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Abstract

In this paper in theSection 1, we describe the possible mathematics concerriegunification
between the Maxwell's equations and the gravitali@guations. In this Section we have described
also some equations concerning the gravitomagmeticgravitoelectric fields. In th8ection 2, we
have described the mathematics concerning the Mésveguations in higher dimension (thence
Kaluza-Klein compactification and relative conneas with string theory and Palumbo-Nardelli
model). In theSection 3, we have described some equations concerning dheommutativity in
String Theory, principally the Dirac-Born-Infeld @en, noncommutative open string actions,
Chern-Simons couplings on the brane, D-brane astiand the connections with the Maxwell
electrodynamics, Maxwell's equations, B-field andgg fields. In th&ection 4, we have described
some equations concerning the noncommutative goamtechanics regarding the particle in a
constant field and the noncommutative classicaladyins related to quadratic Lagrangians
(Hamiltonians) connected with some equations camogrthe Section 3. In conclusion, in the
Section 5, we have described the possible mathematical aioms between various equations
concerning the arguments above mentioned, soms lwith some aspects of Number Theory
(Ramanujan modular equations connected with theyghi vibrations of the superstrings, various
relationships and links concerning ¢ thence the Aurea ratio), the zeta strings and tahkifbo-
Nardelli model that link bosonic and fermionic stIs.




Introduction

Maxwell's Equations are an important connection between
mathematics and physics, an instrument without which we would
not have reached the present state of knowledge such as relativity,
quantum mechanics and string theory.

These equations are of extraordinary importance, especially from a
physical point of view, as well as mathematics.
The authors, in this paper, show how to treat them from a

LS.  mathematical point of view with techniques of vector calculus.
James Clerk Maxwell

In the second part the authors examine, with the method of the conceptual experiments and the
"umbral calculus", a "symmetrization" of these equations and we have the question of the
correctness of the approach and the existence of phenomena that should be linked then this fact.
All this is done without introducing the Minkowski space and the equations of Einstein-Maxwell,
but keeping for simplicity only on Maxwell's equations.

Another basic question that accompanies the whole paper is the possibility or not to create anti-
gravity and propulsion systems, in this regard we have mentioned the EHT theory, a theory to
unify relativity and quantum mechanics, that is multi-dimensional (8 dimensions) and that can be
related with M-theory and superstring theory.




1. On the possibile mathematics concerning the unif ication between the
Maxwell’s equations and the gravitational equations

Maxwell's equations

Maxwell's equations are:

Law Equation
Gauss's law of electric field 0.g=P )
gO
Gauss's law of magnetic field O+B=0 (2)
Faraday’s law on the electric field . 0B
OxE=-— (3)
ot
Ampere’s law on the magnetic field _ - =
P ) B+ ps T (@)

where:
O it's is the mathematical symbol "nabla" (gradient)
Oe it'sthe mathematical symbol for the divergence

X it's is the mathematical symbol of the rotor

Then:

E the electric field

B the magnetic induction

H the magnetic field

J the current density

%o the dielectric constant of vacuum 8,854188 x 10™** F/m
Hy

the magnetic permeability of vacuum 4mx 207 H/m
G the speed of light 3x 10® m/s

Some useful rule for the follow:

» Thedivergence of a rotor is always zero or [Je (D Xé) =0

* The rotor of a gradient is always zero or Ux(0C) =0

* Thedivergence of a gradient is the Laplacianor [Je (DC) =0%C
* The rotor of a rotor instead is [ X(D Xé)= D( . é)— 0%C




Maxwell's equations in vacuum

We start from equation (4). We divide both sides by o and bearing in mind that:

Loy
Cg 0™0
where ¢, is the speed of light, we obtain:
cgmxé=i+a—E (4)
g, Ot
Recall that the Lorentz's force is given by:
F =q(E+vxB) (5)

The equations, including (4 ') and (5), are the equations in a local form and permit the calculation
of electromagnetic fields in vacuum from known values of charge density p and current density J.

Maxwell's equations in materials
If we are inside of the materials then the electromagnetic waves must take account of other

physical phenomena due to the electric induction D, the polarization P, the magnetic induction M
such that:

P and M are the mean value of electric and magnetic dipole per unit volume.

If we consider the medium as linear and isotropic material, the equations are simplified in:

D=¢,E

B = op, H (6)

H = o,

E=E,E,
Thence, we obtain:

Law Equation
Gauss's law of electric field OeD=p ()
Gauss's law of magnetic field JsB=0 (2)
Faraday’s law on the electric field _ B
y OxE = _G_B (3)
ot

Ampere’s law on the magnetic field 1D

where




)7 is the relative magnetic permeability

The eq. (3) can lead to something more interesting through (6) and the precedent rules:

nxg=-%8
ot
= 0 (5 o=, aD o~ . OE 0°E
Ox|{OxE)=- —\OxH|=-py—|J+— |=~u—| J+&— |=—ue
[oxe)- ﬂ"ﬂrat( ) ﬂat( dtj /Jat( atj K o2
thence, we obtain:
= 0°E
O°E =-ue 7
HE— (7)
In the vacuum p=0, J=0 and ,us=i2 with v that is the speed of light, then we obtain that:
\
DZE:D( -E) DX(DXE) 1‘;'5 (8)
\

which is the D'Alembert wave equation in vacuum (v = ¢,). For the vector B we can use a similar
procedure.

Vector potential and scalar potential

If in (2) the divergence is zero using the fact that the divergence of a rotor always gives a null
result, then there exists a vector potential A, such that:

B=
Oe (9)

From (3) thence, we have that:
- 9 -
UxE+—0OxA=0
ot
DX(E +ﬂﬂj =0
ot

With the last expression, using the rule that the rotor of a gradient is always zero, then,
introducing a scalar potential ¢ is:

thence, we have that:

E= —(qu+— Aj (10)




Utilizing the egs. (9),(10) we can rewrite the equations (1),(4) as follows:

— a 2 a
O« E=-0e| Op+— D2p+—
(oo ) ={=ory

It's equivalent to:

]_ﬁ
80

2+ O R=-P (11)
ot &
From (4), instead, is:
~ = 10 0 -
UxOx A= J——— +—A
J o 0
co\UxUOxAjJ=—- Op+—A
°( ) £, at( T j
- 0 aA J
—c20%A+c0(0e A+ — 12
° ° ( ) a7 o £, (12)

Gauge transformations

Let's see what happens if on the vector potential A and scalar potential ¢ are made changes like:

A K+Dw
_ow
=9

Considering that the divergence of a rotor is null and that the rotor of a gradient is zero, then the
equations of vectors B and E do not change (see (9) and (10)). So we speak of gauge invariance.

We can use gauge invariance and choose the vector A as appropriate, for example:

e A:—iz%
c; Ot

Now with (1) and (120) we obtain that:

E:—(D¢+2Aj
= J % 2 X . 10°% _p
Oe E=-0O«| Op+—A |=-0%-—0A=-0%p+ -2 =X
( ¢ ot j ? ? c; ot £
e
1 9°
Togae W
If we substitute in (12) we obtain:
— 9%A -
[fA—mZ:—%J (14)




Now (13) and (14) constitute a system of 4 equations or a four-vector that describes the waves
advancing in space-time with speed c,. In fact in (14) the vectors A and J can be decomposed into
the components in the direction x, y, z.

In fact, you solve the Maxwell equations by introducing a vector potential and a scalar potential,
then gauge invariance is exploited by reducing everything to a system of differential equations in
four scalar functions as follows:

10°
Top- 190 _P
¢ ot
62
= at? = ~Hod
62
[fﬂ— =—1J,
2
A, - at‘} 14,

These equations put in evidence that the behavior of electromagnetic waves and of light were
aspects of the same phenomenon. So far the classical theory.

With regard the problem of symmetrization of the equations.

Following Heim and Hauser (see [1]), we start our simplistic flight of fancy, a little as Maxwell,
who discovered from a mathematical point of view that missing something to the Ampere's law
and introduced the temporal variation of electric induction D.

The aim is to see if we can obtain the symmetrization of equations, adding the terms used and
that in practice are negligible, and introduce a formulation of linearized gravity, without
necessarily introducing the Minkowski space and the equations of Einstein-Maxwell, but starting
simply by classical equations of Maxwell.

If we look at (2') (2) (3) (4"), described below for convenience, we note that, in "a sense", these are
two by two similar, but between (1') and (2) there is an obvious "symmetry breaking", this at least
from a formal mathematical point of view:

O«D=p (1)
O«B=0 (2)
] XE = —a_B
ot (3)
~ aD
OxH=J+— "
P (4"

n (2), for example, there isn’t a "density of magnetic charge" pm, as in (2'), while in (3) compared
to (4") there isn't a corresponding "density of magnetic current" J;,.




Furthermore between (3) and (4") are opposite also the signs of the partial derivatives.

In the reality should be borne in mind that a magnetic charge is non-existent, but in a fantasy of
symmetrization, especially for a conceptual experiment and "umbral calculus", leads us to say
that the equations (2) and (3), which are true compared with experiments, are such because the
boundary conditions involving the negligible or null terms as "density of magnetic charge" and
"density of magnetic current".

We start writing a first form of equations of symmetrization:

D°[3=p (1)
O«B=p, (2a)
—~_— 0B
OxE=J ——
L (3a)
— -~ 9D
OxH=J+— &
5 (4")

where in the (2a) (3a) we have introduced the density missing.
Can we add the gravity strength to the Maxwell's equations?

We begin another flight of fancy: it is possible to envisage the introduction of gravity in these
equations? Or at least an effect of fields that interacts with it?

We know that there exist an analogy between the Coulomb’s law and the Gravity’s law; the
Coulomb's law expresses the interaction between two electric charges g, and q.:

F=_1 G0
2
4, r

The strength of gravity expresses the interaction between two masses m; and m,:

_~mim
F _Gr_2
where G = 6,670 x10™ Nlllng-2

In correspondence of the Coulomb'’s strength we have an electric field expressible by:




Can we create an electric field equivalent to a gravitational field? If we equate the two fields we
see that we must introduce a "charge equivalent to the mass":

1
=Glm- =4, Gn
47190 q Qq 0
SO:
0., = k,m
q 9 (16)
k, =47E,G

g=6.67422x 10" m3/s2kg

We would also include a charge density equivalent to the mass pem through a mass density per
unit volume pp.:

Pem = kgpmv (17)

Furthermore, if we want to write, with regard the gravity, something of equivalent to (1 ') we must
to consider a parameter 1, = €, such that:

K

%=4%3 (18)

The (15), then, could be written as follows:

W ¥
[¢] 4m0r2

(19)

At this point for the gravity you need to locate an equivalent of D= EOE (for linear and isotopic

materials), that is R :/707(; thence the equivalent of (1') for the gravity would be:

Oe R=K,00y = Pem (20)
while:
OxX =0 (21)

The (21) is a result of the fact that the gravitational field should be irrotational or conservative,
but we will see that we have to work again on this up and perhaps discover news unexpected.

