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Summary. — Direct numerical simulations of decaying two-dimensional (2D)
turbulence inside a square container with no-slip boundaries have been carried out
for Reynolds numbers up to 2000. The role of the boundary layers during the decay
process has been illustrated with ensemble-averaged results for the power law
behaviour of several characteristic properties of the coherent vortices which emerge
during the decay of 2D turbulence. The evolution of the vortex density, the average
vortex radius, the enstrophy and the vorticity extrema have been computed. An
algebraic decay regime has been observed during the initial turbulent decay stage.
The computed decay exponents disagree, however, with the exponents from the
classical scaling theory for 2D decaying turbulence on an unbounded domain. This is
attributed to the presence of no-slip boundaries. Additionally, the temporal evolution
of the average boundary-layer thickness has been studied by computing the
ensemble-averaged viscous stress and normal vorticity gradient near the no-slip
boundaries. These computations reveal that d (t)C t 0.4 and that the average
boundary-layer thickness is proportional with Re20.5.

PACS 47.27.Eq – Turbulence simulation and modeling.
PACS 47.32.Cc – Vortex dynamics.
PACS 47.11 – Computational methods in fluid dynamics.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Numerical simulations of freely evolving 2D turbulence in containers with
impermeable no-slip boundaries have revealed several interesting features such as the
spontaneous spin-up of the fluid during the decay process [1], and the anomalous power
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law behaviour of the decay of the average number of vortices during the flow
evolution [2]. The investigation of spontaneous spin-up of the fluid, which is
characterised by a rapid increase of the absolute value of the total angular momentum
of the flow due to interaction of the flow with the rigid no-slip boundaries, is based on
several runs which have been carried out for Re = 1000, 1500 and 2000. In each of the
numerical simulations the initial condition consists of a flow field containing only a very
small amount of net angular momentum. The large-scale Reynolds number in these
simulations is based on the RMS velocity of the initial flow field and the half-width of
the domain. The spontaneous spin-up of the fluid has been observed for a majority
(approximately 75%) of the runs and the final decay regime is for these runs usually
characterised by the formation of a strong monopolar vortex or a rotating tripolar
structure. Since the angular momentum of unbounded viscous flows is conserved when
the total circulation (as in bounded domains with no-slip walls) is zero, the spontaneous
spin-up of the fluid is entirely due to the finiteness of the flow domain. Another
interesting aspect is the temporal evolution of the number of vortices (vortex density),
the evolution of the average vortex radius, the value of the vorticity extrema during the
decay process, the enstrophy decay rate, etc. From a set of simulations with 1000G
ReG2000 it appears that the temporal evolution differs nontrivially from the
theoretically predicted evolution by Carnevale and coworkers [3, 4], which is valid for
two-dimensional high Reynolds number flows on an infinite domain. It might be
expected that this difference is due to the presence of no-slip boundaries, which serve,
on the one hand, as a source of small-scale vorticity in the form of filaments or as a
source of intermediate-scale vortices, but, on the other hand, vortices might be
dissipated faster in the turbulent background flow when they are substantially
weakened after strong vortex-wall interactions. Although the effect of the boundary
layers on the vortex statistics is rather convincing, a more thorough comparison
between runs with periodic and with no-slip boundary conditions should finally be
carried out, preferably at higher Reynolds numbers, in order to support the present
observations more firmly. Another interesting aspect, which has not been discussed so
far, is the temporal evolution of the boundary layers during the initial turbulent decay
stage, i.e. the creation of the boundary layers and the subsequent growth of the
average boundary-layer thickness.

The organisation of this paper is as follows: the numerical scheme is recalled in
sect. 2, where also the initialisation procedure of the simulations is sketched. Results of
numerical simulations of decaying 2D turbulence with no-slip boundary conditions and
the vortex statistics data obtained with these computations are shortly summarised and
compared to data from the literature in sect. 3. In sect. 4 the growth of the boundary
layers during the initial turbulent decay stage is discussed. Conclusions are presented
in sect. 5.

