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Abstract

We give an algorithm which goal is to find the energy barrier between a given pair of
points in a graph which represents the conformational space of a molecule.

If the conformational space is homeomorphic to ann-dimensional torus, then the
graph can be chosen of a particular form. TheUTN software, which implements the
algorithm in this case, is described in detail.

Finally we focus on applications: to show howUTN works, some examples are car-
ried on in detail, with the additional support of a graphical animation in the two-
dimensional case.

The source code of the program and some data of the examples are available to the
reader.

Keywords: Conformers; energy barrier; systematic conformational search; acyclic-
molecules, transition state.
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Introduction

The analysis of the conformational behaviour of a molecule is of fundamental im-
portance to study, for example, structure-activity relationships in compounds having
biological activity, or to interpret and understand experimental results (e.g. NMR
spectroscopic data (Mierke, Kurz & Kessler 1994; Burgess, Ho & Pettitt, 1995)).

An exaustive conformational analysis requires three fundamental steps: obtaining a
collection of conformations, localising the energy minima (conformers) on the po-
tential energy surface and, finally, computing the energy barrier for the conformers’
interconversion. In the last years a lot of different algorithms have been developed
to explore the conformational space accessible to both cyclic and acyclic molecules.
The investigation methods that are at the base of these latter algorithms span between
the grid search, the molecular dynamics, the distance geometry and the Monte Carlo
techniques (Leach, 1991; Van Gunsteren & Berendsen, 1990; Howard & Kollman,
1988; Wiberg & Boyd, 1972; Lipton & Still, 1988; Goodman & Still, 1991; McAm-
mon & Harvey, 1987; Crippen & Havel, 1988; Weiner et al., 1983; Crippen, 1992;
Chang, Guida & Still, 1989; Weinberg & Wolfe, 1994). Each one of these methods
has strengths and weaknesses. The so-called “Stochastic techniques” (i.e. molecular
dynamics, distance geometry and Monte Carlo methods), for example, are suited for
a large class of molecule types, but require long computations to ensure a complete
examination of the conformational space. However, to save computational time, they
can better be used in combination with some additional methods which are more
useful for local analysis of the conformational space.

On the other hand, “deterministic search methods” (like systematic variation of tor-
sion angles) are the only ones which provide the certainty to find all the conforma-
tions in a given grid; however, they require a lot of computational time. In fact,
consideringN dihedral angles to be investigated in the specimen, if each torsion
angle takesp values there will bepN energy values to compute. Therefore, the com-
putational complexity of the algorithm is exponential in the number of rotable bonds.
Our opinion is that this problem is not an insurmountable difficulty, because nowa-
days in a very short time is possible to perform some computations that ten years
ago would have needed days or months. Moreover, the preliminary computation of
energy values – which represent the most time-consuming activity in our approach
– can be done separately for each conformation, thus being compatible with paral-
lel computing techniques which enable to reduce drastically the total computational
time.

The second step is devoted to the determination of the minima on the potential energy
space; the most used methods to determine the conformers of a molecule are the mini-
mization of some given conformations and the simulated annealing. The first of these
methods is able to find conformers minimizing the energy of all the conformations to
their nearest minimum. Minimization algorithms are based on gradient descent ap-
proach, so we can say that they head “down-hill” toward the nearest minimum. This
implies that “far” minima aren’t reachable using such algorithms, because it could
require some period of “up-hill” movement. The second method is used with molec-
ular dynamics or Monte Carlo computations. In a first step the system being studied
is heated and held at a certain high temperature, in order to let the molecule explore
efficiently the whole conformational space; then the system is carefully cooled in the
attempt to find all the energy minima.

The third fundamental step about the conformational investigation of a molecule con-
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cerns the determination of the energy interconversion barrier. One of the first methods
used to compute the energy of the transition state has been based on the minimization
of the gradient norm (McIver & Komornicki, 1972; Komornicki et al., 1977), or of
the energy (Poppinger, 1975). One important problem in using this method is the
lack of certainty about the convergence to a transition state; in fact, this algorithm
converges to a zero of the potential gradient, which could as well be a minimum.
In the last years a lot of different algorithms targeted to determine transition states
have been developed (Fisher & Karplus, 1992; Berry, Davis & Beck, 1988; Bell,
Crighton & Fletcher, 1981; Cerjan & Miller, 1981; Muller & Brown, 1979; Halgren
& Lipscomb, 1977; Mezey, Peterson & Csizmandia, 1977). One of the main prob-
lems of some of these methods is that they are usable only for system with few atoms
(McIver & Komornicki, 1972; Komornicki et al., 1977; Poppinger, 1975; Cerjan &
Miller, 1981; Muller & Brown, 1979; Halgren & Lipscomb, 1977; Mezey, Peterson
& Csizmandia, 1977).