Physical correctness of the idea.
Is it correct from the physical point of view, what we have obtained from a formal point of view?

In practice, because of the similarity of the fields, it was said that you could get an electric field
equivalent to gravity (at least in terms of strength).




What are the differences? In the Coulomb strength we can have both positive and negative
electric charges and strengths of attraction if the charges are of a different sign, repulsive if the
charges are of equal sign, while in the gravitational strength we have only positive mass and the
gravitational strength is only attractive.

However, isn't the direction of the force, which reduces or invalidates the idea, the direction must
be different, but it is certainly true that "a flow of charges is also a flow of masses", so there are
electric currents and current of masses, the current of masses are in this case both sources of
gravity field and of electric and magnetic field. So the only valid physical sense here is that we are
introducing fields equivalent to gravitational fields, or gravito-electric and gravito-magnetic fields.

We try to unify the equations [1b]

Now suppose that we could put together all the equations are those of Maxwell, or to obtain an
unification of electromagnetic and gravitational equations ensuring the symmetrization and the
signs. How to proceed with a hypothetical unification of equations?

It involves:

* tointroduce the terms of connection:
v’ the “current density of mass displacement”, represented by the partial derivative in
time of R;
v’ the “current density mass” Ji;
* tointroduce a constant y,for the dimensional consistency of the physical dimensions
* maintain a symmetry of the equations and signs (X should have a formal appearance as
similar to E , E and H must have, with opposite signs, contributions of link because the
behaviour in the classical Maxwell's equations)

We get a unified system of six equations:

D°[3=p (1)

D-ézpm (2a)

O« R= K4 = e (2b)

OxX = kg(J +—) AR +aD (20)

— dR—— 0B
DXE_VO(‘] +E) E (3a)
-~ 0D — 4R

OxH=J+—-J ——
at < ot (4™)

P S

° 4m,c, 4c,
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The verification of laws [1b]

After the formal-mathematical symmetrization and unification we must verify that the equations
do not violate the laws of conservation of charge and irrotational fields. The previous equations,

in the absence of currents of mass and time-varying gravity field, will be such that J,=o0 and %—? =

o; the variations are due to movement of mass. An electric current is either a flow of charge but
also of mass.

Conservation of total charge

Take the (4"') and calculate the divergence of a rotor (that is null). We obtain that:

D-(DXH):D- 3+6—D—3k—a—R =0. 3+ 200 E)—D-jk—im- R=0
ot ot ot

From (1) (2b), we have that:

0.3+% 0.3 -%em_g
ot ot

If we pass to the integral of surface, obtain the law of conservation of charge:

| -1 _=9Qm _0Q
s at ot

(22)

. oR .
It's clear that in cases where Jy=0 and a5 = o we get the actual law of conservation of charge

0 . . -
| = —a—? that we obtain from (4"), and that represents an equation of continuity.
In the event that we wanted to consider all the terms of (22) we observe that the flow of electrons
is made up of electronic mass m = 9,2091 x 10" Kg, while the constant 4me,G is 1,8544 x 10™*
Kg3 m™*s’C*" for which the mass flow of electrons is of the order of 10" If we assume the
presence only of the magnetostatic field, therefore only no time-varying magnetic field and in the

aQem
ot

absence of electric charges, then only Ji is different from zeroand I, =— ; but also here it is

negligible, because taking 4me,G, a mass of 1 kg per second causes a current 6.18 x 10" A.
Apparent irrotational electric field?

In particular, the (3a) would seem to violate the irrotational electric field, saying that one has an
electric field perpendicular to the mass movement and arranged in a circle around the mass. In

fact the irrotational electric field in a magnetostatic field is valid, this is because that the mass
flow is significant is need to achieve enormous amounts like 10 tons.

New phenomenon?

11



The (2c) says that in the presence of non static electric and magnetic fields, then the gravitational
field is not irrotational, taking into account that there is no a magnetic current density (Jm = 0). In
fact from what has so far suggest to us the formulas and calculations, the mass flows very little
influence on electromagnetic fields, but it is certainly possible otherwise. An idea, therefore, is to
exploit the (2c) to create the opposite strengths to the gravitation, or to obtain an
electromagnetic levitation (not just the antigravity! But we are very close like effect).

1.1 On some equations concerning the Gravitoelectric and Gravitomagnetic fields [1]

Considering the Einstein-Maxwell formulation of linearized gravity, a remarkable similarity to the
mathematical form of the electromagnetic Maxwell equations can be found. In analogy to
electromagnetism there exist a gravitational scalar and vector potential, denoted by @, and A,

respectively. Introducing the gravitoelectric and gravitomagnetic fields
e=-0®, and b=0xA, (23)

the gravitational Maxwell equations can be written in the following form:

167G .

Ole=-47Gp, Olb=0, Oxe=0, 0Oxb=- I (24)

where = v is the mass flux and G is the gravitational constant. The field € describes the

gravitational field form a stationary mass distribution, whereas b describes an extra gravitational
field produced by moving masses.
At critical temperature T, some materials become superconductors that is, their resistance goes

to o. Superconductors have an energy gap of some E; =35KT, . This energy gap separates

superconducting electrons below from normal electrons above the gap. At temperatures below
T., electrons (that are fermions) are coupled in pairs, called Cooper pairs, which are bosons.

We note that, in this case, there is the application of the relationship of Palumbo-Nardelli model,

R 1 1
_ jdmx@[__ =979 Tr(G,,G,, )f (w)-—g””ay@w”} =

167G 8 2
% _ 2
= I 2;2 J'dlox(_G)llze_z{R"'4aﬂq)a#q) _%‘HS‘Z _%Trv 0F2|2)} , (25)
0 10 10

a general relationship that links bosonic and fermionic strings acting in all natural systems.
A rotating superconductor generates a magnetic induction field, the so called London moment

B= —ZTme (26)

where « is the angular velocity of the rotating ring and € denotes elementary charge. It should
be noted that the magnetic field in Tajmar’s experiment [1] is produced by the rotation of the
ring, and not by a current of Cooper pairs that are moving within the ring.

Tajmar and his colleagues simply postulate an equivalence between the generated B field, eq.
(26) with a gravitational field by proposing a so called gravitomagnetic London effect.

12



Let R denote the radius of the rotating ring, then eq. (26) puts a limit on the maximal allowable
magnetic induction, B__,, which is given by

max /

2
Bma\x

=14? KeTc . (27)

RZ

If the magnetic induction exceeds this value, the kinetic energy of the Cooper pairs exceeds the
maximum energy gap, and the Cooper pairs are destroyed. The rotating ring is no longer a
superconductor. Moreover, the magnetic induction must not exceed the critical value B.(T),

which is the maximal magnetic induction that can be sustained at temperature T, and is
dependent on the material. In this possible scenario, the magnetic induction field B is equivalent
to a gravitophoton (gravitational) field by, . Therefore, the following relation holds, provided that

B is smaller than B,

B
by 05 —B. (8

max

As soon as B exceeds B, the gravitophoton field vanishes. Can be derived the following

general relationship between a magnetic and the neutral gravitophoton field, b, :

b0~ i) Y, ®

rne Bmax
where k=1/24 and a=1/8. The dimension of b, is s™. Inserting eq. (26) into eq. (29), using

eq. (28), and differentiating with respect to time, results in

b, [ 1 e om
ot {(1—k)(1—ka) 1}me g_a 3%

Integrating over an arbitrary area A yields

I% HjA=§ggp [ds (31)

where it was assumed that the gravitophoton field, since it is a gravitational field, can be
separated according to egs. (23), (24). Combining egs. (30) and (31) gives the following
relationship

iggp [ts= (1_1j(1_ 1 j—l E %E [dA. (32)
24 24(8

From eq. (26) one obtains

13



—=—w. (33)
€

Next, we apply egs. (32) and (33) calculating the gravitophoton acceleration for the in-ring
accelerometer. It is assumed that the accelerometer is located at distance r from the origin of
the coordinate system. From eq. (26) it can be directly seen that the magnetic induction hasa z-
component only. From eq. (32) it is obvious that the gravitophoton acceleration is in the r -6
plane. Because of symmetry reasons the gravitophoton acceleration is independent on the
azimuthal angle 8, and thus only has a component in the circumferential (tangential) direction,
denoted by €,. Since the gravitophoton acceleration is constant along a circle with radius r,

integration is over the area A=7?g, . Inserting eq. (33) into eq. (32), and carrying out the
integration the following expression for the gravitophoton acceleration is obtained

where the minus sign indicates an acceleration opposite to the original one and it was assumed
that the B fields is homogeneous over the integration area.

The ratio of the magnetic fields was calculated from the following formula, obtained by dividing
eq. (26) by the square root of eq. (27)

( m JaR. (35)

Inserting an estimated average value of @« =175rad/s, m, =9x10%kg, kg, =138x10%J/K,
T. = 94K, and R=72x107m, this ratio is calculated as 397x10™.

2. On the mathematics concerning the Maxwell’s equations in higher dimensions [2]

In (3+1)-D, the field strength tensor F can be represented as an anti-symmetric 4% 4 matrix:

O FOl F02 FO3
_ FOl 0 FlZ Fl3
F= 02 12 23 | " (36)
~F® -F2 0 F

_FO3 _Fl3 _F23 O

We define the controvariant spacetime position vector as {X”}E{XO Ect,xl,xz,x3}, where the
lowercase Greek letters represent spacetime indices {,u, V} ={ 0,1,2,3}. We choose the metric
tensor g = diag {— ZL],],ZI.} to have positive spatial components such that the raising and lowering of
indices only changes the sign of the temporal components. The components of the field strength

14



tensor {F”"} are related to the components of the spacetime potential
{Af={A0 =vic A, A2, A% via

F& =9“A —3"A*. (37)

The field strength tensor F is naturally divided into temporal and spatial components. The three
independent temporal components are associated with the vector electric field

E'/c=F% =9°A' -0'A’ (38)

while the three spatial components naturally form a 3x3 second rank anti-symmetric tensor
magnetic field

B =F =0'Al-0'A. (309)

Maxwell’s inhomogeneous equations, in vacuum, are expressed concisely in terms of the field
strength tensor:

o0,F* = p,J" (40)

where the spacetime current density has components J# = {JO =cp,J' J?, J3} .

In (3+1)-D, p is the volume charge density and J = J,X + J,&, + J,X, represents the distribution

of the current over a cross-sectional area. Maxwell’'s homogeneous equations follow from the
relationship between the fields and the spacetime potential (egs. 38-39). In terms of the vector
electric field E and tensor magnetic field B, Maxwell’s equations in differential form are:

0.E :ﬁ

=1 !

