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Summary. — The space charge region surrounding a highly charged, electron
collecting, spacecraft moving in the ionospheric plasma, can be divided into an inner
zone (close to the spacecraft), where electron collection is isotropic with respect to
the magnetic-field direction, and an outer zone where the electrons are mainly
collected along magnetic field lines. In this paper we outline a theory to obtain the
current voltage characteristic of such a positive satellite. It is shown that the
theoretical results compare very favorably with the experimental data obtained by
the TSS-1R mission.

PACS 94.20 – Physics of the ionosphere.

1. – Introduction

In this paper we consider the problem of current-voltage characteristics for a
positively charged satellite moving in the ionospheric plasma. The problem is important
in relation to tethered satellite systems, like the TSS-1 flown in 1992 [1, 2] and reflown
again in 1996 under the name TSS-1R. The theory presented aims in fact at explaining
the data obtained from the TSS-1R mission [3].

In a previous paper [4] we considered several aspects of the problem of charged-
particle collection by a spherical satellite moving in the Earth’s ionosphere. One of the
findings was that, for potentials Fs of the satellite above a certain value Fe ,

FsDFe ,(1)

the charged-particle collection was becoming isotropic with respect to the magnetic-
field direction. By introducing dimensionless potentials F

A with

F
A4

eF

kTe

(*) The authors of this paper have agreed to not receive the proofs for correction.
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the limiting value Fe was found to be given by

F
A

e4e224
r 2

s

a 2
e

,(2)

with rs the satellite radius and ae the electron Larmor radius. Notice that, in the above
formula, the electron thermal velocity is defined as vthe4 (kTe /me )1/2 . For typical
parameters relevant to the TSS missions, Fe is about 40 V.

Condition (1) is precisely the condition under which the inertia terms, in the elec-
tron momentum equations, dominate over the magnetic force (proportional to v3B).
On the other hand, the same condition coincides with the violation of adiabaticity in a
theory of electron drifts in crossed electric and magnetic fields [5].

Considering the behaviour of the self-consistent potential around the charged body,
and for potentials Fs satisfying eq. (1), we therefore have a region of spherical
symmetry surrounding the body, extending to a certain radial distance re . Within that
region, the potential decreases from Fs to Fe . On the other hand, for rDre the
magnetic force on the electrons becomes important so that electron channeling along
magnetic field lines takes place. This outer region has therefore cylindrical symmetry
with respect to the magnetic-field direction. This is true, at least, for FDFv , where
Fv45.3 V is the voltage equivalent of the ion kinetic energy due to the relative motion
between the spacecraft and the ionosphere. For FDFv we have in fact only electrons
and, therefore, space charge effects. On the other hand, for FEFv , ions will be
present and will tend to make the plasma quasi-neutral.

The overall picture of the perturbed region surrounding the charged body, for FDFv ,
is qualitatively shown in fig. 1. If FsEFe , there is no isotropic region and the potential
outside the satellite exhibits only cylindrical symmetry with respect to B .

In the case of high potentials (eq. (1)), and in the quoted paper [4], we envisaged a
way to calculate the collected current by essentially solving the problem only for the
internal isotropic region. The work presented here is organized as follows. In sect. 2 we
analyze the inner isotropic region (see fig. 1) and reformulate the derivation analyzed
in ref. [4] in a different and clearer way; in so doing, we also correct an algebraic
mistake that was present in that analysis. In sect. 3 we deal with the outer region (see
fig. 1) characterized by electron channeling along magnetic lines. In sect. 4 we first
show the data on I-V characteristics obtained from TSS-1R [3]. These data, as already

Fig. 1. – Schematic illustration of the perturbed region surrounding the charged body.
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mentioned in ref. [3], suggest very strongly that the current, normalized to the thermal
current, depends on the potential Fs of the satellite through the dimensionless
parameter

F*s 4F
A

sg l d

rs
h4/3

,(3)

which is characteristic of space charge theory. In eq. (3) l d is the electron Debye length
defined by

l d4 g kTe

4pe 2 n0
h1/2

.

In the rest of sect. 4 we compare the experimental characteristics with those
obtained from our theory which in fact predicts a dependence of the current on the
dimensionless potential F*s . The agreement, for what concerns the functional
dependence of currents from potentials, is indeed quite good. A correction factor (of
about 2.7) is however needed to bring the theoretical curve to match the experimental
points. We argue that the above factor can be due to effects of the relative velocity flow
between satellite and plasma, as envisaged by several authors [6, 7].

