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Summary. — The propagation of pressure waves in a stratified, non-isothermal
atmosphere is studied in the linear approximation. It is found that acoustic and
acoustic-gravity waves can be horizontally guided by the effect of the Earth’s
thermocline alone, under very mild conditions on the temperature gradient
steepness. The effect of the Earth’s surface is also studied. Lamb’s modes associated
with the rigid surface are, then, identified and their behaviour, as a function of the
Earth’s position, is discussed. Finally, dissipation is included, and its effect is derived
using a perturbation technique.

PACS 94.10.Jd – Tides, waves, and winds.

1. – Introduction

The capability of the terrestrial atmosphere to guide pressure waves has been
known for a long time (Lamb, 1924; Pekeris, 1948). However, due to the complexity of
the dependence on height of the equilibrium quantities, the characteristics of the
guided modes (dispersion relation, localization, phase and group velocity) as well as the
main physical driving mechanisms are difficult to identify.

Perhaps the most extensive analysis of guided modes in a realistic atmospheric
model has been presented by Francis (1973, 1975). His results, although numerical, are
very general and cover the entire spectrum of waves. He includes also practically all
the physical effects, like dissipation, presence of the Earth’s surface, realistic variation
with height of the temperature, etc.

However, the completeness of Francis’ model is also, in a sense, a weakness. It is
often impossible, and usually at least not straightforward, to discriminate between the
different effects and to assess the relative relevance of the various factors in driving
the waves.

A further weakness, common however to all numerical analyses, is the difficulty of
performing a parameter study.
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Recently, by considering a simplified non-isothermal model, which nonetheless
goes a step further of the classic model of a stratified isothermal atmosphere (see, e.g.,
Yeh and Liu, 1974), we have been able to show the existence of acoustic and
acoustic-gravity waves guided only by the temperature gradient (Nalesso and
Jacobson, 1993). In the model we assumed a specific analytic, monotonically increasing
with height, temperature profile. In this paper we will prove, more generally, the
existence of horizontally guided modes for a large class of monotonic temperature
profiles, and will find sufficient conditions for the existence of such waves.

We will, then, study, the behavior of the physical quantities such as pressure,
density and fluid velocity components, as a function of the parameters which character-
ize the analytic profile considered in the previous article (Nalesso and Jacobson, 1993),
and will show that the spectrum of ducted waves is indeed extraordinarily rich.

Furthermore, we will analyze the effect of including the Earth surface in the
previous model and will show that Lamb’s modes (Lamb, 1924; Francis, 1973) appear
and how they evolve as the position of the rigid boundary is varied.

Finally, we will treat, using a perturbation approach, the effect of dissipation
(viscosity and thermal conductivity) on the propagation of the eigenmodes.

2. – The stratified non-isothermal atmospheric model

The linearized hydrodynamics (HD) equations for a stratified, inviscid, infinite
fluid, without source terms read

¯rO¯t1r 0 ˜ Qv1v Q˜r 040 ,(1a)

r 0 ¯vO¯t1˜p2rg40 ,(1b)

¯pO¯t1v Q˜p02c 2 (¯rO¯t1v Q˜r 0 )40 ;(1c)

g is the gravity acceleration, c the sound speed and the subscripted quantities are the
equilibrium ones.

The horizontal symmetry allows us, without loss of generality, to assume the wave
vectors in a vertical plane (x , z), thus to ignore the y-coordinate. Fourier transforming
in time and horizontal coordinate x, the system (1) becomes

ivr×1r 0 (2ikv×x1¯v×z O¯z)1v×z ¯r 0 O¯z40 ,(2a)

ivr 0 v×x2 ikp×40 ,(2b)

ivr 0 v×z1¯p×O¯z2gr×40 ,(2c)

ivp×1v×z ¯p0 O¯z2c 2 (ivr×1v×z ¯r 0 O¯z)40 ,(2d)

where v×x , v×z are the horizontal and vertical components of the fluid velocity,
respectively, and q×(z , k , v) indicates the Fourier transform of the function q(z , x , t)
defined as

q×(z , k , v)4� �
2Q

Q

q(z , x , t) exp [2i(kx2vt) ] dx dt .(3)
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Introducing the divergence of the fluid velocity

x×(z , k , v)4˜ Qv×(z , k , v)42 ikv×x (z , k , v)1¯v×z (z , k , v)O¯z(4)

and dropping the superscript × for simplicity, we can obtain a single second-order
ordinary differential equation for x :

c 2 d2 x(z , k , v)

dz 2
1 g dc 2

dz
2ggh dx(z , k , v)

dz
1 gv 21 g k

v
h2

Qh x(z , k , v)40 ,(5)

with g the ratio of specific heats and

Q42v 2 c 21 (g21) g 21g dc 2 Odz .(6)