2. – Numerical scheme and initialisation procedure

We report here on results of numerical simulations of freely evolving 2D turbulence
on a square domain with impermeable no-slip boundaries for Reynolds numbers up to
2000. Simulations of the full 2D Navier-Stokes equations are carried out with a 2D
Chebyshev pseudospectral algorithm with a maximum of 289 Chebyshev modes in both
directions [2, 5]. The flow domain D with boundary ¯D is a two-dimensional square
cavity (in dimensionless form the square [21, 1]3 [21, 1 ]), Cartesian coordinates in
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a frame of reference are denoted by x and y, and the velocity field is denoted by u4
(u , v). The equation governing the nondimensional (scalar) vorticity v4¯vO¯x2
¯uO¯y is obtained by taking the curl of the momentum equation. The following set of
equations has to be solved numerically in D:

¯v

¯t
1 (u Q˜)v4

1

Re
˜2 v ,(1)

˜2 u4k3˜v ,(2)

with the boundary condition u = 0 and enforcing k Q˜3u4v on ¯D by an influence
matrix method [5]. An initial condition, vNt404k Q˜3ui, where ui is the initial velocity
field, is also supplemented. The Reynolds number is defined as Re4UWOn, with U a
characteristic velocity (based on the RMS velocity of the initial flow field), W the
half-width of the box and n the kinematic viscosity of the fluid. The time is made
dimensionless with WOU, and tB1 is comparable with an eddy turnover time. The time
discretisation of the vorticity equation (1) is semi-implicit: it uses the explicit
Adams-Bashforth scheme for the advection term and the implicit Crank-Nicolson
procedure for the diffusive term. Both components of the velocity and the vorticity are
expanded in a double truncated series of Chebyshev polynomials. All numerical
calculations, except the evaluation of the nonlinear terms, are performed in spectral
space, i.e. the Chebyshev coefficients are computed. Fast Fourier Transform methods
are used to evaluate the nonlinear terms following the procedure designed by
Orszag [6], where the padding technique has been used for de-aliasing.

The initial condition for the velocity field, denoted by ui , is obtained by a zero-mean
Gaussian random realisation of the first 65365 Chebyshev spectral coefficients of both
ui and vi , and subsequently applying a smoothing procedure in order to enforce ui40
at the boundary of the domain. The variance s nm of the velocity spectrum of ui is chosen
as

s 2
nm4

n

[11 (1O8n)4 ]

m

[11 (1O8m)4 ]
,(3)

with 0Gn , mG64, and s nmf0 for n , mF65, and the resulting flow field is denoted
by U(x, y). The smoothing function is chosen as f (x)4 [12exp [2b(12x 2 )2 ]], with
b4100. The initial velocity field is thus: ui (x,y)4 f (x) f(y) U(x,y), where the flow field
is normalised in order to enforce the L 2-norm of the velocity per unit surface of the
initial flow field to be equal to unity. The kinetic energy E and the enstrophy V of the
flow are defined as

E4
1

2
�

21

1

�
21

1

[u 2 (x , y)1v 2 (x , y) ] dx dy ,(4)

V4
1

2
�

21

1

�
21

1

v 2 (x , y) dx dy .(5)

It should be emphasised that for all numerical runs the kinetic energy of the flow
field drops from E(t40)42 (see eq. (4)) to E(t401 )B1 during the first time
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integration step, because the initial velocity field, with ˜ Quic0, is then projected onto
the subspace of divergence-free velocity fields. Values for the energy and the
enstrophy during the simulations are normalised with their values obtained after the
first time integration step. A more proper treatment for obtaining a divergence-free
initial velocity field is discussed in a review paper by Gresho [7], but for the present
simulations the procedure described above is sufficient; the details of the initial flow
field are not important.