The algorithms which are at the base of these different methods span between the
conjugate gradient method in conjunction with the quasi-Newton one (Bell et al.,
1981) and the conjugate peak refinement (Fischer & Karplus, 1992). Some of them
make use of molecular dynamics, like for example the method proposed by Berry,
Davis and Beck (1988).

Here is necessary to make a general remark about this third step. Considering the
non-local nature of the energy barrier computation, it is not difficult to understand
that non-exhaustive methos give only an upper bound for the energy barrier, because
they cannot exclude the existence of another path along which the energy barrier is
lower than the one they compute. So we preferred the exhaustive approach, in spite of
the large amount of computational resources that it requires. Moreover, the fact that
we are approximating the problem with a finite (and thus coarser) graph can often
be a non-removable limit of the context in which the analysis takes place, e.g. when
working with experimental sample data, which isapriori limited.

The program we present in this paper (UTN) allows to determine the conformers in
the potential energy space, and to compute the interconversion energy barrier between
a selected pair of minima by locating the involved transition state.UTN needs some
preliminary work: given a molecule which has some rotable bond – whose geometry,
relatively to its bond distance and angles, has been optimized – the torsional space
is explored exhaustively by means of a systematic search procedure. The resulting
set of conformations is then minimized, and a file is produced where each isomer is
sorted by the corresponding energy value and by the values of its dihedral angles; this
file, together with a brief configuration file, is the correct input for theUTN software.

Finally, we observe that this software, although here presented in the particular con-
text of conformational analysis of molecules, can be used in general to find energy
barriers in any problem in which there is a potential energy defined over a topological
space homeomorphic to a product of circles and (after some trivial modifications to
the software) of segments.

Statement of the problem and description of the algorithm

To begin with, we recall some standard mathematical notations. Agraph is a pair
G = (V,E); the elements ofV are called “vertices” or “points”;E is a set which
elements are unordered pairs of vertices, called “edges”. Two pointsv, w are said to
beadjacentif and only if {v, w} ∈ E. For any subsetW ⊂ V , theadjacency ofW is
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the setadj(W ) of all the pointsz 6∈ W that are adjacent to a point ofW . Finally, we
assume that in this paper we will deal only withfinite graphs, i.e. thatV (and hence
E) are assumed to be finite sets.

The input data is essentially composed by the pair “space-energy”, respectively the
graphG = (V,E) and the functionU : V −→ R; the user also has to specify two
pointsv1, v2 between which the energy barrier is computed.

To state the problem, we need the following definition.

definition 1. a pathγ in G is a sequence of pointsx1, . . . , xn such that eachxi is
adjacent toxi+1 , for i = 1, . . . , n− 1 .

γ is said to be anL-path if U(x) ≤ L for all x ∈ γ .

γ is said tojoin its two endpointsx1 andxn.

Intuitively speaking, anL-path is a path along which the energy is bounded from the
above byL.

Consider now the following problem:

problem 1 (finding the barrier). Given two pointsx, y ∈ V , find the minimum
valueL ∈ R such that there exists anL-pathγ , joining x with y .

definition 2. SuchL is the energy barrier betweenx andy.

Using the concept ofL-pathwise connected components, the barrier-finding problem
can be stated in a form that is equivalent, but more fit for the purpose of the descrip-
tion of the algorithm.

definition 3. For anyL ∈ R andx ∈ V , we define

V (x, L) :=
{

z ∈ V there exists anL-path joiningx with z
}

.

We refer toV (x, L) as theL-pathwise connected component ofX that containsx.

The above problem can thus be formulated in the following alternate way:

problem 2 (finding the barrier, alternate formulation). Given two pointsx, y ∈
X, find the minimum valueL ∈ R such thaty ∈ V (x, L).

remark 1. The finiteness ofG implies trivially that such minima always exist. Also,
it is easily seen that both the former statement and the latter one are equivalent, i.e.
with the same input data they have the same solution. (This is immediately proved
by noting thatLformer≤ Llatter and that the strict inequality would lead to an absurd.)

Now we describe the algorithm, which follows closely the alternate formulation of
the problem.C is a real variable that will change its value during the computation,
starting fromU(x) and gradually increasing until it takes the value of the barrier. At
each step, the algorithm will travelV along the edges, marking the points that have
been “visited”, until it reachesy. We will denote withM the subset ofV composed
by marked points, which plays the role ofV (x, L) asL increases.