Once x is known, the other perturbed fluid quantities can be derived from the
relations

vz (z , k , v)4
(v 2 c 2 dx(z , k , v)Odz1g(2gv 21k 2 c 2 ) x(z , k , v) )

(g 2 k 22v 4 )
,(7)

p(z , k , v)4 i( r 0 Ov) (c 2 x(z , k , v)2gvz (z , k , v) ) ,(8)

while vx (z , k , v) and r(z , k , v) are obtained straightforwardly from eqs. (2b) and (2c),
respectively. Note, however, that eq. (7) is singular for (v , k) values taken along the
curve g 2 k 22v 440. As we will see later, this fact rules out some solutions of eq. (5) as
non-physical.

It is now useful to define a new independent variable (stretched variable) via the
local scale height c 2 (z)Ogg :

u4gg�
z0

z
dz 8

c 2 (z 8 )
,(9)

with z0 a reference point and furthermore a new dependent variable,

c4x exp [2u] .(10)

Then eq. (5) is transformed into

d2 c(u , k , v)

du 2
2q 2 (u , k , v) c(u , k , v)40 ,(11)

with

(12) q 2 (u , k , v)4 g c 2 (u)

g 2 g 2 h g2v 21 g gg

2c(u)
h2

1

1k 2 c 2 (u) g12 (g21) g 2

v 2 c 2 (u)
g11 g

g21

d

du
ln (c 2 (u) )hhh .

Let us find out if and under which conditions horizontally guided modes do exist. We
first recall that guided modes correspond to solutions of eq. (11) which tend to zero as
uK6Q .
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Physically this condition implies that the total kinetic energy per unit column
associated with the wave remains finite.

Equation (11), with the above boundary conditions, is a particular case of the
general eigenvalue equation

Lc4Ec ,(13)

where L is the Schrödinger operator (2d2 Odu 21V(u) ) , and V(u) the potential
function. In our case the potential function is q 2 (u , k , v) and we want to find, varying
k , v on the real axis, the bound states which correspond to zero energy.

In the appendix we will discuss sufficient conditions for the existence of bound
states of eq. (11). We will actually prove the following:

Theorem: Let c(u) be a continuous, monotonically increasing function of the
variable u. Let also

c 2 (u)2c 2
1 CNuN2a 1 , uK2Q ,(14a)

c 2 (u)2c 2
2 C2NuN2a 2 , uK1Q ,(14b)

where a 1D1, a 2D1 are real constants, and c1Ec2 are the asymptotic values of the
sound speed.

Then there exist at least two pairs of real, positive values (k 2
i , v 2

i ) i41, 2 such that
eq. (13) has a bound state at zero energy whenever the gradient of the sound speed
profile has an upper bound which satisfies the relation

max
u� R

g dc 2

du
hG (g22(g21)1O2 )

c 2
1 c2

2

c1
21c 2

2

.(15)

The above condition is only sufficient and is, moreover, too restrictive, as we will see in
the next section. What is important, however, is that waves can be guided by a general
class of smooth, monotonic sound speed profiles, and this result is not restricted to a
particular, analytical choice of c(u). Furthermore, the guided modes are not surface
waves such as those studied by Thome, 1968, in the presence of a discontinuity in the
profile, but, on the contrary they exist for very shallow gradients of the fluid temperature.

Moreover, although the proof is given only for the class of profiles satisfying the
conditions of the previous theorem, a second important result is that two branches of
solutions of eq. (11) are always present together: they correspond, whenever they are
physically meaningful, to the acoustic and the acoustic-gravity branch.

3. – The hyperbolic tangent model

In order to better clarify the physical results illustrated above, let us consider a
particular atmospheric model, which has the advantage that the eigenvalue equation
(11) has analytic solutions. Moreover, it gives a realistic fit to the average atmospheric
sound speed profile but for the two local minima at the mesopause and tropopause, as
shown in fig. 1 (the dashed curve is the average sound speed profile, as reported, e.g.,
by Francis, 1973). Note that the absence of the above-mentioned local minima is
precisely what we want in order to discriminate between different possible driving
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Fig. 1. – Normalized Earth’s sound speed profile cOc0 , as a function of normalized height zOH0 .
Dashed curve: average experimental profile, continuous curve: analytic hyperbolic tangent profile
with c04533 mOs, d40.673, d40.2.

mechanisms. We, therefore, assume the following profile (hyperbolic tangent model):

c 2 (u)4c 2
0 (11d tanh ( du) ) ,(16)

where

c 2
0 4

c 2
1 1c 2

2

2
,(17a)

d4
c 2

2 2c 2
1

c 2
1 1c 2

2

,(17b)

d4
( dc 2 Odu)max

(c 2
2 2c 2

1 )
.(17c)

d is, therefore, a free parameter giving the slope of the sound speed profile.
As is discussed in Nalesso and Jacobson, 1993, by considering a new transformation:

s4
11 tanh ( du)