0,E; —0,E =-co,B;,

By

0,E.
—] +,Uo‘Jj- (41)

£x0;By =0, —0,B, =
C
We do not distinguish between covariant and controvariant spatial indices {i, j,k} 0{123} since
only raising or lowering of temporal components involves a sign change. With the line element ds

expressed as an anti-symmetric second-rank tensor and the differential area dA expressed as a
vector via the following equation

1
G =&xkCu, Cy zagijkcij /

the integral form of Maxwell’s equations are:

JEAA =" [aV, &, fEds, =-cs,d, [BdA,

0 enc Senc
d,E
gijkiBljdAk =0, :§|3,de]- =2 .[ (,uo‘]i + OC 'jdA. (42)
s c Senc

15



When generalizing eq. (42) to (N+1)-D, the higher-dimensional analog of the differential line
element ds will have N —2 spatial dimensions and the higher-dimensional analog of the

differential area dA will have N -1 spatial dimensions. It is also useful to work with an anti-
symmetric second-rank tensor G that is dual to F:

v _ 1 o
G* :E‘gﬂp Fpa' (43)

Maxwell’'s homogeneous equations are obtained from the dual tensor G via
0,G" =0. (44)
Alternatively, Maxwell’s homogeneous equations may be extracted from

¥, =0, (45)

Auv
where the anti-symmetric third-rank tensor T is defined as

T, =0,F, . (46)

/lyv= A vt

The most straightforward generalization of Maxwell’s equations to (4+1)-D begins by extending
eq. (38) to

0-F% = 1,,,3°  (47)

where the uppercase Greek letters {GD, I'} D{ 0,12,3,4} represent (4+1)-D spacetime indices and the
(4+1)-D permittivity and permeability of free space &,,, and L,,,, respectively, have different
dimensions than their (3+1)-D counterparts &, and 1.

The 5x5 (4+1)-D field strength tensor F has 10 independent components, which naturally divides
into a 4-component vector electric field

E'/c=F” =9°A' —=0'A° (48)
and a 4x4 anti-symmetric second rank tensor magnetic field
BlJ:FlJ:alAJ_aJAl (49)

with 6 independent components. In terms of the vector electric field E and tensor magnetic field
B, Maxwell's equations in (4+1)-D in differential form become

= :i/ 0,E, -0,E =-cd,B;,
€4

0,.E
£ 0By =0, -0,B; =—=

+ fyandy (50)
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Gauss's law in magnetism, which states that the net magnetic flux is always zero as a
consequence that magnetic monopoles have not been observed, can alternatively be expressed in
differential form as:

0,By +9,B +0,B, =0. (51)

Alternatively, the differential volume may also be expressed as a vector dV via the following
equation

1
C:IJK = EIJKLCL 1 C:L = églJKLCIJK '

With the fields and differential elements expressed in terms of appropriate vectors and tensors,
(4+1)-D Maxwell’s equations can be expressed in integral form as:

§ EI d\/I = gi jmwl gIJKL§ EI dA]K = _CgIJKLaO I BIJ dVK !
S

V 4+1 WEI'\C Venc

gIJKL§ BIJ dVK = OI §BIJ dAJ = 2' J’ (/’14+1‘JI +
\ S

Venc

a0E|
C

jdV. . (52)

While electric flux remains a scalar, magnetic flux has four components in (4+1)-D:

o= _[ EdV, (DT = gIJKLI B,dV . (53)
v v

In (4+1)-D, the continuity equation reads
a| ‘J| = _Caop- (54)
In (4+1)-D, the dual tensor G is an anti-symmetric third-rank tensor:

G¢DI’/\ E%&.Kbl'/\ZQF

sa- (55)

Maxwell’'s homogeneous equations may be expressed in terms of the dual tensor G via
9,G"" =0 (56)

or, equivalently, in terms of an anti-symmetric third-rank tensor T via

¢DI’/\ZQT

& aso =0 (57)
where T is defined as

Torn E06FA - (58)
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In (5+1)-D, the differential form of Maxwell’s inhomogeneous equations are expressed concisely in
terms of the 6x 6 field strength tensor F as

J0- F Psilsn — /15+1J D5y (59)

r5+1

where {(D5+1,F5+1}D{ O,ZL2,3,4,5} represent (5+1)-D spacetime indices. Maxwell’s homogeneous
equations can be expressed in terms of the dual tensor G or, equivalently, its counterpart T, as

@ 5+1r5+1/\ 5+1E 5+1 =— ® 5+1r5+1/\ 5+1z 5+1Q 5+1E 5+1 _
azsﬂG O’ € T/\5+125+1§25+1 O/ (60)
where
® 5+1r5+1/\ 5+1z 541 = 1 ® 5+1r5+1/\ 5+1z 5-v»1Q 5-v»1E 5+1 =
G - 4 € FQ ERErE T¢’ salsufNsu — 0 sy Fr5+1/\ L (62)

In terms of the 5-component vector electric field E and the 5%x5 tensor magnetic field B, the
differential form of Maxwell’s equations in (5+1)-D are:

E, =Ll a|5EJ5 _aJ5EI5 =_CaOBI5J51

£5+1

— —_ 70
€I5J5K5L5M50ISBJ5K5 _OI _a|sB|5J5 = c > +/'I5+]_‘]J51 (62)

where {I5,J5} ={ 12,3,4,5}. In integral form, Maxwell’s equations in (5+1)-D are:

1

§E|5dvvls = £ J-mx’ £|535K5|—5M5§ E'stJSKs = _C€|535K5L5M500 .[B|5J5dWK5 !

w 5+1 Xene \ Wenc

£|5J5K5L5M5§B|535dv\4(5 :O’ §B|5J5d I5Js v[ (’u5+1‘] * O lsjdvvl 1 (63)
w v Wone

where dX is the differential five-dimensional volume element.
For an isolated point charge in (4+1)-D, the electric field lines radiate outward in four-dimensional

space. For a Gaussian hypersphere of radius r, the electric field E is parallel to the differential
volume element dV everywhere on the three-dimensional volume X7+ X2 +x2+x2 =r?

bounding the (four-dimensional) hypersphere defined by X° + X + X + X <r?. In (4+1)-D, the

electric field E due to a point charge is thus found to be

Edv = E277r = aw="9 E=_9 ¢ (64
i ! | 4+1 WI £4+1 2772£4+1r3

‘enc

thence, we obtain
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E2n2r

§Edv E2rr? —jpdw-

4+1 W,

enc

(64b)

N
We have utilized the result that the (N-1)-dimensional volume ZXiZ =r? bounding a solid sphere
i=1

N
in N-dimensional space » x*<r? is

i=1

/2, N-1
sphere _ ZnN r

N-1 W (65)

where T(z) is the gamma function.

Generalizing to (N+1)-D, the electric field E due to a point charge is

- r(N/2) q .
E= r (66
2N/2 £N+er—l (66)

where the (N+1)-D permittivity of free space &,, has different dimensionality than its (3+1)-D
counterpart &:

[€N+1] :I%]- (67)

Thus, Coulomb’s law for the force exerted by one point charge g, on another point charge 0,

displaced by the relative position vector R,, away from the firstisa 1/r"™ force law:

= _[(N/2 g, 2
qu,ql - 2(an2) % 2N—1 1 (68)
N+1T%21

In (N+1)-D, the electric field E(F) at a field point located at ' may alternatively be derived
through direct integration over the differential source element dq':

» r(Nn/2) ¢ 1
E(F)= Rdg  (69)
nN/2 N+1I[ RN .
where the relative position vector R=F —" extends from the differential source element dq

located at 1" to the field point located at T".
The (N+1)-D electric field is related to the (N+1)-D scalar potential via

—

. =~ 0A
E=-0V-—.
P (70)

In electrostatics, the (N+1)-D scalar potential is derived from the following integral:
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_oor(N2) f1
vir)= 2%(N —2)5N+1£ gz 40 )

The traditional Ampérian loop is promoted to a two-dimensional Ampeérian surface in (4+1)-D. A
suitable choice for a steady filamentary current I, running along the X -axis in the two-

dimensional surface X5 + X5 + x; =r? of a solid sphere X + X + X <r? in the three-dimensional
subspace X,X;X,. In this case, the only non-vanishing components of the magnetic field tensor B
are {Bl,} and { } By symmetry, the magnetic field scalar, defined by the tensor contraction
B=./B,B, /2, is constant everywhere on the surface X + X, +X; =r” and the components of

the magnetic field tensor are related by B, =B, =-B,,=-B,;, where | #J, such that

B2 + B2 + B2 = B,,/3. However, it is simpler to work in spherical coordinates, where

B,dA, = 2Br?dQ . Thus, application of Ampére’s law yields

|
B,dA, =2[BridQ=B8m2=2y,1 , B=Hero (5,
f£ wdA, .L Hasalenc 4772 (72)

In (3+1)-D, the magnetic flux ®" is a scalar and the magnetic field lines for this infinite steady
filamentary current |, are traditionally drawn as a concentric circles X5+ x5 =r? in the XX,
plane. However, in (4+1)-D the magnetic flux is a four-component vector {dD[“} according to eq.
(53). This corresponds to the fact that circles x5 +x; =r?, X2+ x> =r?,and X +x. =r? lying in
the X,X;, X,X,, and X;X, planes, respectively, are all orthogonal to the current running along the
X, -axis. In (N+1)-D, the magnetic flux becomes an anti-symmetric (N-3)-rank tensor.

Generalizing to (N+1)-D, the magnetic field due to a steady filamentary current |, is

1 N-1) 1,
B() 2”(1\11 r( j'Llezo' (73)

In (N+1)-D, the force per unit length ¢ that one steady filamentary current |, exerts on a parallel

steady filamentary current |, separated by the relative position vector R,, is:

F 1 NESAYN
lzll = 2]7(N_1)/2 r( j:u4 112 R21 74)

In (4+1)-D, the tensor magnetic field B(F) at a field point located at ' may alternatively be
derived through direct integration. For a steady filamentary current,

. 1 N-1 1
By, (r ) = 2, ND72 I_( > j/’lNﬂIOIE Rds -Rds, (75
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where the relative position vector R=F —"' extends from the differential source element d&'
located at 1" to the field point located at 7. If the current is instead distributed over a one-,two,
or three-dimensional cross section, the tensor magnetic field B(F) is

= 1 N-1 " 1 N-1
BIJ (r): 477(1\1—1)/2 r( 2 j:uNﬂJ- R® J dAJ dS BIJ (r): 4n(N—1)/2 r( 2 j/’IN+1.[ R? J dAJ dS

By \r ( ) 4”(31-1 F(N 1):“N+1IF1- (R dv, —RdV, )dS (76)

where J;,J,, and J; are the corresponding to the current densities.
With a single non-compact extra dimension X,, two (4+1)-D electric charges ¢ and q,

communicate via the exchange of a (4+1)-D photon. Classically, there is a single straight-line path
with which the (4+1)-D photon can reach g, from another g,. One result of this single non-

compact extra dimension X, is that Coulomb’s law becomes a 1/1° force law. If instead the extra
dimension X, is compactified on a torus with radius R, there exists an infinite discrete set of
paths with which a classical (4+1)-D photon could travel from g, to g,.