2. – Current collection by the high-potential region

In spherical symmetry, the current I is a constant

I44pen0 ve r 24const .(4)

Referring to the radius re , we write

I44pre
2 je ,(5)

with je the current density at the radius re .
In a problem of complete spherical symmetry (no magnetic field and no plasma flow

relative to the spacecraft), re would be the sheath radius, representing the boundary
between the non-neutral and the neutral plasma, and je would be the thermal current
density

j04
1

4
n0 evthe(6)

with

vthe4o 8kTe

pme

.(7)

We do not have an overall spherical symmetry in our case. As F
A

ec1 (for TSS,
F
A

eA200), outside re we have a further region of suprathermal potentials which is
controlled by the magnetic field for FDFv and, when FEFv , by the velocity flow.
Hence je will be different and, plausibly, greater than j0 .

To evaluate (5), we must first evaluate re which is the distance at which the potential
has dropped to the value Fe . We therefore need to solve for the radial distribution of
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the self-consistent potential. The problem that we consider is that of a spherical diode
with an external (electron) emitter at radius re and an internal collector (the satellite)
at radius rs . We will see that the equation governing the potential distribution is, under
certain assumptions, identical to that derived by Langmuir and Blodgett (LB) [8] but
with only one different boundary condition. More precisely, whereas F(re )40 in the
LB problem, in our case it is F(re )4Fe .
Let us start from Poisson’s equation

d2 F

dr 2
1

2

r

dF

dr
44pene .(8)

Because of I44pr 2 ne evr4const , we can write

d2 F

dr 2
1

2

r

dF

dr
4

I

r 2 vr

.(9)

From conservation of energy, in the spherically symmetric region, we have

me vr
24me vre

2 12e(F2Fe ) ,(10)

where vre4vr (r4re ). The determination of vre requires now a matching of the
spherically symmetric region with the region outside re . In this outside region the
electron motion is dominantly parallel to B . For the velocity vz of this motion, starting
from Q with F40, we obtain

me v 2
z 42eF .

or, if we want to take into account an initial velocity of the order of the electron thermal
velocity vthe of this motion, starting from Q with F40, we obtain

me v 2
z 4me v 2

the12eF .

At r4re , we obtain

me v 2
ze4me v 2

the12eFeA2eFe ,(11)

where the last approximation is based on F
A

ec1. Now, the transition between the
motion parallel to B outside re and the inward radial motion for rEre will not be of
course discontinuous. In the impossibility of describing the real transition, we will
assume that

vreAvze ,(12)

i.e. the parallel velocity is discontinuously translated, ar r4re , into a radial velocity (in
reality, eq. (12) will be true only when vze is already radial, otherwise, vre will tend to be
smaller than vze ) . Notice also that eq. (12) is crucial to obtain exactly the LB
equation.

With (11) and (12), eq. (10) becomes

me v 2
r 42eF ,(13)
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Substituting in (9) we obtain

d2 F

dr 2
1

2

r

dF

dr
4

I

r 2 g me

2eF
h1/2

.(14)

Now let us first introduce a dimensionless radius

r×4
r

re

,(15)

and then use

g4 ln r× ,(16)

as the independent variable. Equation (14) then becomes

d2 F

dg 2
1

dF

dg
4I g me

2eF
h1/2

(17)

and F has to satisfy the following boundary conditions:

F(g40)4Fe , F(g s )4Fs(18)

with g s given, according to the definition (16), by

g s4 ln
rs

re

.(19)

Notice that, as already anticipated, the first of conditions (18) is different from the
corresponding one of the old LB problem (in that case F(g40)40) . Our condition
now involves the magnetic field.

The next step, following the LB formulation, is that of defining a new dependent
variable a(r×), in place of F(r×), through

I4
4

9
g 2e

me
h1/2 F3/2

a 2
.(20)

Using (20) in (17), we transform it in the following equation in a :

g da

dg
h2

13a y d2 a

dg 2
1

da

dg
z41 ,(21)

which is exactly the equation of Langmuir and Blodgett. The boundary conditions for
a are now, from (18) and (20)

a 2 (g40)4
4

9
g 2e

me
h1/2 F3/2

e

I
, a 2 (g s )4

4

9
g 2e

me
h1/2 F3/2

s

I
.(22)

For zero magnetic field, we would obtain Fe40 and, hence, a 2 (g40)40 as in
LB spherical theory. Because of the different boundary conditions, we can write for
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the solution of eq. (21)

a 2 (g)4a 2 (g40)1a 2
LB (g) ,(23)

with a 2 (g40) given by the first of equations (22) and a 2
LB (g) the LB solution.