1. mark the pointx and setC := U(x).
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2. if y ∈ M , then the algorithm ends; the current value ofC is the barrier between
x andy.

3. if there is a pointz ∈ adj(M) such thatU(z) ≤ C, then markz and go to step
2;

4. let z be a minimum for the energyU in adj(M); setC := U(z), markz and
go to step 2.

proposition 1. The algorithm stops after a finite number of steps. Moreover, the final
value ofC is equal to the solutionL of the above stated problem.

Proof. The algorithm proceeds by initially settingV = {x} ant then sequentially
executing the described steps, going back to step 2 until the stop condition becomes
true. But just before the jump to step 2, the setM is enlarged by the adjunction of a
new pointz. BeingM a subset of the finite setV , after at most|V | − 1 jumps the
algorithm stops becausey belongs toM .

L ≤ C holds, becausey ∈ M andM ⊂ V (x,C). Indeed, this last condition is
trivially true at the beginning and it is easily seen to be preserved at each step of the
algorithm.

But alsoC ≤ L. Observe that the only choice forC to be changed is in step 4, and
initially C = U(x) ≤ L. So we only need to show that at step 4C cannot be set at a
value greater thatL.

Suppose by contradiction that at a certain moment the algorithm comes to step 4 and
setsC to a valueC0 > L; this can be only ify 6∈ M , because the algorithm ends just
after having markedy. MoreoverC0 must be the minimum value ofU on adj(M),
implying L < U(z) for anyz ∈ adj(M).

By definition ofL there exists anL-pathγ = (x1 = x, . . . , xn = y) joining x andy,
that isL ≥ U(xj) for eachj = 1, . . . , n. The last two inequalities say thatγ cannot
intersectadj(M). But this is absurd, sincex ∈ M andy 6∈ M .

The UTN program

Let S1 denote the circle{z ∈ C such that|z| = 1} , and writeZk for the ring of inte-
gers modulok. If the conformational spaceX is homeomorphic to ann-dimensional
torusS1 × · · · × S1, then there is a natural and simple way to build a graphG which
gives a good approximation ofX.

By choosing a positive integermj for each circle, we consider the following (injec-
tive) map:

ϕ :
(
[a1], . . . , [an]

)
7−→

(
ϕm1(a1), . . . , ϕmn(an)

)
∈ S1 × · · · × S1 ∼= X

where

ϕm : [a] ∈ Zm 7−→ exp
(

2πia

m

)
∈ S1

We setV := Zm1 × · · · ×Zmn ; ϕ identifies the verticesV of the graph with a “grid”
ϕ(V ) of points onX. By composition withϕ, we define the energy functionU onV
from the energy function onX.
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Since the edges ofG must correspond to “small” movements on the spaceX, we
build E by putting in it all the pairs of vertices{(x1, . . . , xn), (y1, . . . , yn)} such that

max
j

dmj (xj , yj) = 1

(heredk([a], [b]) = min(|a− b|, k − |a− b|), the cyclic distance inZk).

TheUTN program, written in the C language, implements this case. The user has to
supply a configuration file, containing the values forn, m1, . . . ,mn, and a data file,
with the samples of the various values ofU . Some example data files, along with the
source code of the software, are available.

Examples

To show how the programUTN works, we describe an analysis of the conforma-
tional behaviour of diphenylmethane, 1,2-diphenylethane and 1,2-diphenylpropane.
We decided to present these compounds, here, because already there exist some con-
formational studies on these compounds which can be compared with our results
(Barnes et al., 1981; Ivanov, Pojarlieff & Tyutyulkov, 1976; Jacobus, 1976; Eliel et
al., 1965; Clark, 1985; Jeffrey, 1945; Cruickshank, 1949; Harada, Ogawa & Tomoda,
1995; Kahr et al., 1995).

The conformational space of each molecule was systematically searched by means
of theSearch_Compare R© program, which is part of the molecular-modeling pro-
grams ofMSI. Discover R© was used to calculate the energy contents of each confor-
mation, using theCVFF force field (Dauber-Osguthorpe et al., 1988). The images
regarding the analysis of the results have been made with theInsight II R© interface.
TheMSI suite runs on a IBM RISC 3AT computer.

Once we determined all the conformations, these were minimized keeping the torsion
angles to their current values by means of a torsion force of5 · 104 kcal mol−1.