The net force exerted on @, is the superposition of the (4+1)-D 1/r® Coulomb forces (eq. 68)
associated with each path:

E =

> 1
277.2£4+1 :z— E 77)

where R, =\/R32 +(AX4 +472'1R)2 is the path length corresponding to a classical (4+1)-D photon
o — RsFAes +AX,X,
R,

winding around the torus n times and R, is a unit vector directed from @, to q,

(and fz3 is a unit vector along the axis of the torus). In terms of its three-dimensional and extra-
dimensional components, the net force is

1 2 RR +HAXSK,
.9 ' m - (78)
2]7-2“34+:L 2n=z—oo IR§ + (AX4 +4/mn R)2J2

F=

The net force can also be expressed in terms of the (4+1)-D scalar potential V(R4) via
F=-g0V. (9

The (4+1)-D scalar potential due to the source g, at the location of g, is

V(R4): 4772£4+1 Oﬂ.n_z & +(AX +4mR) . (80)

Note that the (4+1)-D scalar potential is periodic in the extra dimension:
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V(R,,A%,) =V (R, A%, £ 2MR). (81)

In the limit that the charges are very close compared to the radius of the extra dimension, i.e.
R, << R and Ax, << R, the n =0 term dominates and the net force is approximately the (4+1)-D

1/r? Coulomb force:

1 A
FQl:Qz :W%qZRLI (82)

This is the limit where the underlying (4+1)-D theory of electrodynamics —i.e. Maxwell’s equations
with a non-compact extra dimension — governs the motion. In the opposite extreme, where the
compact extra dimension is very small compared to the separation of the charges, i.e. R;>>R,

an integral provides a good approximation for the sum:

00

1 1 1
V [ — d = . 8
(R) 8n3£4+1R0ay:I_wR§+yz V= ors RR G 69

This is the limit where the effective (3+1)-D theory of electrodynamics —i.e. the usual (3+1)-D form
of Maxwell’s equations — governs the motion. In order for the effective (3+1)-D scalar potential in
eq. (83) to be consistent with the usual (3+1)-D form of Coulomb’s law, it is necessary that the
(4+1)-D permittivity of free space &,,, be related to the usual (3+1)-D permittivity &, via

o

20 (8
R (84)

€4 =

It follows that
Haa = 271R  (85)
such that an electromagnetic wave propagates at the usual speed of light in vacuum

c= 1 = 1
\/ EpraMan \/ Eoly

(86)

In (N+1)-D, Coulomb’s law is a 1/r"™ force law if the extra dimensions are non-compact. If
instead there is toroidal compactification and the extra dimensions are symmetric . i.e. they all
have the same radius R - then, in the limit that R, >> R, Coulomb’s law is approximately a 1/r?

force law in the effective (3+1)-D theory. In this case, the (N+1)-D permittivity of free space &, is

related to the usual (3+1)-D permittivity &, via

&

i (%3]

€N+1 -
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where N > 3.
Thence, the eq. (71), for the eq. (87), can be written also as follow:

v(r)= r(N/2) lry)r (NZBJQ L g

2m'3(N - 2) £,

where F(z) is the gamma function.

The deviation in the usual 1/1? form of Coulomb’s law can be computed for a specified geometry
of extra dimensions through the lowest-order corrections to the integration in eq. (83). The
effects are similar to the deviation in the usual 1/r* form of Newton’s law of universal gravitation.

3. On some equations concerning the noncommutativity in String Theory: the Dirac-Born-
Infeld action, connections with the Maxwell electrodynamics and the Maxwell's equations,
noncommutative open string actions and D-brane actions [3] [4] [5] [6] [7]

3.1 The Dirac-Born-Infeld action: connections with the Maxwell’s equations

To obtain the low-energy effective action for the gauge field, we need to expand the worldsheet
theory about a background field X', and compute the (divergent) one-loop counterterm:

~ifdir (A(X),A), X" (88)

where A is an ultraviolet cutoff. Setting I'; to zero gives a condition on the gauge field A(X),
equivalent to worldsheet conformal invariance, or vanishing of the S -function.
That gives the spacetime equation of motion, from which the action can be reconstructed.

Performing the background field expansion

X'=X"+& (89)

where X' is an arbitrary classical solution of the worldsheet equations of motion, we find:

= = 'l
éX'\x Iaxax' &+ (90)

The linear term in & vanishes as X is a solution of the equation of motion. The quadratic term is
easily evaluated:

s éx,‘ o=, [[dodm,0.60,6 +i[dr(p5,0, 5088 +580,8). (o0

The correction to the worldsheet action is:
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ﬁjdmizka,ii K*@,7),.r, (92)

where we have ignored possible UV finite terms.
Recalling the formula for the boundary propagator, we have:

limK'(r;7) = -2a'G" (F)InA + (finite) (93)

7T

and hence the equation of motion is:

ik
() = 1 1 _
aig}ka(g)=aig’}k(g+ggg_g) =0. (94)

When we think of G'(#) as the (inverse) open-string metric, then this looks just like the free
Maxwell” equations. It turns out that the desired open-string effective action is:

S\IS—NS[A; gij ) B,j = gij-dloqudei] g+ f;’ . (95)

It is possible to show that:

9, [%%)Jdet(g + ff)} =—/defg + 5)G*(5)0,%G" (%). (96)

Since the factor ,/det{g + ) is nonzero and the matrix G* (%) is invertible, it follows that setting
the above expression to zero is equivalent to:

aigfdG“ (‘7) =0 (97)

which is the desired equation of motion. At lowest order in & this is equivalent to the Maxwell
equations:

0.%9"=0 (98)

but in general, as we noted, it has nonlinear corrections.
The action:

S\IS—NS[A; 9 'Blj ] = gijdmx\/deig + f;j =gijd1°x\/det(g + 277U'(B + F)) (99)

is called the Dirac-Born-Infeld (DBI) action. Expanding this action to quadratic order in F, it is
easily seen that it is proportional to the usual action of free Maxwell electrodynamics:

24



S\IS—NS[A;gu! ] J-F F'+... (1200)

i.e. we can write the eq. (100) also as follow:
. _ p _ _ d
S\IS—NS[A’ 9;. B ] = J. FF +.. = §c Bl = ol gne + ,Uogoaj.sE [RdA, (100b)

thence, we obtain the following interesting mathematical connection:

SVS_NS[A;g“, ] jdloxw/deﬂg +9)= . jdlox\/de(g +2m'(B+F)) =

S

d
= § B = fhl g * pogoajsE [AdA. (100c)

This is consistent with the fact that the linearized equations of motion are just Maxwell’s
equations.
We will now recast the DBI action in a different form. For this, let us first define

S 1 1 !
G'=G'(F=0)=
( ) (g+2m'ng—2m'B) (o)

i i(E = i
0 OF=0_[ 1 ,pp 1 ) 4oy
2 2m' g+2/mr'B g-2m'B

We abbreviate G' by G™. We also define the matrix G, , abbreviated G, to be the matrix inverse

ij 7
of G. Thus we have defined two new constant tensors G™,8 in terms of the original constant
tensors @,B. In particular,

ij ij
(G_1+29 j :( ! : J . (203)
o g+2/mr'B

It is illuminating to rewrite the DBI Lagrangian in terms of the new tensors. This is achieved by
writing:

i\/det(g+2ncr'(B+F))=i det — L +om'F |=
gs gs G_l+i
2’
=t L delolir o)+ o)=L Jdellr &) \/de(G+2na'Fﬁj.
ok \/de(“ Gej o \/de( GH)
2’ 2’

(104)
Defining
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we end up with the relation

gi\/det(g +2m'(B+F)) :quldeﬂh & )\delG +2/m'F ). (106)

The relation between F and F can be easily inverted, leading to:

1
1-6F

F=F (107)

from which it also follows that:

1+6F = L ~. (108)
oS

Hence we have:

1 , 11 =
g—s\/det(g + 2rmr (B+ F)) = Gsm\/dG'{G + 27 F) (109)

In what follows, we must be careful to remember that the above equations were obtained in the
strict DBl approximation of constant F .

Apart from the factor w/de&l—éﬁi in the denominator, the right hand-side looks like a DBI

Lagrangian with a new string coupling G, metric G; and gauge field strength F,and no B-

field. Let us therefore tentatively define the action:

éDB, =Gisj\/deI(G + 2mlf) (110)

Let us start by expanding the relation through which we defined F , to lowest orderin 8:
F, =F, - F8"F +0(6) . (1)

Inserting the definition of F,

we get:

F =0, -0,A+6"(0,A0,A-0,A0,A -0,Ad A +0,A0,A)+O(8). (122)

We can make a nonlinear redefinition of A to this order, which absorbs three of the four terms
linearin &:
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A=A-6"( A0A+1A0A | +OlE). ()

We can find that
F, =0,A —0,A+69,A0A . (114)

It is clear that there is no further redefinition of A that will absorb the last term. However, we
note that this term is:

Hklak'a}al Aj = {A ) Aj} (115)

where {,} is the Poisson bracket with Poisson structure 8. Thus, to linear order in &, we have
found that:

A N

F =0,A _ajA +{A’A1} (126)

This looks like a non-Abelian gauge field strength, except that there is a Poisson bracket instead
of a commutator.

We can say that the field strength Ifj is @ noncommutative field strength related to its gauge

potential A by:

The map

A =A—9“(Aka.A+§AkaiAj+O( ) (129)

is known as the Seiberg-Witten map.

We remember that the Seiberg-Witten gauge theory is a set of calculations that determine the
low-energy physics — namely the moduli space and the masses of electrically and magnetically
charged supersymmetric particles as a function of the moduli space.

This is possible and nontrivial in gauge theory with N = 2 extended supersymmetry by combining
the fact that various parameters of the Lagrangian are holomorphic functions (a consequence of
supersymmetry) and the known behavior of the theory in the classical limit.

The moduli space in the full quantum theory has a slightly different structure from that in the
classical theory

The noncommutative description is parametrized by the noncommutativity parameter @, the
open-string metric G;, the open-string coupling G,, and a “description parameter” ®, in terms

ij 1

of which the relationship between closed-string and open-string parameters is given by:
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(220)

N E( 1 jij _ 6 1 Jdef{g +2m'B) _ \/det(G+2na'CD).