Let us now come back to the problem of determining the I-V characteristic. As I4
const , writing (20) at r4rs , we have

I4
4

9
g 2e

me
h1/2 F3/2

s

a 2 (g s )
.(24)

On the other hand, we can also use eq. (5) for the current so that

9pr 2
e je a 2 (g s )4 g 2e

me
h1/2

F3/2
s .(25)

Substituting the solution (23), calculated in g s , and using (22) for a 2 (g40), we
further obtain

9pr 2
e je a 2

LB (g s )1 g 2e

me
h1/2

F3/2
e 4 g 2e

me
h1/2

F3/2
s .(26)

If we now introduce the potential F*s , as defined in eq. (3), we can rewrite (26)
as

9

8 kp

r 2
e

r 2
s

j×e a 2
LB (g s )1 (F*e )3/24 (F*s )3/2 ,(27)

with

F*e 4F
A

eg l d

rs
h4/3

and having defined a normalized current density

j×e4
je

j0

(28)

with j0 , the true current density at Q , defined by eqs. (6) and (7).
Equation (27) must be solved for re /rs which is then obtained as a function of F*s .

The result has to be substituted in eq. (5), which, normalized to I0

I044pr 2
s j0 ,(29)

gives

I

I0

4 g re

rs
h2

j×e .(30)

Notice that eq. (27) depends on the background magnetic field through the term Fe

and the normalized current density j×e .
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3. – Current collection by the low-potential region

The quantity j×e must be determined by a theory of the exterior region (rEre ) where
the potential should have a dominant axial symmetry with respect to the magnetic field
(at least as long as FDFv ).

The problem, therefore, is that of the current collected in the presence of a
magnetic field by a sphere of radius re charged at potential Fe .

In the outer region we will assume the current density conservation

jzA const

as the motion of the charged particles is dominantly parallel to B (v»Evz in the drift
approximation). This current density can therefore be equated to the value of the
quasi-neutral region. Thus, neglecting, for the time being, effects connected to the
relative flow between the satellite and the ionospheric plasma, we have

jzA j0(31)

with j0 given by eq. (6).
The total current collected by the sphere of radius re can be written as

I4Iz1I» .(32)

Iz is the contribution to the current from electrons moving parallel to the magnetic field
and I» is the contribution coming from perpendicular electron drifts. For the parallel
contribution we have, because of the axial symmetry of the problem,

IzA2pr 2
e j0 .(33)

As for the perpendicular contribution, we have that, in the drift approximation, an
electron experiences, besides the motion parallel to B with velocity vz , a radial drift vr

normal to the axis of the system given by [9]

vr42
evz

mv 2

¯2 F

¯r¯z
,(34)

v being the electron cyclotron frequency. The corresponding current density is

jr42
ejz

mv 2

¯2 F

¯r¯z
.

The perpendicular current is then calculated from

I»4IrA
ej0

mv 2
��r df dz

¯2 F

¯r¯z
,

where we have used eq. (31) for jz . The integral in z goes from 2Q to 2re and then
from 1re to 1Q if we denote by Q the unperturbed plasma (or the quasi-neutral
region). The two pieces are identical and, integrating by parts with respect to z , we
obtain

I»A
2ej0

mv 2
�r df

¯F

¯r
.
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The integration in f goes from 0 to 2p . As F , in axial symmetry, is independent of
the azimuthal coordinate f , the final result is, in order of magnitude,

I»A4pFe

ej0

mv 2
.(35)

Substituting (33) and (35) in (32), using the definition (2) for Fe , and then normalizing
in the usual way, we obtain

I

I0

4
1

2
g re

rs
h2

f (re ) for FsDFe ,(36)

with

f (re )4112g rs

re

h2

.(37)

The correspondence of (36) with our previous formulation (eq. (30)) is therefore
obtained with

j×e4
1

2
f (re ) .