3. – Decaying 2D turbulence: general results

Simulations have been carried out for three values of the Reynolds number:
Re = 1000, 1500 and 2000. For each Reynolds number an ensemble of twelve
simulations, initialised by different random flow fields which all have in common that
the net angular momentum of these flow fields is approximately zero, have been used to
compute ensemble-averaged values of several properties of the vortices. Additionally,
these ensemble averages are the basis of the investigation of vortex-wall interactions
and associated boundary-layer characteristics, and are used for determining the
characteristic time scales of decaying 2D turbulence (including the spontaneous
spin-up time scale). Present investigation requires so-called well-resolved simulations,
especially when the flow in boundary layers has to be computed accurately. The
qualification “well-resolved" for present simulations means that the smallest
dynamically active scales are sufficiently resolved and that the decay process and
boundary-layer dynamics becomes effectively independent of a further increase of the
number of degrees of freedom (i.e. the number of Chebyshev expansion coefficients)
used in the numerical simulations. In order to get a well-resolved simulation of the flow
dynamics, it turned out that the minimum number of Chebyshev modes should be at
least NB6 kRe [2].

The decay scenario of 2D turbulence is strongly modified by the presence of no-slip
boundaries, and differs completely from the scenario observed for decaying 2D
turbulence on a domain with periodic boundary conditions. This is nicely illustrated by
a run with Re42000 for which contour plots of the vorticity are shown in fig. 1.
Self-organisation of the flow, due to an inverse energy cascade, is clearly visible by the
increase of the average vortex radii (see, e.g., the growth of the vortex in the top-left
corner in figs. 1a-d). The formation of strong boundary layers as a consequence of
vortex-wall interactions, and the results of the dynamical activity of the vorticity
filaments, are clearly visible throughout the flow evolution. During the intermediate
time scales (tF10) boundary layers, together with the larger vortices, dominate the
global flow evolution. Clearly, the observed flow behaviour is remarkably different
from what is observed in simulations of freely evolving 2D turbulence with periodic
boundary conditions, which have been reported abundantly in the literature (see, e.g.,
refs. [8, 9]) and which are therefore not reproduced here.

Simulations with no-slip boundary conditions show thus that the boundary layers,
due to shear nearby no-slip walls, play an important role in the decay of turbulence.
The boundary layers serve as sources of small-scale vorticity in two different ways:
either vorticity is continuously injected into the interior of the flow domain in the form
of filamentary structures, or the boundary layer rolls up into a vorticity blob. In the
latter case this vorticity blob usually pairs with the neighbouring (primary) vortex, thus
forming a dipolar structure. Due to the process of boundary-layer activity, a rapid
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Fig. 1. – Vorticity contour plots of a simulation with no-slip boundary conditions, Re = 2000.
Dashed contours represent negative vorticity, and solid contours represent positive vorticity. The
contour level increment is (a) 3, (b) 1.5, (c) 0.75, (d) 0.4, (e) 0.2, and (f) 0.1.

self-organisation of the flow towards one or two large vortices is inhibited in the early
decay stage.

During the flow evolution of decaying 2D turbulence the sets of simulations with
Re = 1000, 1500 and 2000, respectively, show that three different stages can be
distinguished [2]. The first one, which is relevant in present report on vortex statistics
and average boundary-layer growth, is the initial turbulent decay stage (0G tG
0.2kRe). The average scale l of the coherent structures, initially of the order of l4
0.01W, grows rapidly due to merging of like-sign vortices and the formation of
medium-sized dipoles (mainly by vortex-wall interactions). When the average scale of
the vortices is increased to lB0.4W, vortex-wall interactions start to become a
dominant feature during the further flow evolution. This is reflected in the
non-monotonous decay of the enstrophy, which clearly indicates the production of
vorticity in the boundary layers. The ratio of normalised enstrophy over kinetic energy,
computed for the run shown in fig. 1, is plotted in fig. 2a. The non-monotonous decay of
the enstrophy is clearly visible from this figure. The second stage (0.2 kReG tG
3 kRe), which is also called the spontaneous spin-up stage, is characterised by strong
vortex-wall interactions and the formation of coherent structures with sizes
comparable with the container dimension (see fig. 1d-e). The majority of the runs
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Fig. 2. – V(t) /E(t) for the run shown in fig. 1 (a), and the ensemble-averaged results for V(t) /E(t)
for Re = 1000, 1500 and 2000 (from left to right) (b). The straight line represents the decay
exponent z42 0.63.