= +
g+2m'B 2m' G+2m'd ' d. G

S

Now we wish to compare the sum of the commutative DBI action S5 plus the derivative

corrections to it AS,;, with the noncommutative DBI action éDB, , after taking the Seiberg-Witten
limit on both sides.

The dilaton couples to the entire Lagrangian density, so we need to consider the full DBI action.
We will start by restricting to terms quadratic in F . To this order, we have:

Sy = J’\/det(g ;szm' B) [1+ ZTIU(NF)_ (277:")2 tr(NFNF) + (2775,-)2 (trNF ) + } . (2212)

) i
In the Seiberg-Witten limit we have N' - Py and therefore:
o4

SDBI|SW = I\/det(g ;'52770" B) [1+%tr(6F)—%tr(6F6F)+%(tr6F)2 + j| (122)

Let us now convert the commutative field strengths F appearing in this expression into

noncommutative field strengths F , Using the Seiberg-Witten map. To the order that we need it,
this map is:

A

Fo = 'Eab +6" (<A<’a| 'Eab>EIZ _<Fak’ Ifb|>m) (123)

where

Fu=0,A -0,A +6“(0,A0A) . (24)
Here we have used an identity relating the Moyal [ commutator and the [} product:

-i[f.g,=6'(8,f.0,0),. (125)

Inserting the Seiberg-Witten map into eq. (122), we find

SDBI

swT

_J-\/det(g+2na"B)

i A 1 a I\ A
[1+ 60,7+ 6" ¢9k'<akAa,a,/sb>[2 +

S

A O LNECNCNI ST PP L e

Some manipulation of the last few terms permits us to rewrite this as:

_IJdet(ngZﬂU'B)

SWT
9s

SDBI

iy A . Lo A A 1 ba A -
[1+glajp,+§elek'<ajpk,a,p,>[2+§0bak'<pk,a,Fab> "

54
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+%9ij 6~ (<|fjk ' Ifli >[Q - FAjk IE|i )+g_]3-6ij 0kl<|£ii ' 'E"‘> 0” & (< i Iflk>m i Ifji ﬁlk )} "

which is the form in which it will be useful.

Let us now turn to the noncommutative side. Here, we only need to keep the terms arising from
expansion of the Wilson line, since all other terms are suppressed by powers of @' in the Seiberg-
Witten limit. The Wilson line give us:

\/det(G +2/m' )

SDBl sw I [1"'0”6,-'81 +%Hij0klaja|<A,A<>m] (128)

S

After some rearrangements of terms, this can be written:

J-\/det(G + 27 D)

SD|3||sw = G

[1+9"’ajA +19iiek'<ajA,a,A>m +

S

+%9ba9kl<A< ab> + 8911 9k|<|£JI ’ |§ > } (129)

Now we can take the difference of egs. (129) and (127). The prefactor in front of each expression is
the same, by virtue of eq. (120). Apart from this factor and the integral sign, the result is:

A

A 1, ~ ~ =~ 1 a A 2 2
SDB,|SW—SDB,|SW=ZH'9"'(<F].k,|:“>E2—ijF“)—gHJH"'«FJI,F >E2_FiiFlk)' (130)

To the order in which we are working, we may replace F by F everywhere in this expression.
This, then, is our prediction for the correction ASg;,, to order (a")2 and to quadratic order in the

field strength F, after taking the Seiberg-Witten limit. We note that this is manifestly a higher-
derivative correction: it vanishes for constant F , for which the [J, product reduces to the ordinary

product. Expanding the [, product to 4-derivative order, we find that

DSy

mYr’ jk mYr’ ji“nYs

SW:_96[6|] 0klemn6rsa 0 F.0 a F —0” 0klgmngrsa 0 F.00 F :| (131)

which gives:

ASpg

96 mYr" jk mYr" jiYnYs

SW:-(Z”” ) [h" h“h™h"0 a0 .F,0,0.F - h” h“h™h"0, 0, F.0,0,F } (132)

where the matrix h' is defined as:

0 1 ”
h _(g+2m'(B+F)J - (133)
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Taking the Seiberg-Witten limit, which amounts to the replacement 2/m'h — (1+6F)™*8, and
further restricting to terms quadraticin F, we find exact agreement with eq. (131) above.

Now we will compare the coupling of the bulk graviton to the energy-momentum tensor on the
commutative and noncommutative sides. On the commutative side, we start again with the
expression in eq. (121), but this time we use the full form of N as defined in eq. (120):

1 L
i = - i
<Gzt T
where
; 1y
W= (Grams) - 09

Thence, we obtain:

i 1 I Pl 1 i
N' = = + ) b
(g+2m'(B+F)J o’ (G+2m'¢j (1350)

As the linear coupling to the graviton starts at order (a')z, we now have to go beyond the leading
term in the Seiberg-Witten limit. Hence we will keep terms up to order M?. Expanding S,

around this limit and keeping terms to order (a')z, and using the Seiberg-Witten map, we find:

S =T 2l 05 ) 2

1\2
E{i(trMF)(tra:)+(trMF)z}—@{trMFMF +itrMF6F}+ terms not involving M+
2 4 2

order F3J . (136)

Turning now to the noncommutative action, the graviton coupling is obtained by expanding the
DBl action around the Seiberg-Witten limit to order (a")2 . We have, in momentum space:

Soer = Gisj- LD[\/deI(G + 27757'(!E + CD))N(x,c)} Oehx =

. Gi [Vdetc LDKL%(ZHU')ZUG (E+ o) (F + q’))W(X’C)} e+ (137)

The piece of the above expression that is order 1in @' has already been computed earlier for the
dilaton coupling. It contributes to the coupling of the trace of the graviton. The new non trivial
coupling is given by the order (a")2 term.

To compare with the commutative side, it is convenient to expand the above action differently, in
terms of M ratherthan G . We get:
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~ r ! ij
& = Gi [delG+ zm-qa)“m(w(x,c))ﬂT””{trMF +M46" (3R, A) +§<trMF ,tr6F>m} *

(ermr) (erary

tr(MF,MF)_ +

(trMF trMF)_ + } . (138)

Now taking the difference of the noncommutative and commutative actions in eqgs. (138) and
(136), and expanding the result to 4-derivative order, we get the prediction:

mYr" jk mYr i

ASDBI|SW = —24_72,{“/' ij 0kl6mnersa oF anaan _%M ij 0klemnersa d F“anasl:"(} +

1\2
—){M“Mk'amnefsa 0.F.0,0.F, —%M”Mk'em“efsa 0.F, anasﬁk}. (139)

mYr’ jk mYr’ ji

Note that contrary to appearances, both of the above terms are of order (a')z. This is because if
oneinserts G in place of M in the first line, the result vanishes.

3.2 The noncommutative open string actions, Chern-Simons theory and D-brane actions

Let us focus on a particular Chern-Simons coupling, the one involving the Ramond-Ramond 6-
form C® . In the commutative theory, this is just

%jc(ﬁ) OF OF. (140)

The noncommutative version of this coupling is obtained from the commutative one by making
the replacement:

A

1
F S F ~ (141
F (141)

A

where F is the noncommutative gauge field strength, multiplying the action by a factor
\/deﬂl— o j, and using the Moyal [ -product defined in the following equation:

i - -
—0 ngQaq

f(x)Og(x) = f (x)e g(x). (142)

To make a coupling that is gauge-invariant even for nonconstant fields, this has to be combined
with an open Wilson line. The resulting expression for the coupling to C® is more conveniently
expressed in momentum space, where C(S)(k) is the Fourier transform of C(S)(x):

1z6(- e 1 = 1 ik .x
= ( k)DILD{q/deﬂl a:i(F aij(Fl_af)W(x,C)}De . (143)
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Here W(x,C) is an open Wilson line, and Ly is the prescription of smearing local operators along
the Wilson line and path-ordering with respect to the Moyal product. Evaluation of the L
prescription leads to [, products.

The above expression can easily be re-expressed in position space, and it turns into:

—J.C FDF . (144)

Let us denote the sum of all derivative corrections to S, as AS.g. Our starting point is the

expression

— L[ doueng A (¢)
Ss tAS = <C e ™ / g |B> (145)
R

where ‘C> represents the RR field, and ‘B)R is the Ramond-sector boundary state for zero field

strength. We are using superspace notation, for example @ =X'+68y' and D is the
supercovariant derivative. It is possible write the following expression:

#J‘ 1 k+1

SCS+ASCS:<Ce ria®? O IR oDl 7 T 0 |B>
R

(146)
where nonzero modes have a tilde on them, while the zero modes are explicitly indicated.
We can drop the first exponential factor in eq. (146) above, as well as the first fermion bilinear

qu(//g in the second exponential. Then, expanding the exponential to second order, we get:

Ses + DS = ZZ[ J [["day["day Cl( %%J(%wéwéjx

nOp—

1z >a 1 >
xﬁxal(%)-"x "(Ul)axbl(az)-"xbp (Uz)xaal"‘aan I:ij (X)abl"‘abp Fkl(x)‘B>R' (147)

Now we need to evaluate the 2-point functions of the X . The relevant contributions have non-
logarithmic finite parts and come from propagators for which there is no self-contraction. This
requires that n=p. Then we get a combinatorial factor of n' from the number of such

contractions in <()Z (01))n (>Z (02))n> . The result is:

o+ 88= 5521 [0 00,07 (0,-0,).0% (6, - )

20!