Finally, because of the fact that the quasi-neutral region extends to the potential
Fv , it is likely that the current density there will be higher than the thermal current
density, as supposed in eq. (31). Effects of the velocity flow leading to increased
currents have been considered by several authors [6, 7]. We will take such effects into
account by enhancing the current density above j0 by a factor bD1. With that, the
equation for the current will be

I

I0

4
1

2
g re

rs
h2

bf (re ) for FsDFe ,(38)

with f (re ) given by eq. (37) and the radius re obtained from the solution of

9

16kp

r 2
e

r 2
s

bf (re ) a 2
LB (g s )1 (F*e )3/24 (F*s )3/2 .(39)

4. – Comparison with experimental data

The first analysis of data from various experiments on TSS-1R, leading to
current-voltage characteristics of the satellite, was reported in ref. [3]. Figure 2 shows
the results obtained. On the top panel the normalized current I/I0 is plotted as a
function of Fs /F0 . F0 corresponds to the Parker and Murphy (PM) potential [10], so
that, according to the PM theory, I/I0 should follow a law dependent on (Fs /F0 )1/2 . On
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Fig. 2. – Current-voltage characteristic of the TSS-1R satellite. The normalized current is plotted
as a function of Fs /F0 in the top panel and F*s in the bottom panel. The solid lines represent the
best fit of data with power functions. The relevant analytical expressions are shown in the figure.

Fig. 3. – Comparison between the experimental and theoretical characteristics. The squares
represent the TSS-1R data. The open circles are the theoretical points obtained from eqs. (38) and
(39) for b41 and b42.7.
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the other hand, in the bottom panel I/I0 is plotted vs. the dimensionless potential F*s .
It is immediately apparent, and it was already remarked in ref. [3], that the values of
I/I0 appear to be better organized as a function of F*s rather than as a function of
Fs /F0 . The scatter of the experimental points is in fact much smaller for the plot on the
bottom panel than for the one on the top.

Some statistical analysis supports that more quantitatively. In the figures, along
with the experimental points, we have also reported the results of the best fit of the
curves with power laws in the variables Fs /F0 , and F*s , respectively (solid lines). The
power functions have been chosen with the additional constrain that the extrapolation
at zero potential must reproduce a normalized current equal to 1/2 as expected for the
channeling of the electrons along the magnetic field lines. The analitical functions
obtained by the best fit are shown in the two panels of fig. 2. In both cases, as we see,
the exponent of the power law is close to 0.5. However, the standard deviation is quite
high (s40.93) for the best fit in the plot of I/I0 vs. Fs /F0 , whereas it is much smaller
(s40.55), when I/I0 is plotted vs. F*s .

As F*s is the characteristic potential appearing in space charge theories, we think
that the experimental data provide a strong indication for space charge effects taking
place.

It is then worthy to compare the experimental results with the theory presented in
this paper, which is in fact based on space charge.

Such a comparison between the experimental and theoretical current-voltage
characteristics is reported in fig. 3. The squares in the figure are the experimental
points obtained from TSS-1R data. The open circles are the theoretical points obtained
from a computation of eqs. (38) and (39) corresponding to the values b41 and b42.7 of
the parameter b . The value of b42.7 gives the best matching with the experimental
points. If we fit the theoretical curve corresponding to b42.7 with a power law (and
impose I/I041/2 at Fs40), we obtain

I

I0

4
1

2
14. 31(F*s )0.551 .(40)

The exponent of this fit is reasonably close to the exponent obtained for the fit of the
experimental points (see the bottom panel of fig. 2) so that we can say that theoretical
and experimental characteristics agree well in the dependence of the normalized
current I/I0 on the potential F*s .

As already mentioned, several authors [6, 7], with different arguments, have
pointed out that effects of the relative velocity flow between satellite and plasma can
bring an increase in current. Even though the value of this increase varies in the
different treatments (so that we still have an open problem here), it seems entirely
reasonable to associate with this effect the value that we need for our scaling
parameter b (bA2.7), to obtain the best agreement with the data.

Notice, finally, that our theoretical points in fig. 3 refer to the region FsDFe . We
did not attempt any comparison of our model theory with the data below Fe (FeA40 V ),
because we think that the significant errors on the data at low potentials (due to an
uncertainty of A10 V in the measurement of the Orbiter potential), would render such
comparison highly uncertain.
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