2
,(18a)

F(s)4s 2b (s21)2a C(u(s) ) ,(18b)
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we have that F satisfies the hypergeometric equation, and therefore we obtain

C(s)4s b (s21)a F(a , b ; 112b ; s) ,(19)

with F(a , b ; 112b ; s) representing the hypergeometric function (Abramowitz and
Stegun, 1972) and

a(k , s)4a1b11O21h ,(20a)

b(k , s)4a1b11O22h ,(20b)

whereas

a(k , v)4
1

2d
y1O42v 2 c 2

2

g 2 g 2
1k 2 c 4

2

g 2 g 2 g12 (g21) g 2

v 2 c 2
2
hz1O2

,(21a)

b(k , v)4
1

2d
y1O42v 2 c 2

1

g 2 g 2
1k 2 c 4

1

g 2 g 2 g12 (g21) g 2

v 2 c 2
1
hz1O2

,(21b)

h(k , v)4 y1O41
k 2

4d 2 gg c 2
2 2c 2

1

gg
h2

1
2d

gv 2
(c 2

2 2c 2
1 )hz1O2

.(21c)

By imposing the boundary conditions cK0 as uK6Q , we obtain that there are
solutions if and only if the function b(k , v) is equal to zero or a negative integer. This
condition gives the dispersion relation for guided waves, which reads

(22) D(k , v)4n1
1

2d
y1O42v 2 c 2

2

g 2 g 2
1k 2 c 4

2

g 2 g 2 g12 (g21) g 2

v 2 c 2
2
hz1O2

1

1
1

2d
y1O42v 2 c 2

1

g 2 g 2
1k 2 c 4

1

g 2 g 2 g12 (g21) g 2

v 2 c 2
1
hz1O2

1

11O22 y1O41
k 2

4d 2 gg c 2
2 2c 2

1

gg
h2

1
2d

gv 2
(c 2

2 2c 2
1 )hz1O2

40 ,

with n zero or a positive integer. The corresponding eigenfunctions become

(23) x n (u , k , v)4exp [uO2] !
m40

n (21)n n! G(a1m) G(112b)

(n2m) ! m! G(m1112b) G(a)
Q

Q g 21

11exp [2du]
hag 1

11exp [22du]
hb1m

,

where G is the gamma-function.
The other physical quantities are easily derived from (2), (7), (8). They read, in

terms of x n and its derivative dx n Odu ,

(24a) vzn (u , k , v)4 g v 2

g 2 k 22v 4 h ggg
dx n (u , k , v)

du
2g gg2 k 2 c 2

v 2 h x n (u , k , v)h ,
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(24b) vxn (u , k , v)4 g 2ik

g 2 k 22v 4 h g(gg 2 )
dx n (u , k , v)

du
2 (gg 22v 2 c 2 ) x n (u , k , v)h ,

(24c)
pn (u , k , v)

r 0 (u)
4g 2iv

g 2 k 22v 4 h g(gg 2 )
dx n (u , k , v)

du
2 (gg 22v 2 c 2 ) x n (u , k , v)h ,

(24d)
r n (u , k , v)

r 0 (u)
4 g 2iv

g 2 k 22v 4 h g g 2 g 2

c 4
(c 21dc 2 Odu)

dx n (u , k , v)

du
2

2g g 2 k 22v 4

v 2
1

gg 2

c 4 gg2 k 2 c 2

v 2 h (c 21dc 2 Odu)h x n (u , k , v)h .

Finally, the kinetic energy per unit column is

Wn4
1

2
r 0 (u)(v 2

xn1v 2
zn )4

1

2
r 0g g 2 g 2

g 2 k 22v 4 h gg dx n

du
2x nh2

2 g kc 2

gg
h2

x 2
nh ,(25)

while the total kinetic energy per unit column is just the integral of Wn , with u ranging
from 2Q to 1Q .

A close inspection of the dispersion relation (22) shows, indeed, the existence of two
families (the acoustic and the acoustic-gravity) of guided modes, as predicted by the
theory, and allows us to understand their characteristics.

It is useful to express the dispersion curves of these modes as a function of two dimen-
sionless quantities, the normalized radian period (v b0 Ov) with v b04(g21)1O2 gOc0

the buoyancy frequency at c0 and (vp Oc0 ) the phase velocity vp4 (vOk) normalized to c0 .
In the plane (v b0 Ov , vp Oc0 ) the curves of the acoustic family begin and end at the
acoustic cut-off lines (curves A1 and A2 in fig. 2) for internal waves propagating in
isothermal media corresponding to low c1 and high c2 sound speed; note that these
curves do not depend on the form of the profile. The number of acoustic modes depends
on the sound speed gradient, a measure of which is the parameter d, and decreases as
the gradient increases.