1. )1
x0,..0, F; (X)abl"'abn Fa (X)<C|(§¢/£#/é j(iwg‘//cl)j‘ B>R . (148)

The fermion zero mode expectation values are evaluated using the recipe:
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1 . o
5411041/5 i~ (—IO’)F (149)
where the F on the right hand side is a differential 2-form. Thus we are led to:
See tAS =TH ™09 .9, F00,..0, F (150)

where

. 2
Taw-2ibby = %%(—2;757} (-i a')zjjﬂdaljjﬂdazDalbl (0,-0,)..D*(0,-0,). (151)

Thence, we obtain:
Ss t A0S =0,..0, FU0, .0, F %

11( 0 Y . e, e a
XEH(%j (_'a) .[0 dal.[o do,D bl(al_az)---D ° (01_02)' (151b)

Next we insert the expression for the propagator:

Dab( 0.2): i ] (hab im(g,-a;) hbae—im(az—al)) (152)

m=1

where £ is a regulator, and

i — 1
"o O

As we have seen, this tensor when expanded about large B has the form:

he 0 _(&0)

o 2m

where the terms in the expansion are alternatively antisymmetric and symmetric, and the two
terms exhibited above are description-independent. Now we neglect all but the first term above.
It follows that

T 2 @niby by zli(a.)nj'oz”d_a n (hab Z g amimo S Z -em- |maJ. o)

2n 2l

After evaluating the sum over m, the result, depending on the regulator &, is

—£+io

Tal...an;bl...bnzll(a.)njz’rd_a ”( h[ab]ln eg_i,, h(aib,)ln‘l_e—sﬂaz
2nt o 2l 1-¢

J. (156)
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Here, h* and ) are, respectively, the antisymmetric and symmetric parts of h*®. The large- B
or Seiberg-Witten limit consists of the replacements:

gab
hel . h® 0. (157)
2m'
By virtue of the fact that
) 1— —£+io ]
limIn —{=ilo—-m (158
iming— 54 =ilo-71) (s8)

this limit leads to an elementary integral. Evaluating it, one finally obtains the result:

_1 (6) N —1\i 1 ay Bz;ba; _
Ses +ASs = [CE D;( 1)’m0 .60, .0, FO0,..9, F=

where the product [, is defined by the following equation:

sin@épepqéqJ
(F 00 R = ) h2
15,673,
2

Fe (X) . (160)

This agree perfectly with eq. (144), the prediction from noncommutativity.
Now we extend the calculation from the point of eq. (156). To go to first order beyond the
Seiberg-Witten limit, we make the replacements:

ab ac db
2072a" h@) _, _0709.8" (161)

(erar'y

and keep all terms that are first order in h) . Denote by T(f)l"'a”;bl"'b" the first correction to T

pletl

(defined in eq. (151)) away from the Seiberg-Witten limit. Then, we see that

3.+ By by :(_i)”‘l 1 1 (6g9)albl a,b, a, by, 271% _ A\l _ io|?
Tg) 2 (n_l)!(Zr[)n o 0.0 J-o 2”(0 7T) In‘l e ‘ (162)

The integral in the above expression vanishes for even n. For odd n=2p +1, we find that

8.8y p4 300y — (_ 1) P 1 1 (@ H)albl a,b, 82 p+1D2 p41
T(l) 2 (2 p)l (2”)2p+1 2771;7' 0 0 I 2p+1

(163)

where
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H

|2p+l ZHdJ(O_ ”2p|n‘1 elﬂ‘ _2 2p|pz

o 271 < (2]+1) 7(2p-2j+1), (164)

where ¢ isthe Riemann’s zeta function.
Thence, we obtain:

T(al"'a2p+1;b1"'b2p+l — (_ 1)p 1 1 (@6)albl eazbz lueazpﬂbZP’rl X

1) - 2 (2 p)| ( )2p+1 o'
2ndo a p-1 7
X, E(O ﬂ2pln‘1 ‘ 2 IZ(:) ( ) (2p 21+1) (164b)

It is convenient to define a 4-form W, that encodes the derivative corrections for the coupling to
c®.

SCS+ASCS=%IC(G) OF OF + [c® 0w, @6s)

The leading-order term in W, in the large- B limit is:
W =(FOF),-FOF. (166)

The calculations leading to eq. (164) amount to computing W, to first order (in a') around the
Seiberg-Witten limit:

hd by )
— Z 1 (690) Hazbz ﬁazp #P2ps 16 6 F Dabl-a pZ( ) 772]

2p-2j+1
= (enf™ 2mr j=0 (2 +1)' <ep-2i+3

(167)

Interchanging the order of the two summations, we find that the sum over | can be performed
and leads to the appearance of the familiar [ product. The result, after some relabeling of
indices, is:

io 1 (@2 (2p + 3)Ha1b1 Bazp +2D2pe2 <acaa1"'aazp+2 F Dadabl..ﬁbm |:>|:2 . (168)

( )2p+3

Unlike the leading term eq. (159), which is a single infinite series in derivatives summarised by the
[} product, here we see a double infinite series. After forming the [, product we still have an
additional series whose coefficients are { -functions (Riemann’s zeta functions) of odd argument.

We will now use this to extract the term corresponding to our computation in eq. (168) and
compare the two expressions. The computation is an evaluation of the amplitude:

A, =[ d VRézqi)\/c?(ai,kl:O)vc?(ag,k;y)> (169)
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_3
2

1
> . : 3
where Vo2 2 is the vertex operator for an RR potential of momentum q, in the (_E’__j

2
picture, and V) are vertex operators for massless gauge fields of momentum k; and polarizations
a, 1 =12. We define:

t=a'k k, =a'k,G'k,;; E—klxk ——kﬂ” ) (270)

and change integration variables via y =—coi7r . Then it follows that the coefficient of F CF
provided by this computation, to be compared with the coefficient of eq. (168), is:

1
2% J' 2dr(cosmr ) cos2rar = 1 r(L+21) .
0 2r(l+a+t)r(l-a+t)

(171)
The right hand side can be expanded in powers of t and, up to terms of O(tz), one has:

r(1+arﬁ;r%1t)_a+t):r(l a)r(1+a[1 (2y+yl-a)+yp+a))+o?)] @2

where y is the Euler constant and ¢(x) is the digamma function diln ().
X

The first term can be recognised as the kernel of the [J, -product, using the relation:

1 _sin7a
ri-ar@+a) m

(273)

Let us now examine the second term more carefully. We use the fact that:

wll+x)= —V+Z( D KX (74)

to write:

2y +y(l-a)+y(l+a)= —i (1— (- 1)k)((k)ak‘l = —225 (2p+3)a>?. (175)

k=2
Putting everything together, we find that:
sin(kizkzj . 1
— 2p+2 i
W=t I dep k) o @)k () OF ). e

p=0

On Fourier transforming, this is identical to eq. (168).
Thence, we obtain:
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i 1 —| - N 2p+2 2)| = o2t % 2t
5 —a)l'(1+a){l ( 2> ¢(2p+3)a jt+0(t )} 2 jodr(cosm) cCos27ar, (176b)

Scs+AScs:%J-C(6) UF OF +.[C(6) O

jiz ( e 7(@p+3)k xka )b (606) ey JF (k) OF (), 760

0

2

where ¢ isthe Riemann’s zeta function.

Now we consider Chern-Simons gauge theory with the gauge group G a complex Lie group such
as SL(Z,C). Let Abe a connection on a G-bundle E over a three-manifold M. Such a
connection has a complex-valued Chern-Simons invariant

2

W(A):%TJ-MTr(A OdA +§A OA DAJ, (177)

which we have normalized to be gauge-invariant modulo 27 . Just as in the case of a compact
group, W(A) is gauge-invariant modulo 271. The indeterminacy in W(A) is real, even if the
gauge group is complex, because a complex Lie group is contractible to its maximal compact
subgroup. The quantum theory is based upon integrating the expression exdil ), and for this
function to be well-defined, | must be defined mod27. Because of the indeterminacy in ReW,

its coefficient must be an integer, while the coefficient of IMW may be an arbitrary complex
number. The action therefore has the general form

| =-sImW+/ReW. sOC, ¢(0Z. (178)
Alternatively, we can write

tw o tW _ t ( 2
2 8r°m

|=7+_ — [ Tr ADdA+3ADADAj+_j Tr(ADdA+§ADADAj (179)

~

t=/¢+is, T=¢-is. (280)

Introduce a complex variable z and a complex-valued polynomial
n .
a(z)= daz . (181)
i=0

Now consider the integral
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Z, = [|d*2explg(2)-9(2)). (82)

This again is a convergent oscillatory integral and a closer analogous of Chern-Simons theory,
with —ig(z) and ig(z) corresponding to the terms tW and tW in the action (179).
Define a new polynomial

and generalize the integral Z to

2,4 = [[a*4exdo(2)-5(2)- o

Then Z, - coincides with the original Z if 0g=3.

Denoting the independent complex variables as z and Z, the analytically continued integral is
Z,5 = [ dzexplo(2)-§(2)). @8s)

The integral is over a two-dimensional real integration cycle €, which is the real slice Z=7 if
g =g, and in general must be deformed as g and g vary so that the integral remains

convergent.
Just as we promoted Z to a complex variable Z that is independent of z, we will have to

promote A to a new G -valued connection A that is independent of A . Thus we consider the

classical theory with independent G -valued connections A and A (we recall that G is a
complex Lie group such as SL(Z,C)) and action

((AA)=] T{ADdA+2A0ADA |+ Tl ADdA+2ATADA|. (86)
8o 3 8o 3

Then we have to find an appropriate integration cycle € in the path integral

[, DADAexil (A,A)). (87)

The cycle € must be equivalent to A=A if s is real, and in general must be obtained by
deforming that one as s varies so that the integral remains convergent.

Let us consider a noncommutative Euclidean Dp-brane with an even number p+1 of world-volume
directions. Given a collection of local operators O,(x) on the brane world-volume which
transform in the adjoint under gauge transformations, one can obtain a natural gauge-invariant
operator of fixed momentum k'by smearing the locations of these operators along a straight
contour given by ¢&'(r)=6"k,r with 0<7<1, and multiplying the product by a Wilson line

W(x,C) along the same contour,
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W(x,C)= ex;{i Edr a‘; if) A(x+ 5(r))), (188)

where A denotes the noncommutative gauge field, and F the corresponding field strength. The
resulting formula for the gauge-invariant operator is:

€)= g ra”™{ []Fan Jp| Wik 0 el et -
=] C 1p+1 d p*leD{w(x,c)lj 0, (x)} De**  (189)

)

where B, denotes path-ordering with respect to the C-product, while L is an abbreviation for the
combined path-ordering and integrations over 7, . In this formula the operators O, are smeared
over the straight contour of the Wilson line. This prescription arises by starting with the
symmetrised-trace action for infinitely many D-instantons and expanding it around the
configuration describing a noncommutative Dp-brane.