shows a rapid growth of the (absolute value of the) angular momentum of the flow,
reflecting the spontaneous spin-up, and the angular momentum decays afterwards only
very slowly. The third stage (tF3 kRe) shows a relaxation process to a more or less
monopolar structure or a rotating tripole (see fig. 1f ) that is situated in the centre of
the container, subsequently followed by viscous relaxation. It is also possible to
recognise a pure Stokes decay phase for tF6 kRe [10, 2].

The temporal evolution of decaying 2D turbulence in containers with no-slip walls
during the initial decay stage (0G tG0.2kRe) is characterised by merging of vortices,
and consequently the number of vortices, denoted by V(t), decreases. The precise role
of the no-slip boundaries on the decrease of V(t) is not known yet, because the
boundary layer can act as a source of vorticity blobs, thus increasing the number of
vortices, but the strength of vortices may also be decreased considerably after
vortex-wall interactions both through the mechanisms of deformation and
cross-diffusion. Such vortices are then much more susceptible to destruction by
neighbouring vortices or by the background turbulent activity of the flow. One might
not presume a priori that production and destruction of vortices due to vortex-wall
interactions balance exactly, and a more detailed investigation of these processes is
timely. For two-dimensional high-Reynolds number flows on an infinite domain the
situation is not complicated by the presence of rigid walls, and the decrease of the
vortex density is entirely due to merging processes only (and possibly by weak effects
of viscosity). For this kind of flows, Carnevale et al. proposed a rather simple scaling
theory for freely decaying 2D turbulence [3]. They assumed that both the kinetic
energy of the flow and the vortex amplitude are conserved quantities during the flow
evolution. Based on dimensional analysis, they found the following power law for the
decay of the number of vortices: V(t)C t 2z. The decay exponent z is so far unknown,
and has to be determined from numerical experiments. Both Navier-Stokes simulations
(for decaying 2D turbulence with periodic boundary conditions) and modified
point-vortex methods revealed that zB0.70-0.75 [3, 4]. The temporal evolution of
several other properties such as the average vortex radius a(t) and the enstrophy V(t)
are: a(t)C t zO4 and V(t)C t 2zO2. Note that the enstrophy decay rate is considerably
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slower than predicted from the scaling theory by Batchelor [11]. In this latter theory,
in contrast to the approach by Carnevale and coworkers, only the kinetic energy is
assumed to be conserved and no conservation of the vorticity extremum is assumed.
The power law for the enstrophy, as derived by Batchelor, is V(t)C t 22, which
represents indeed a much faster algebraic decay. Although the present simulations do
not satisfy the conditions for freely decaying 2D turbulence in the infinite Reynolds
number limit on an unbounded domain, it is still useful to compute the ensemble-
averaged power law exponents based on the present simulations, and to compare them
with experimental results.

For the initial turbulent decay stage the following power laws are found (note that
both the enstrophy and the vortex amplitude had to be normalised in order to account
for the decrease of kinetic energy of the flow):

V(t)C t 20.9060.03 ,(6)

a(t)C t 0.3160.02 ,(7)

v ext (t)OkE(t)C t 20.3060.02 ,(8)

V(t) /E(t)C t 20.6360.02 .(9)

For a detailed account of the procedure to calculate the decay exponents and the
calculation of the error margins, see ref. [2]. The decay exponents are found to be
independent of the Reynolds number used in the present runs, thus indicating that
Reynolds number dependent corrections of the decay exponents are small. A
quantitative experimental study of freely decaying quasi-2D turbulence has recently
been carried out by Cardoso et al. [12]. This investigation was aimed at measuring the
power law exponents, and their results differ from the decay exponents computed with
the present numerical simulations. They found the following power laws:

V(t)C t 20.4460.1 ,(10)

a(t)C t 0.2260.03 ,(11)

v ext (t)OkE(t)C t 20.2260.06 ,(12)

V(t) /E(t)C t 20.4460.06 .(13)

Nevertheless, some similarities between the experimental and numerical results are
found. For example, the decay exponent for v ext (t)OkE(t) obtained from our
simulations and those measured by Cardoso and coworkers do not differ much when
the error margins are taken into account, and the ratio v ext (t)OkV(t), as computed
from our numerical runs, is, like in Cardoso’s experiments, approximately constant. It
should be emphasised that this result is not trivial at all; the total enstrophy is a sum of
v 2 from vortices, boundary layers (containing much vorticity) and small-scale patches
of vorticity from the turbulent background flow, while the vorticity extrema represent
the coherent structures only.

During the intermediate decay stage (0.2 kReG tG3 kRe) different decay
exponents are found in the present simulations for the vortex density and the
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Fig. 3. – The ensemble-averaged viscous stress (a), the renormalised ensemble-averaged viscous
stress (b), the ensemble-averaged value of the rescaled normal vorticity gradient (c) and the
renormalised ensemble-averaged value of the rescaled normal vorticity gradient (d) plotted as a
function of the dimensionless time for Re = 1000 (dotted), Re = 1500 (solid) and Re=2000
(crosses). The straight lines represent the decay exponents z420.42 (a) and z420.84 (c).

renormalised vortex amplitude

V(t)C t 20.760.1 ,(14)

v ext (t)OkE(t)C t 20.1060.04 .(15)

These results appear to be slightly more sensitive for variations of the Reynolds
number, which might be expected because the kinetic energy of the flow has by then
decreased considerably. The decay exponents in eqs. (14) and (15) agree reasonably
well with some experimentally obtained values, which seem to be measured in a
dynamically analogous decay regime as our results from the intermediate decay
stage [13].

Finally, the power law behaviour of the renormalised enstrophy, computed in the
intermediate decay regime, is the same as in the initial turbulent decay phase (see
fig. 2b), although production of vorticity in the boundary layers is clearly observable.
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4. – Scaling laws for the boundary layers

An essential difference between decaying 2D turbulence in containers with rigid
no-slip walls and its counterpart with periodic boundary conditions is the presence of
boundary layers in the former. In this section the growth of the boundary layers during
the initial turbulent decay stage is discussed. It will be shown that the average
boundary-layer thickness grows with a power law. Additionally, scaling behaviour of
the vorticity and normal gradients of the vorticity at the boundaries has been
observed.

The magnitude of the viscous stress (nondimensionalised by rU 2, with r the fluid
density and U a characteristic velocity) at the boundary of the domain with no-slip
walls is computed as follows, where we have used that the normal viscous stress is
absent at no-slip walls (since ˜ Qu40),

Sns4
1

4
k2 Re21y �

¯D

g ¯u

¯n
h2

dsz1/2

,(16)

with ¯/¯n denoting the normal derivatives, and ds the length of an infinitesimal
element of the boundary ¯D. The numerical factor is due to normalisation by the square
root of the dimensionless length of the boundary. Note that the average viscous stress
is equivalent to the average magnitude of the vorticity on the boundary of the domain.
Several interesting trends are observed for Sns , especially during the turbulent initial
decay stage. It appears that Sns (t) is then approximately independent of the Reynolds
number for 1000GReG2000. It is clearly shown is clearly shown in fig. 3a that the
ensemble averaged values for Sns (t) collapse onto a single curve for the three values of
the Reynolds number considered in this numerical investigation. Furthermore, the
following decay rate has been found for Sns (t) in this decay regime:

Sns (t)C0.012t 20.4260.02 .(17)

Renormalisation of the average viscous stress by the total kinetic energy of the flow,
i.e. computing Sns (t) /E(t), yields another interesting result which is shown in fig. 3b.
From this plot it is evident that the renormalised averaged viscous stress is
approximately constant in the initial turbulent decay regime (0G tG0.2kRe).