However, the n40 acoustic mode, i.e., the high phase velocity solution of the
dispersion relation (22) corresponding to n40, is not a real guided wave. In fact, it is
readily recognized that this particular solution corresponds to (v , k) values belonging
to the curve g 2 k 22v 440 or, more precisely, to the segment shown as a dashed line in
fig. 2, which is a portion of the curve represented by the previous equation. This
dispersion curve, although mathematically correct and corresponding to eigensolutions
of eq. (11) satisfying the prescribed boundary conditions, is not a real guided sound
wave, as already observed. This is easily understood by observing that all the
physically relevant quantities given by eqs. (24) are singular along the previous curve.
Therefore, the acoustic family begins with the n41 mode and can exist only up to a
maximum value of the gradient, which depends on the profile parameters.

The acoustic-gravity family exhibits a different behavior as a function of the
parameter d. For dEdcr4 (g21)O2g , which corresponds to rather shallow sound
speed profiles, we found a finite number of modes (as for the acoustic family), which
begin and end at the corresponding acoustic-gravity cut-off lines Ag1 and Ag2 (see
figs. 2 and 3). Again, the number of modes increases as d decreases.

However, for higher temperature gradients, i.e. for dDdcr , the number of modes
becomes infinite. The fundamental (n40) acoustic-gravity mode still begins at the
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Fig. 2. – Dispersion curves (solid lines) for the hyperbolic tangent profile with c04533 mOs,
d40.673, d40.04.

cut-off line Ag2 , at very low frequency, but it ends with zero phase velocity at the point
v4v d :

v b0

v d

4 { 2(c1 c2 Oc 2
0 )2 d(dOdcr )

(d(dOdcr )11)22 (c1 c2 Oc 2
0 )2
}1O2

.(26)

Note that v d is higher than the highest Brunt frequency in the entire system. To the
same frequency (v b0 Ov d ), still with zero phase velocity, tend also all the higher-order
(nD0) modes, whose dispersion curves can begin, however, either at the upper cut-off
line Ag2 , or at the lower one Ag1 (see fig. 4). In fig. 3 the dispersion curves for the sound
speed profile which best fits the average atmospheric ones (shown as a continuous line in
fig. 1) are presented. The characteristic parameters are: d40.673, c04c(z0 )4533 mOs,
z04160 km, d40.2. Although the value of the parameter d is above the critical one,
only a finite number (n42) of acoustic-gravity modes can be appreciated because the
accumulation point of all these modes lies too near to the high buoyancy frequency v b1 .

Although the total kinetic energy per unit column is finite for every (k , v)
belonging to the dispersion curves, as is easy to verify since

W(u , k , v)Cexp [22dau]K0 , as uKQ ,

W(u , k , v)Cexp [2dbu]K0 , as uK2Q ,

the dilatation x n as well as all the other physical quantities (24) may have a different
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Fig. 3. – Dispersion curves (solid lines) for the hyperbolic tangent profile with c04533 mOs,
d40.673, d40.2. The dotted line is the curve (arc of circle) a41O4d .

Fig. 4. – Dispersion curves (solid lines) for the hyperbolic tangent profile with c04533 mOs,
d40.673, d42.0. The dashed line is the curve (arc of circle) L(k , v)40 (eq. (A.2)).
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Fig. 5. – Kinetic energy density, pressure and density variations pOr 0 , rOr 0 , horizontal and
vertical components of the fluid velocity vx , vz as a function of zOH0 , for the n40 acoustic-gravity
mode with normalized radian frequency v b0 Ov40.8 and the sound speed profile of fig. 1.

behavior for uKQ . In fact, if 2daE1O2, we observe that x n diverges to infinity with
uKQ , while when 2daD1O2 the eigenfunctions tend to zero for uKQ . The region
characterized by the first kind of behavior is shown in fig. 3; it lies on the right of the
curve shown in the figure (dotted line) joining the points (0 , c2 Oc0 ) and (c2 Oc0 , 0 ). In
the region on the left of the same curve we have, on the contrary, the second type of
behavior. Let us point out, however, that the existence of unbounded eigenfunctions
has only a mathematical relevance. Physically they cannot exist, because the inclusion
of even an extremely small amount of viscosity or thermal conductivity will damp out
these waves. An example of both types of waves is shown in figs. 5 and 6. In fig. 5
the kinetic energy density toghether with pressure and density variations, normalized
to the equilibrium density r 0 , and the horizontal and vertical component of the fluid
velocity of an acoustic-gravity wave (n40) are plotted as a function of the height,
normalized to the scale height H04ggOc 2

0 . Note that the vertical scales, although
meaningful relative to each other, are nevertheless determined by the arbitrary
normalization condition x max41. They correspond to the sound speed profile shown in
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Fig. 6. – The same as fig. 5, but for the n40 acoustic-gravity mode with normalized radian
frequency v b0 Ov41.3.

fig. 1 (continuous line) and a normalized radian frequency v b0 Ov40.8. The same
quantities for a normalized radian frequency v b0 Ov41.3 are plotted in fig. 6.
It is of some interest to investigate how the number of modes and their dispersion
relation evolve as the gradient steepness dKQ . We have already discussed the acoustic
family and have pointed out that no acoustic modes can be guided when the tempera-
ture gradient becomes too high.