Expanding the Wilson line, we get

where

Thence, we obtain the following expression:

@)= 2] "% oy (@ {8)°(0...0, (A, (). A () (e Gasab)

ml

sin(lépe”qéqj
(1) g0, = F)—2——0(x). (92)
e} 1
~0,6"9,
If the zero-momentum coupling is
- 1 p+l 1
z(o)de x> 205(AX) (93)




where A is the gauge field and X are the transverse scalars, then the coupling at nonzero
momentum is given by

S(— P‘fl |kx
>( k)j(zﬂ)pﬂd 7 |_[o (A XW(x,C)|0e"* . (294)

The constant factor Pf@=+/detd’ has been written explicitly, instead of absorbing it into the
definition of O, for convenience. In our case the relevant closed string mode is the RR gauge

potential C~Zp+1(k), and, the role of Oy is played by the operator 1,PfQ where y, is the brane

tension and
Q'=6'-6"F¢" . (95)

Hence we deduce the coupling of this brane to the form clr , in momentum space, to be:
,up‘gll " 1C|(1PT3)1 (_ k)J- (2]T)p+1 d p+1XLD[V ﬁ a: )\‘ v (X C)} gt (196)

On the other hand, we know that the coupling of a Dp-brane to a c form is given in the
commutative description by

e E (). e

I3 dpa

As equations (196) and (197) describe the same system in two different descriptions, they must be
equal. Thus we predict the identity:

s (k)= | ¢ ﬂl)p+l d p”xLD[\/deEl— & W (x, C)} X (198)

This amounts to saying that the right hand side is actually independent of A, a rather nontrivial
fact. Is interesting to express the eq. (198) in the operator formalism. We use the fact that

1
dP'x—— > tr
[— e ot (199)

to rewrite the left hand side of eq. (198) as follows:

5" (k)= j

dP x> = 1p+ltr(Pf6€k'X). (200)

(277)7

(27T)p+l

The right hand side of eq. (198) can be converted to a symmetrised trace involving
X'=x +6'A(x), and it becomes:
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% Str(PfQék'X ) (201)

2m) 2

where Str denotes the symmetrised trace. Finally, we use [Xi,XjJ=i6?” and [Xi,XjJ=iQ” (X)
Then eq. (198) takes the elegant form:

tr(Pf[x', ! Je*) = str(Pf| X", X |¢¥* ). (202)

In this form, it is easy to see that eq. (198) holds for constant F , or equivalently for constant Q. In
this special case it can be proved by pulling PfQ out of the symmetrised trace on the right hand
side, and then using eq. (199) with 8 replaced by Q.

Now let us turn to the coupling of a noncommutative p-brane to the RR form c?®, In the
commutative case this form appears in a wedge product with the 2-form B+ F. For the
noncommutative brane in a constant RR background, B+ F must be replaced by the 2-form Q™

with Q' given by eq. (195). It follows that the coupling in the general noncommutative case (with
varying cPY)js:

e E (-] g e 6E)Q"),, W) oo

For comparison, the coupling of a Dp-brane to the form C Y in terms of commutative variables
is given by:

) (o), +F, (k).

(204)

GO (=) dPx(B + F)

vt 2m) () = p g Clr

ppl

Next, rewrite Q" as
Q" :0‘1[1+af(1—af)' } B+ F(1 ) (205)

where we have used the relation B = 7. Using this relation and also eq. (198), we can rewrite eq.
(203) as:

e “C,(lp,jl(—k){a"”(k) ot (Zﬂ)pﬂdp”xLD{\/m[ (1 af) ]liplw(x,c)}mei”}.

p' p+

(206)
Equating this to eq. (204), we find that

9= e x| Voek- ) -] ) w

This relates the commutative field strength F to the non-commutative field strength F,
therefore it amounts to a closed-form expression for the Seiberg-Witten map.

W(x, C)} e . (207)

i
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The coupling of a noncommutative Dp-brane to the RR form C(P for the case of constant RR

field is:
2HoC, O el Q) Q7). o)

(p-3)

where the 2-form Q™" is given in eq. (205). For spatially varying C we can therefore write the

coupling as:
%,upfil"j ’”5.(1"??3 (- k)_[(zﬂ—]jpﬂ d P XLy dEJl— & j(Q_l)I i, (Q_l)ipi pﬂW(X, C)|oe*. (209)

In the DBI approximation of slowly varying fields, the commutative coupling is:

S G (W] @B F) L, (B4 ), (ano

Inserting eq. (205) for Q™ in eq. (209), and comparing with eq. (210), we find that in the DBI
approximation we must have:

RNl

To arrive at this expression we have made use of the identities egs. (198) and (207).
The open Wilson line including transverse scalars is given by:

(F -6 )ﬂllw(x,c)} ek

(2112)

ij

)= e i 25 Ea(ce )+ a8l 6

or
Inserting this definition in place of W(x,C) in eq. (190), and denoting the left hand side by @'(k),
one finds that the couplings to a general spatially varying supergravity mode are:

W= b e

m=0 (27T ) i

where the (¢, are given by

60)= 3 e Leo) L. (01010, A, (4., (9.6 ()

oL K Dhom

(214)

Thence, we obtain that:
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Xig(?}(w)“---(m)‘k (ia),,..-{ia), (0u(x)..0n(x). A, (x).. A, (). &% (x)... ™ (x)) &

m Chem

(214b)
It is well-known that non-BPS branes in superstring theory also couple to RR forms. In
commutative variables, these couplings for a single non-BPS brane are given by:

See :ﬂiﬂp—lde DZC(“) 0e® "  (215)
0 n

where T is the tachyon field and T, is its value at the minimum of the tachyon potential.

Consider the coupling of a Euclidean non-BPS Dp-brane with an even number of world-volume
directions, to the RR form C(p), in the commutative description:

1 o _ 1 1y drized pa (p) _
o7 HoaJ AT OCY = oty JdPxe ™10, TR, ()=

~Ip+1

~

_ 1 U Ay N
—ﬁ,up_lj-dplkg (~ik, FK)CP, (-K). (216)

g dp

The noncommutative generalisation of this coupling, for constant RR fields, is

1 i X 1 . E) S
El’lp—lg v p+1Ci(;.).).i i (O)de Py det_‘l— a jf(),lT(X) (217)

0
where

DT(x)=-iQ !X/, T(x)]. (218)

Then, the same RR form c couples to a noncommutative non-BPS Dp-brane through the
following coupling for each momentum mode:

2_'1r0 fyae 1 CP, (- k)j(zn—l)pﬂd p“xL{«/deﬂl— & o T (x)\N(x,C)} 0% (219)

4. On some equations concerning the noncommutative quantum mechanics regarding the
particle in a constant field and the noncommutative classical dynamics related to quadratic
Lagrangians [§]

We consider here the most simple and usual noncaativel quantum mechanics (NCQM) which
is based on the following algebra:

l)’ik’ﬁj]:ihakj’ l)’zk’)’z'J:ihgkj’ lﬁk’ﬁjJ:O (220)
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where © = (ij) is the antisymmetric matrix with constant elements. To find elements lP(x,t) of

the Hilbert space in ordinary quantum mechanics (OQM), it is usually used the Schrodinger
equation

ih%W(x,t):ﬁW(x,t), (221)

which realizes the eigenvalue problem for the corresponding Hamiltonian operator
R R [ 0

=H(p,xt), where =—ip —|.
(B.x.t) B (axkj

There is another approach based on the Feynman path integral method

K(x " xt exp{ S[q]jﬂ)q, 222)

A

where K(X",t";x',t') is the kernel of the unitary evolution operator U(t) acting on LIJ(X,t) in
L,(R°).

Path integral in its most general formulation contains integration over paths in the phase space
R*® ={(p,q)} with fixed end points x' and X", and no restrictions on the initial and final values of
the momenta, i.e.

() (210
Kt t)= [ eXF{THI:. [p.d —H(p, q,t)]dtji')qi’)pr (223)

The Feynman path integral for quadratic Lagrangians can be evaluated analytically and the exact
expression for the probability amplitude is:

K(x”,t";x',t')= (ihl)z de{ anaX J {—S X' ,t";x',t')j, (224)

where §(x”,t";x',t') is the action for the classical trajectory which is the solution of the Euler-

Lagrange equation of motion.
Thence, we obtain that:

K (x, e, t) I r{ [ [pg-H pqt)]dtjﬁqﬁ)p—

1
=——  |de ex;{—Sx ,t";x',t'j. (224b)
(ih)2 { axkaxj )

If we known the following Lagrangian

L(%%,t) = (@, X) + { %, X) + (%, X) + (3, %) +(17,X) + @, (225)

and algebra (220), we can obtain the corresponding effective Lagrangian
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Lo(cat) = (@0, 0) + (B50,6) +(v50,0) +(J,,0) + (75, 0) + & (226)
that is suitable for quantization with path integral in NCQM. Exploiting the Euler-Lagrange

equations
oL, _da.,

. k=12..D
aCIk Cdt aCIk

one can obtain classical path g, =q,(t) connecting given end points x'=q(t') and x"=q(t"). For
this classical trajectory one can calculate action

S,(x"txt) = f L,(q,q,t)dt.

Path integral in NCQM is a direct analog of (222) and its exact expression in the form of quadratic
actions S,(x",t";x',t') is

Kg(x“,t";x',t'):(ihl)g /de{ o0x jx x;{—S X' ,t";x',t')). (227)

For a particle in a constant field, the Lagrangian on commutative configuration space is:

L(X' X) = g(xf + )'(22)—/71)(1 —11,%. (228)

The corresponding data in the matrix form are:

m r
a=21, B=0, y=0, 6=0, 7 =(-m.,), ¢=0, (229)

where | is 2% 2 unit matrix. We now note that one can easily find

m mé ma?
@ =51 £=0, 1,=0, my=n, &=C(nan), =Tl o). @0

In this case, it is easy to find the classical action. The Lagrangian Le(q,q,t) is

1 (., .02\, 1 . . 1
Ly :Em(qlz + q22)+§m9(’71q2 _’720u)_’71q1 17,9, +§m92(/712 +’722)- (232)
The Lagrangian given by (231) implies the Euler-Lagrange equations

m('ju ==, qu ==17,. (232)

Their solutions are:
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2
Ou(t) = _% +1C, +C,, qz(t) = _’;2:“ +1D, +D,, (233)

where C,,C,,D, and D, are constants which have to be determined from conditions:

Ou(o) = Xi’ou(T) = Xi‘nqz(o) = X'zlqz(T) = Xz (234)

After finding the corresponding constants, we have

Cont (1 n . mt o 1. o\.nT
qj(t)zxj_ﬁﬂ(?(xj_xl) ijj qj(t):—ﬁ+?(xj—xj)+2‘—m, J=12. (235)

Using (234) and (235), we finally calculate the corresponding action
T
S,(x",T;x'0 :J.Lg d,q,t)dt —m[x1 x1 ] —T[/71 )+/72(x +X )]
0
. 1
Ty ) (nl o) Loz +nd).
According to (227) one gets
K (x"TxO %m F{ x“TxO)jz (x"Terx;{Z—nm—HD

il -x)e Lo el oo

where KO(X",T; X',O) is related to the Lagrangian (228) for which 8 =0. Hence, in this case there
is a difference only in the phase factor. It is easy to see that the following connection holds:

Ke(x”,T;x',O)=Ko(x"+%9TJf7,T;x',Oj, (238)

{5 o)

Now taking N — o one can rewrite the following equation

where

ihe

K(x"t";x,t)= lim RJ;N :ﬁ\/(if defa, ) x exﬁ(zlr;g[<anqmqn> +(3,0y. 0, +

N
+(VoOns G + (35 ) + (770, G +¢a])|]d'3qn, (239)
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as (222):

K(x"t";x,t) J'exp(znj' qqtdtjllm ”((I gj defa(t ))] x\/[éfdet(an)dqq.