The ensemble-averaged value of the normal vorticity gradient near the no-slip
boundaries can be quantified by computing

Fns4
1

4
k2 Re21y �

¯D

g ¯v

¯n
h2

dsz1/2

.(18)

The observed trend for the scaling behaviour of this quantity with respect to the
Reynolds number of the flow is estimated to be Fns (t)CkRe. The decay rate of
Fns (t)OkRe during the initial turbulent decay regime is (see fig. 3c)

Fns (t)

kRe
C0.024t 20.8460.03 .(19)

Combination of the Reynolds number dependence of both Sns , which gives an average
value of the vorticity on the boundary, and Fns , which gives the average normal
gradient of the vorticity near the boundary, yields an expression for the average
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boundary-layer thickness in terms of the container size and the Reynolds number

dCW(Sns /Fns )CWOkRe.(20)

Combination of the power laws of Sns (t) and Fns (t) indicates that, during the initial
turbulent decay stage, the boundary-layer thickness grows like d(t)C t 0.4.
Renormalisation of the ensemble-averaged normal vorticity gradient Fns (t)OkRe by, in
this case, E 2 (t), leads in the initial turbulent decay regime to an approximately
constant value of the renormalised vorticity gradient (see fig. 3d).

5. – Conclusion

Evidence for an important role of the boundary layers on the dynamics of decaying
2D turbulence has been presented with a set of direct numerical simulations. The role
of the boundary layers near the no-slip walls during the decay process has been
illustrated with ensemble-averaged results for the power-law behaviour of several
characteristic properties of coherent vortices. The temporal evolution of the vortex
density, the average vortex radius, the ratio of enstrophy over energy, and the
extremum of vorticity (normalised by the square root of the energy) have been
computed. The decay exponents of these quantities (see eqs. (6)-(9)), computed for the
initial turbulent decay regime (0G tG0.2kRe), disagree with the classical scaling
theory for 2D decaying turbulence on an unbounded domain [3], which we attribute to
the presence of no-slip boundaries. The decay exponents for V(t), etc., appear to be
independent of the Reynolds numbers considered in the present study, which supports
the assumption that Reynolds number dependent corrections are, at least for 1000G
ReG2000, small. The present results for the decay exponents do not agree
satisfactorily with experimental data obtained by Cardoso et al. [12]. Unfortunately, it
is so far not clear what causes the differences although a reason could be that the initial
vortex size distribution is not the same for the experiment and the numerical runs.
Decay exponents computed for the intermediate decay stage (0.2kReG tG3 kRe ),
where the role of viscous effects is somewhat stronger, seem to compare rather well
with experimental data by Hansen et al. [13]. Additionally, the temporal evolution of
the boundary-layer thickness has been studied by computing the ensemble-averaged
viscous stress and normal vorticity gradient near the boundaries. These computations
reveal that d(t)C t 0.4 and that the average boundary-layer thickness is proportional to
Re20.5.

Future research on vortex statistics and the role of boundary layers in decaying 2D
turbulent flows in (rectangular) containers with no-slip walls is primarily aimed at
three aspects. The first one concerns the power law behaviour and decay exponents in
the case that the Reynolds number is increased by at least one order of magnitude.
Additionally, a thorough comparison of the decay scenario of 2D turbulence in
containers with periodic and with no-slip boundary conditions should be carried out.
Such a comparison enables one to make definitive conclusions about the role of the
boundary layers on the dynamics of decaying 2D turbulence. Finally, the effect of the
initial distribution of vortex sizes should be studied in more detail. With such an
investigation on is able to decide if different initial size distributions result in different
decay exponents.
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