In the diphenylmethane case, each rotable bond was scanned by eusing aφ-increment
of 5◦ from 0◦ to 180◦, this latter upper limit being chosen because of the intrinsic
rotational symmetry of the phenyl ring. Thus 1296 structures were generated.

For the 1,2-diphenylethane, the angular increment was set to 5◦ for τ1 andτ3 and 10◦

for τ2, with angular amplitudes of 180◦, 360◦ and 180◦ for τ1, τ3 andτ2 respectively.
A total of 46656 conformations was produced.

Finally, 139968 conformations were originated from the systematic search on the
1,2-diphenylpropane by using steps of 10◦ for each scanned torsion and amplitudes
set to 180◦, 360◦, 180◦ and 120◦ for ω1, ω2, ω3 andω4 respectively.

Results

Diphenylmethane

TheUTN1 routine found out two isoenergetic minima in the bidimensional potential
energy surface (see Figure 1). The energy barrier for the isomers’ interconversion, as
computed byUTN2, is ca.2.5 kcal mol−1, being the transition state characterised by
an eclipsed disposition of the two phenyl rings.

Regarding the experimental evidences, we have found only one structure in the solid
state for diphenylmethane (Barnes et al., 1981). The experimental torsion angles are
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64◦ and 72◦ respectively forφ1 andφ2. In our systematic conformational search the
conformation havingθ1=65◦ andθ2=70◦ is ca. 1 kcal mol−1 higher than the absolute
minimum conformation.

1,2-Diphenylethane

The UTN1 routine found three energy minima in the three-dimensional conforma-
tional space of the 1,2-diphenylethane molecule (see Figure 2), two of which show
a±synclinal (±70◦) arrangement of the central torsion angle, and the third one (the
absolute minimum) atrans conformation of the central torsionτ2. Concerning the
dihedral anglesτ1 andτ3, we have found that the three minima values lie in the range
85◦-95◦. All the retrieved X-ray data (Jeffrey, 1945; Cruickshank, 1949; Harada,
Ogawa & Tomoda, 1995; Kahr et al., 1995) shown centrosymmetric molecular struc-
tures having antiperiplanar conformation (τ2=180◦) and±synclinal values forτ1 and
τ3 (min. value±69◦, max. value±73◦).

Regarding theoretical calculations, some results have been already obtained;MM3
calculations (Harada, Ogawa & Tomoda, 1995) give for the torsion anglesτ1 and
τ3 values of±90◦. About the central dihedral angle, some theoretical computations
have been reported (Ivanov, Pojarlieff & Tyutyulkov, 1976, Jacobus, 1976) which
state the synclinal conformation [τ2 = ±60(±30)◦] (Klyne & Prelog, 1960) to be the
preferred one, while theMM2 force field (Eliel et al., 1965; Clark, 1985) indicates
the anti form to be the most stable. Our results indicate the synclinal conformers,
relative toτ2 value, to be∼ 0.3 kcal mol−1 higher in energy than the antiperiplanar
one, being the energy barrier for the isomers’ interconversion of∼ 3.5 kcal mol−1.
Both the isoenergetic mirror-like transition states exhibit a±anticlinal conformation
relatively to the centralCal−Cal bond.

1,2-Diphenylpropane

Four are the energy minima lying on the four-dimensional conformational space
(see Figure 3). Three of them, havingω2 of -70◦(gauche1), +70◦(gauche2) and
+80◦(gauche3), can be described as synclinal orgaucheisomers, while the fourth has
an antiperiplanar oranti conformation relatively toω2 (-170◦). The gauche1 isomer
resides in the absolute minimum separated by an energy barrier of∼ 4 kcal mol−1

from the anti one, which is higher in energy of only 1.34kcal mol−1. The transition
state is characterised by an -anticlinal conformation in respect toω2. This result,
which is in contrast with the intuitive idea that the steric interactions in agauchecon-
former might be more relevant than those occurring in the correspondinganti one,
was already pointed out in a theoretical study concerning the 1,2-diphenylpropane
molecule (Jacobus, 1976). In this case, also,MM2 predicts (Eliel et al., 1965; Clark,
1985) theanti form as the most stable, accordingly to the results of an experimental
solution study performed on the molecule (Jacobus, 1976).
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Figure 1: Conformation of the found minima and of the transition state of diphenyl-
methane

(click on the image to go back)
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Figure 2: Conformation of the found minima and of the transition states of 1,2-
diphenylethane

(click on any image to go back)
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Figure 3: Conformation of the found minima and of the transition states of 1,2-
diphenylpropane

(click on any image to go back)
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