(240)

|_‘

5. Mathematical connections [g]

Ramanujan’s modular equations and Palumbo-Nardelli model

Now, we note that the number 8, and thence the numbers 64=8* and 32=2%x8, are connected

with the "modes” that correspond to the physical vibrations of a superstring by the following
Ramanujan function:

@ COSTIXW & gy

antilog™ COSW /142
LW t°w
1 e * qfitw)

8:5 5 v . (242)
I09[\/{10+4111 2j+\/(10+47 2j

Furthermore, with regard the number 24 (12 = 24 / 2 and 32 = 24 + 8) they are related to the
physical vibrations of the bosonic strings by the following Ramanujan function:

© COSTEXW & W iy
0 Coshm \/142

Ay 2w
e ¢ g(itw)
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Palumbo (2001) ha proposed a simple model of the birth and of the evolution of the Universe.
Palumbo and Nardelli (2005) have compared this model with the theory of the strings, and
translated it in terms of the latter obtaining:

antilog
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A general relationship that links bosonic and fermionic strings acting in all natural systems.
p-adic, adelic and zeta-strings
Like in the ordinary string theory, the starting point of p-adic strings is a construction of the

corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano
amplitude can be presented in the following forms:

e (@r), rere), rer@)]. ¢a-a¢a-ba-c)_
Afab)=g°f - ax=g {(a+b) Mo+o) r(c+a)} VR b)) <6

= g*[ DX exp(—%rjdzoﬂ"xﬂaax"jr“‘d o, explik'X*), (244)

where n=1, T=1/n, and a=—a(s)=—1—§, b=-a(t), c=-au) with the condition

s+t+u=-8,i.e. a+b+c=1.
The p-adic generalization of the above expression

Ala)= o[ -,

ab gJ‘ |X|al|1x| dx, (245)

where Hp denotes p-adic absolute value. In this case only string world-sheet parameter X is

treated as p-adic variable, and all other quantities have their usual (real) valuation.
Now, we remember that the Gauss integrals satisfy adelic product formula

J'R)(w (ax2 + bx)dmx!;UQp)(p(ax2 + bx)dpx =1, adQ*, bOQ, (246)
what follows from
IQV . (e0¢ + bx)d,x = )lv(a)|2a|;;)(v(—2—3, V=002,...,p.... (247)
These Gauss integrals apply in evaluation of the Feynman path integrals
xxe)= xv( - [ Waa, t)dtj A (248)

for kernels KV(X",t";X',t') of the evolution operator in adelic quantum mechanics for quadratic
Lagrangians. In the case of Lagrangian
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L(q,q)=%(—q——/lq+1j,

4

for the de Sitter cosmological model one obtains

Kw(x",T;x',O)rL K (x"T;x'0)=1, x",x,A0Q, TOQ", (249)

where
2T 3

K, (x",T;x'0)=A,(- 8T)|4T|;$Xv(— AT

[l -2 T +(X8TX)J. (250

Also here we have the number 24 that correspond to the Ramanujan function that has 24
“modes”, i.e., the physical vibrations of a bosonic string. Hence, we obtain the following
mathematical connection:

o= A - S laenn) -2+ O |

r cosntxvve_mzw- dx
0 coshrx \/142
nz
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The adelic wave function for the simplest ground state has the form

0= el )= [2H00E s

where qulp):l if |X|p <1 and Q(jx|p)=0 if |X|p >1. Since this wave function is non-zero only in

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic
approach. The Gel'fand-Graev-Tate gamma and beta functions are:

! lei‘lxw(x)dwx:d;(;f‘) )=, W 001 =1 s

b) = [ IX: - X d.x=T..(@)r. (o). (c), (253)
‘IQPMT) =% dx=r, (@), b)r,(c), (254

where a,b,c00C with condition a+b+c=1 and {(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma functions one has adelic products:
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rm(u)rlrp(u)=1, Bm(a,b)an(a,b)=1, uz 01, u=ab,c, (255
pO pO

where a+b+c=1. We note that B,(a,b) and Bp(a, b) are the crossing symmetric standard and

p-adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic
and adelic zeta functions as

= IRexp(— mz)xli_ldwx = n_zr(%j, (256)

Zp(a)=1_1p J. 0X| )Xla 'd o X = 1p -, Rea>1, (257)

rLZ L(a)¢(a), (258)

one obtains
Z\1-a)=¢4(a), (259)

where ZA(a) can be called adelic zeta function. We have also that
a—, 1 a—,
=7, (a)!;!Zp(a) =¢.(a)(a)= J'Rexr{— mz)xlw "d, x Gl—TJ.Qp QQx|p)><|p "d x. (259b)

Let us note that exd— 77(2) and QQX|p) are analogous functions in real and p-adic cases. Adelic

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of
the adelic harmonic oscillator is the following Schwartz-Bruhat function:

< [Jabs

), (260)

whose the Fourier transform

IXAkX)wA HQO )(261)

has the same form as (//A(x). The Mellin transform of (//A(x) is

= [0 [0 O 0] s, ol = ar{ B rozte) e

and the same for ¢, (k). Then according to the Tate formula one obtains (259).
The exact tree-level Lagrangian for effective scalar field ¢ which describes open p-adic string
tachyon is
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1 p N
£,== ¢p 2¢+ ¢“ , (263)
g°p-1
where p is any prime number, 01=-07 + [ is the D-dimensional d’Alambertian and we adopt
metric with signature (— +...+). Now, we want to show a model which incorporates the p-adic
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian

1 1 -= 1 N
L=)CL =Y 8= [ SN ety g 1}- (264)
=1 zin+1

nx1 nz1 n

Recall that the Riemann zeta function is defined as

|_| o+ir, og>1. (265)
1-p~

nx1 n

Employing usual expansion for the logarithmic function and definition (265) we can rewrite (264)
in the form

__ 111 (0 _
L= 92{2@(2j¢+¢+ln(1 qo)] (266)

where |¢1 <1. Z(%j acts as pseudodifferential operator in the following way:

o

where (k)= Ie(""‘x)dx)dx is the Fourier transform of ¢{x).

Dynamics of this field ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.

When the d’Alambertian is an argument of the Riemann zeta function we shall call such string
a “zeta string”. Consequently, the above ¢ is an open scalar zeta string. The equation of motion

for the zeta string ¢ is

je‘xkz( }p( Jdk, -k?>=kZ-k2>2+e&, (267)

1 ixk k2 -
Z[ j(”_( 7T) jkz k2>2+5e Z(_7j¢(k)dk:r¢¢ (268)

which has an evident solution ¢ =0.

For the case of time dependent spatially homogeneous solutions, we have the following equation
of motion

Z('—atzjw(t)ji [ me‘ikf’tz(ﬁjé(ko)d& =1_¢(—;()t). (269)

2 271) 2

With regard the open and closed scalar zeta strings, the equations of motion are
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Z(%j¢=(2717).3jé“((—k2] (k)dk=3"6 2 ¢, (270)

nx1

oyl ot v o

nx1
and one can easily see trivial solution ¢ =6 =0.

Now we take the eq. (87b) of Section 2. We note that are possible the following mathematical
connections with the Palumbo-Nardelli model (243) and the zeta strings (268):

N-3
V(r)= r(N/2) i) [ j}
an/z(N -2) IR >d
J.dZGX\/_[ o0 8gﬂpngTr(G Gm)f(w)_%guvaﬂwvw}
1/2 2&{R+4@ P P - —‘H‘ 0F2|2)] (272)
N-3
V(r)= r(N/2) i) ( jqf
22 (N - 2) = —d

Now, we take the right hand side of eq. (100c) of Section 3. We have the following mathematical
connections with the egs. (129), (137) and (238) and with Palumbo-Nardelli model:

Jdet(G +2rm' ®)

Soaen = [ 1060,h+560°(0,A0A)

S

+§eba0k'<ﬁk,a.lfab> +849”6""<F Fi) }:»

jir

d
== § Bl = 4l + /JogoaLE [dA=>

J‘dzex\/_{ 1676 _gﬂngTr(GWGpa)f((”)_

1,
~—a*o @ =
167G 8 9" % qu}

2

1/2 —zm{R_Hw DD — _‘H ‘ 10T 0F| )}, (274)
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thence, the mathematical connections between noncommutative DBI actions

, Maxwell's
equations and Palumbo-Nardelli model.

Now we take the egs. (164b) e (176¢) of Section 3. We note that are possible the following
mathematical connections with the eq. (268) concerning the zeta strings:

P by
T 8 Bpiiby Dop (_ 1) 1 1 (6g 9) a,b, . B2pb2pu
(1) 2 (2p) (2n)™ 2mr g6 g

2rdo 2 p-1 i
x| 2”(a— iy InfL- €| =2(-1°(2p) 0( )( ) (2p-2j+1)=
1 ixk _k_ -~ :i
:>(27T) jko k2>2+£e Z( quo(k)dk 1_¢I (277)
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1 | K gk =2
:>(27T)D jké—R2>z+ee Z( 2j¢(k)dk 1—¢. (278)

Now we take the egs. (211) and (219) of Section 3. Also these equations can be connected with
the Maxwell’s equations and with Palumbo-Nardelli model:

1

)pﬂd"”XLD[\/deE(i—eﬁ)[ﬁ(l—eﬁ) j[ﬁ(l &) )kIW(x,C)} e

,[d p+1kl|5ij (kl)FkI (k - k') = .[(27_[— “
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In conclusion, we take the eq. (236). We note that are possible the following mathematical
connections with egs. (129), (238), i.e. the DBl noncommutative actions, egs. (179), (186), i.e. the
Chern-Simons theory , the Ramanujan’s modular equations and the Palumbo-Nardelli model:

54



S,(x",T;x'0) :]'quqt)d —m[x1 xJ ] —T[f71 (x +5%) 47,0+ x|+

+§m6[/71(x; ) ’72()(1 Xl)] 1 (’71 +’72)+ ;mHZT(nl +,72)
:J-\/det(G+2na )
G

[1+9”aj/3, +19ijek'<ajA,a,A>@+

260 (R0 F.) 106 (FR) }:
2

“ADA DAJ+t—J. Tr(A OdA +2A OA DAJ
3 8rrm

:ij Tr(A OdA +
8rrIm 3

© COSTEXW oW iy
J.O Coshm \/142
RSV 2w
1 e * qitw)

]

4% 1 v j—
= o] o197 Ti(6,.6. ) (-2 90,m.0) -

antilog

0

j jdl" G)"” ‘ZQ’{R+40 POHP - —\H\ l°T|r0 2|2)} (281)
10

O

: o . . 5-1 . .
Also in these expressions is very evident the link between 71 and @= \/_T , i.e. the Aurea ratio,

by the simple formula

arccog =0,2879. (282)
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