On the contrary, of the acoustic-gravity family, the fundamental (n40) mode
survives, therefore the results of a step-like variation of the sound speed, namely the
existence of a single guided surface mode, are recovered in this limit. Let us stress,
however, that the diffuse profile case is much more general and shows a richer variety
of guided waves.

4. – Inclusion of the Earth’s surface: Lamb’s modes

The model considered so far of an atmosphere extending to infinity both upward
and downward is obviously not realistic. It has been introduced in order to study the
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guiding properties of the thermocline in the simplest model, therefore avoiding the
inclusion of other sources of guided modes.

However, a more physical model must include the Earth’s surface, which will be
considered here as a rigid plane surface, located, in the u coordinate system, at a fixed
position u0 .

The boundary condition that must be imposed to any pressure wave at a rigid
surface is simply that the orthogonal component of the fluid velocity is zero. This
condition substitutes the previous one requiring that the solution of eq. (11) vanishes at
uK2Q . However, to keep finite the total kinetic energy per unit column we still must
have cK0 as uKQ and this implies that the hypergeometric function appearing in
(19) is regular at the point s41, corresponding to u4Q . This can be accomplished
assuming

(27) c(u , k , v)4

4 g 1

11exp [2du]
hag 1

11exp [22du]
hb

F ga , b ; 112a ;
1

11exp [2du]
h ,

with a , b , a , b still given by (20), (21).
To satisfy the boundary condition at the rigid wall, we must set vz (u0 , k , v)40.

From (24a) the condition becomes

g dc

du
h

u4u0

4 gg 1

2
2

k 2 c 2

gv 2 h ch
u4u0

(28)

Fig. 7. – Dispersion curves for the hyperbolic tangent profile of fig. 1, with the Earth’s surface
placed at u04225 (corresponding to zOH04210). The dashed line represents Lamb’s modes.
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and using for c expression (27), we finally have the dispersion relation

(29) yg2 2da exp [2du0 ]

(11exp [2du0 ] )
1

2db exp [22du0 ]

(11exp [22du0 ] )
2

1

2
1

k 2 c 2

gv 2 h Q
QF ga , b ; 112a ;

1

11exp [2du0 ]
h2

2
2dab exp [2du0 ]

(11exp [2du0 ] )2 (112a)
F ga11, b11; 212a ;

1

11exp [2du0 ]
hl40 .

The analysis of the dispersion relation (29) shows that an infinite number of new
higher-order modes, both in the acoustic and acoustic-gravity family, appears,
regardless of the steepness of the thermocline. The dispersion curves of these modes,
in the (v b0 Ov), (vp Oc0 ) plane, lie in the region where acoustic and acoustic-gravity free
waves for an isothermal medium with sound speed equal to the highest value c2 are
forbidden.

Therefore, the acoustic-gravity modes extend to the previously forbidden region up
to the cut-off line Ag2 , while still accumulating, with zero phase velocity, at the
frequency v d for dDdcr . Moreover, for dEdcr the infinite number of higher-order
modes which now exist, all converge to the lower buoyancy frequency v b1 .

On the contrary, the acoustic modes do exist at very high frequency, actually also in
the limit vKQ , with finite phase velocity.

This behavior is physically expectable, because the presence of the rigid wall allows
the existence of waves propagating downwards and reflected by the wall. Kinetic

Fig. 8. – The same as fig. 7, but with the Earth’s surface at u042 5 (zOH0423.5).
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energy is not conveyed downwards to infinity, thus the constraint of a finite total
energy per unit column can still be satisfied.

Let us note also that, if the rigid wall is not placed right in the thermocline (as it
should be for a realistic model of the Earth’s atmosphere), the modes driven by the
thermocline, i.e. those existing without the rigid wall, are little affected by the presence
of the wall. The main effect is in fact to extend the dispersion curves also to the
previously forbidden regions down to the cut-off frequencies for the acoustic-gravity
modes and to v4Q for the acoustic ones.

