions f (k).
For m odd and y4u , relation (22) implies f (m) (j , u)40. This is equivalent to say that
y4u is a stagnation line for the antisymmetrical streamfunctions. Note that the point
(0 , u) belongs both to the coastline j40 where the current is identically vanishing
because of boundary conditions (5), (6) and to the line y4u ; the horizontally
nondivergent nature of the flow implies that no current flows along the line y4u .
Therefore, the northward transport in the WBL at the latitude u is entirely due to the
terms of the expansions (12) and (14) which are invariant under transform (3).

From relation (22) the following relation for the zonal current u (m)42 ¯f (m) O¯y
can be easily deduced

u (m) (j , u2y)4 (2)m11 u (m) (j , u1y) .(42)

For m even, eq. (42) shows that the flux incoming into the WBL below the latitude u
is outgoing above the same latitude, with a symmetrical latitudinal distribution.

For m odd, eq. (42) exhibits the presence of two identical zonal currents, both
incoming into the WBL or outgoing from it, arranged in a symmetrical way with
respect to the latitude u. Since, for m odd, y4u is a stagnation line, these zonal
currents belong to two different virtual current systems, each being confined in one of
the half planes yDu , yEu .

* * *
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