A second remarkable effect of the inclusion of the rigid wall is the appearance of a
new type of wave, characterized by the kinetic energy peaked at the rigid wall. These
are surface waves, and in fact they can be identified as Lamb’s mode (Lamb, 1924;
Francis, 1973). In the case of the Earth’s surface far from the peak of the temperature
gradient, (u04225, corresponding to the Earth’s surface 160 km below the peak
temperature gradient for the example shown in fig. 7), these waves are dispersionless
with phase velocity very close to the local sound speed at the wall c(u0 ), and are well
separated from the modes of the other two families (see dashed curve of fig. 7).
However, when the rigid wall is moved toward the peak temperature gradient, Lamb’s
modes maintain their almost dispersionless character with phase velocity near c(u0 )
only at very high frequencies, while at lower frequencies they merge to the
fundamental (n40) acoustic-gravity branch (see the dashed curve of fig. 8).

A comparison with the numerical results obtained by Francis shows indeed a good
agreement, considering that the present model does not include dissipation (compare
fig. 3 of Francis’ 1973 article). The main, substantial difference is the absence of the
“imperfectly ducted” modes, which, however, cannot exist in our model.

5. – The dissipative case

If dissipation, such as thermal conduction and viscosity, is taken into account, the
wave motion is no longer adiabatic, because the effect of loss processes is to increase
the total entropy with time. This means that the adiabatic equation (1c) must be
replaced by the conservation of energy equation, and, to close the system, an equation
of state has to be added.

In the dissipative case then, the linearized HD equations (2) must be substituted
with (see Francis, 1973)

.
`
`
/
`
`
´

ivr×1r 0 (2ikv×x1¯v×z O¯z)1v×z ¯r 0 O¯z40 ,

ivr 0 v×x2 ikp×4F1 ,

ivr 0 v×z1¯p×O¯z2gr×4F2 ,

p0

(g21) T0

(ivT×1 (¯T0 O¯z) v×z )1p0 (kv×x1¯v×z O¯z)4F3 ,

gp×2c 2 r×2c 2 (r 0 OT0 ) T×40 ,

(30)
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where

.
`
/
`
´

F142 (4O3) hk 2 v×x2 (1O3) hk¯v×z O¯z2k(¯hO¯z) v×z1
¯

¯z
(h¯v×x O¯z) ,

F242 hk 2 v×z1 (1O3) hk¯v×x O¯z2 (2O3) k(¯hO¯z) v×x1 (4O3)
¯

¯z
(h¯v×z O¯z) ,

F34l(¯2 T×O¯z 2 )2lk 2 T×1 (¯lO¯z)(¯T×O¯z)

(31)

are the dissipative terms, h(z) the viscosity and l(z) the thermal conductivity, and ×

denotes, as usual, the Fourier transform.
In the dissipationless limit, the system (30) can be compactly written in matrix form

D 0 (v , z , ¯O¯z) c(k , v , z)4kMc(k , v , z) ,(32)

with D 0 a 535 matrix operator given by

(33) D 04

4

N
N
N

0 ,

v ,

0 ,

0 ,

0 ,

2i g ¯

¯z
( ln r 0 )1

¯

¯z
h ,

0 ,

v ,

2i g 1

(g21)

¯

¯z
( ln T0 )1

¯

¯z
h ,

0 ,

v ,

0 ,

ig ,

0 ,

2c 2

0 ,

0 ,

2i g ¯

¯z
( ln r 0 )1

¯

¯z
h ,

0 ,

g ,

0

0

0

v

(g21) T0

2c 2 OT0

N
N
N

;

M is a 535 constant matrix, and c a one-column vector of the Fourier transforms of
the fluid variables

M4

N
N
N

1 ,

0 ,

0 ,

1 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

0 ,

1 ,

0 ,

0 ,

0 ,

0

0

0

0

0

N
N
N

, c4

N
N
N

v×x

v×z

r×Or 0

p×Or 0

T×

N
N
N

.(34)

This can be looked at as an eigenvalue problem, whose eigenvalues k are, for each v ,
the solutions of the dispersion equation (22), and the corresponding eigenvectors are
given by (24), with the temperature T× obtained from the last equation of system (30).

Coming back to the dissipative case and defining the dissipation matrix operator V
through the relation

Vc4V ,(35)
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with V the one-column vector of components

.
`
/
`
´

V140 ,

V24 (iOr 0 ) F1 ,

V34 (iOr 0 ) F2 ,

V44 (iOp0 ) F3 ,

V540 ,

(36)

we arrive at the equation

(D 01V ) c4kMc .(37)

An approximate solution of this problem can be obtained in the frame of the
perturbation theory, if the dissipation term Vc can be considered as a small per-
turbation with respect to the dissipationless solution. The limits of this approach are
obviously those intrinsic to the perturbative technique (Courant and Hilbert, 1953).

However, perturbation theory cannot be applied straightforwardly to this problem,
because the zeroth-order operator D 0 is not Hermitian and, as a consequence, the
unperturbed eigenvectors are not orthogonal. In spite of this complication, after the
coordinate transformation (9), we have worked out the first-order correction k 1

n to the
propagation constant of the n-th mode.

For any given v , when N non-orthogonal eigenmodes are present, the first-order
correction reads

kn
(1)42 !

j41

N

a 21
n , j Vj , n ,(38)

where a 21
i , j are the elements of the inverse of the matrix defined as

ai , j4 (k (0)
j 2kn

(0) ) Mi , j2d j , n Mi , n(39)

(d j , n is the Kronecker symbol) and

Mi , j4 �
2Q

1Q

exp [2u] c*i (u) Mc j (u) du ,(40)

Vi , j4 �
2Q

1Q

exp [2u] c*i (u) Vc j (u) du ,(41)

with M and V defined by eqs. (34), (35). These matrix elements represent inner
products in the linear space of the solutions of the system (30).

The first-order correction k (1)
n obtained from eq. (38) is a complex quantity, because

of the dissipative nature of the considered atmospheric model. Its real part gives the
correction to the horizontal propagation constant kn , while the imaginary part
represents the (first order) attenuation factor.

An example is shown in fig. 9, for the equilibrium configuration of fig. 1. In the
figure the real part (dashed line, left scale) and the imaginary part (continuous line,
right scale) of the first-order correction k (1) to the fundamental (n40) acoustic-
gravity mode, normalized to the zeroth-order wave number k0 is plotted.
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Fig. 9. – Real (dashed line, left scale) and imaginary (continuous line, right scale) part of the first-
order correction to the n40 acoustic-gravity mode, normalized to the zeroth-order wave number
k0 for the hyperbolic tangent profile of fig. 1 with dissipation.

Fig. 10. – Attenuation distance vs. normalized radian period for the n40 acoustic-gravity modes
with the same parameters as fig. 9.
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Viscosity and thermal conductivity has been assumed of the form

h43.43 Q1027 T 0.69 ( kg m21 s21 ) ,(42)

l438.2 Q1025 T 0.69 ( kg m s23 K21 )(43)

(see Banks and Kockarts, 1973).
In the following fig. 10 the attenuation distance (1ONIm]k (1)(N) is plotted as

a function of (v b0 Ov). It is clearly seen that long-period waves are strongly damped,
as was anticipated. Waves whose amplitude becomes unbounded with increasing
altitude are just a pathology of the non-dissipative mathematical model! Only medium–
short-period waves, localized in the region where the thermocline gradient is
appreciable, can propagate to distances comparable to the Earth’s circumference.

Similar results are obtained also for the other guided modes.

6. – Conclusions

In this paper we have proved that there exists a class of horizontally ducted acoustic
and acoustic-gravity waves, in a stratified, non-dissipative, windless atmosphere, which
can be supported by the temperature gradient. Sufficient conditions have been derived
which extend to a large class of monotonically increasing with height temperature
profiles the guiding properties previously found for a particular model. Furthermore,
the contemporary presence of two families of guided waves, namely the acoustic and
the acoustic-gravity family, has also been demonstrated.

The spectrum of the guided modes, as a function of the profile parameters, has been
explored by considering the above-mentioned temperature profile, which can be
expressed in a closed analytical form (the hyperbolic tangent model). The results show
an extraordinary richness of modes which can propagate, and these can account for
practically all the experimental observation and the previous numerical results
(Francis, 1973; Wang and Tuan, 1988). We have, then, included in the model the
Earth’s surface. It turned out to be essential in supporting Lamb’s modes, i.e. almost
dispersionless surface waves, localized near the rigid surface and an infinity of
higher-order acoustic modes of very high frequency. On the contrary, the Earth’s
surface is not necessary, although it surely plays a role, for the existence of the
acoustic-gravity family of guided modes.

A comparison of the results of our hyperbolic tangent model (including Earth’s
surface) with those published by Francis (1973, 1975) shows a very good agreement as
long as the “fully ducted” modes are considered (imperfectly ducted modes cannot be
accounted for in a dissipationless model).

These results allow us to conclude that the local mesopause and tropopause minima
(not included in our model) have only local effects, i.e. they may change a little the
dispersion curve only for modes localized near these minima. Therefore, the usual
interpretation of experimental and numerical results, for medium–short-period gravity
waves, relying on the presence of both a local minimum in the sound speed profile and a
rigid surface (see, for instance, Wang and Tuan, 1988) is not unique. These waves, in
fact, can exist even in the absence of both rigid surface and local minimum, and can be
supported just by an appropriate thermocline.
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Finally, we have included dissipation in the model. A perturbation technique has
been used to derive first-order corrections to the propagation vector. In spite of the
limits of the technique, and of the simplified treatment of the dissipative terms, the
attenuation distance of the gravity modes is in reasonable agreement with the more
sophisticated results of Francis’ model.

As a general conclusion, our model has shown that dissipation is very effective in
damping out those modes which, ideally, could grow, unbounded, at a very high altitude.

AP P E N D I X

We give now the proof of the

Theorem: Let c(u) be

I1) a continuous, monotonically increasing function of the variable u.

I2) Let also:

c 2 (u)2c 2
1 CNuN2a 1 ,

c 2 (u)2c 2
2 C2NuN2a 2 ,

uK2Q ,

uK1Q ,

where a 1D1, a2D1 are real constants, and c1Ec2 are the asymptotic values of the
sound speed.

Then, there exist at least two pairs of real, positive values (k 2
i , v 2

i ) i41, 2 such that
eq. (13),

Lc(u)4Ec(u) ,

has a bound state at zero energy whenever the gradient of the sound speed profile has
an upper bound which satisfies the relation

max
u� R
g dc 2

du
hG (g22(g21)1O2 )

c 2
1 c 2

2

c 2
1 1c 2

2

.(A.1)

Proof: It is easy to verify that, if c(u) satisfies I1, and v , k are taken on the curve l
of equation

L(k , v)4 g 1

c0
h2g v

k
h2

1 g v b0

v
h2

2240 ,(A.2)

i.e. along the arc of circle of radius k2 in the first quadrant of the (vp Oc0 ), (v b0 Ov)
plane, then

q 2 (2Q)4q 2 (Q)4q 2
Q4 g1O42k 2g c 2

2 c 2
1

g 2 g 2 hh ,(A.3)
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and q 2
Q is a continuous function of k 2 , equal to zero for k 24 (ggO2c1 c2 )2 (points P1 and

P2 of fig. 4), and positive along the arc P1 P2 (dashed line in fig. 4).
Define the new potential function:

V(u)4q 2 (u)2q 2
Q ,(A.4)

with (v , k)� l .
Then, whenever hypothesis I2) is satisfied, V(u)K0 as NuNKQ , V(u)�L 2 (R) and

is an everywhere non-positive, not identically zero function of u�R .
In these hypotheses, the Schrödinger operator L4 (2d2 Odu 21V(u) ) always has

at least a bound state corresponding to a negative eigenvalue lE0 (see Reed and
Simon, 1978; Rose and Weinstein, 1988). Moreover, l(k 2 ) is a continuous function of
k 2� l and satisfies

Vmin (k 2 )El(k 2 )4E(k 2 )2q 2
QE0 ,

with Vmin the minimum value of V(u) for u�R , E(k 2 ) a continuous function of k 2 and
also

q 2
min (k 2 )EE(k 2 )Eq 2

Q ,

with q 2
min obviously the minimum of q 2 (u), u�R .

Because along the arc P1 P2 it is q 2
QF0, the equality holding at the extrema, to

prove that there exists a k 2
0 �P1 P2 , such that E(k 2

0 )40, it is sufficient to show that
q 2

min (k 2 )40 at some point P0�P1 P2 . It will be, in fact, E(P1 )E0 and E(P0 )D0,
therefore, because of the continuity of the function E , there exists a point P such that
E(P)40.

Note that the existence of such point ensures that at least two values k 2
0 i (i41, 2)

can always be found such that E(k 2
0 i )40, and therefore the existence of two families of

guided waves is also proved.
To prove the second part of the theorem, we need to find the minimum of the

function q 2 (u , k , v), subject to the restriction L(k , v)40, with L given by eq. (A.2).
This problem is solved with Lagrange’s method of multipliers, which states that the
desired minimum is the minimum of the function

C(u , k , v)4q 2 (u , k , v)1eL(k , v) ,(A.5)

with e the Lagrange multiplier.
This problem has simple solutions for sound speed profiles such that the maximum

of the gradient of c 2 (u) is attained at the point where c 24 (c 2
1 1c 2

2 )O24c 2
0 . In this case

q 2
min41O42

(g21) c 2 (2c 2
0 2c 2 )

4g 2 c 4
0

{11 u11 2gc 2
0 ( dc 2Odu)c4c0

(g21) c 2 (2c 2
0 2c 2 )

v1O2}2

.(A.6)

A sufficient condition to have q 2
min40 on P1 P2 is then given by condition (A.1) as it is

easy to show.
Le us point out, however, that this condition is only sufficient. It shows that even

sound speed profiles with very small gradients are able to guide acoustic and acoustic-
gravity waves. In the other limit of very high gradient, even if a mathematical proof for
general profiles has not been worked out, we know, at least for certain analytic profiles,
that these waves are also guided.
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