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Summary. — This paper analyzes the dynamics of N point vortices moving on a
sphere from the point of view of geometric mechanics. The formalism is developed
for the general case of N vortices, and the details are provided for the (integrable)
case N43. Stability of relative equilibria is analyzed by the energy-momentum
method. Explicit criteria for stability of different configurations with generic and
non-generic momenta are obtained. In each case, a group of transformations is
specified, such that motion in the original (unreduced) phase space is stable modulo
this group. Finally, we outline the construction of a symplectic-momentum integrator
for vortex dynamics on a sphere.

PACS 92.10.Lq – Turbulence and diffusion.
PACS 47.32 – Rotational flow and vorticity.
PACS 47.32.Cc – Vortex dynamics.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Helmholtz [1] introduced the model which is today referred to as the point vortex
model. Helmholtz’ contemporaries developed these models, such as Kirchhoff [2] and
his student Gröbli. An account of some of the history of this problem can be found in
Aref, Rott and Thomann [3] and Kidambi and Newton [4].

The dynamics of N vortices on a sphere is a Hamiltonian system (see Kidambi and
Newton [4] and references therein). The Hamiltonian structure can be obtained using
reduction techniques starting with the description of ideal hydrodynamics in terms of
diffeomorphism groups; see Marsden and Weinstein [5] and Arnold and Khesin [6].

We begin with a description of the dynamics of N point vortices on a sphere using

(*) Paper presented at the International Workshop on “Vortex Dynamics in Geophysical Flows”,
Castro Marina (LE), Italy, 22-26 June 1998.
(**) The authors of this paper have agreed to not receive the proofs for correction.
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geometric mechanics. For N43 vortices, we classify relative equilibria and determine
their stability by the energy-momentum method (see Marsden [7] and references
therein). We refer the reader to Pekarsky and Marsden [8] for the detailed description
of the procedure and the associated reduction of the dynamics. The use of the
energy-momentum method for the stability of vortices was studied for certain planar
cases by Lewis and Ratiu [9].

Numerical simulations of the dynamics of three point vortices on a sphere are
presented, which confirm the analytical stability results. Finally, the construction of a
symplectic-momentum algorithm for the numerical analysis of the vortex dynamics on a
sphere is outlined. The structure-preserving properties of such an algorithm are
believed to be important for the reliability of long time simulations of such problems.

1.1. The phase space and its Poisson structure. – The phase space for N vortices
moving on the two sphere S 2 consists of N copies of the sphere. Namely, we let P4
S 23R3S 2 be N copies of the standard sphere with radius R in R3. We let the n-th
vortex position (n41, R , N) on the sphere be denoted xn so that we have the
constraint Vxn V4R. We also let x4 (x1 , R , xN )�R3N. Each vortex has a nonzero
vortex strength denoted Gn.

The Poisson structure on P is given by

]F , H((x)4 !
n41

N R

Gn

]F , H(n (xn )42 !
n41

N R

Gn

xn Q (˜n F3˜n H) ,(1)

where ] , (n is the Poisson structure on the n-th copy of S 2, and 3 is the cross-
product.

1.2. The symmetry group and momentum map. – Consider the diagonal action of
the group SO(3) on P defined by rotations in each R3. This action is canonical with
respect to the Poisson structure (1). The corresponding Lie algebra is naturally
identified with R3 (having the vector cross-product as its Lie bracket operation) and we
write j for the vector in R3 corresponding to the element j�a[ (3). We regard j as a
skew symmetric 333 matrix; it is related to j�R3 in the standard way, namely, j Qu4
j3u for each vector u�R3.

The vector field of infinitesimal transformations corresponding to an element j in
the Lie algebra is given by

j P (x) »4.
d

dt
exp [jt] QxN

t40
4 (j3x1 , R , j3xN ) .(2)

Recall that a momentum map J : PKso (3)*CR3 for this action is defined by
requiring the Hamiltonian vector field corresponding to aJ(x), jb to be equal to the
vector field of infinitesimal transformations: XaJ(x), jb4j P , where aQ , Qb is the natural
pairing between the Lie algebra and its dual. It is readily checked that the momentum
map is proportional to the moment of vorticity and is given by J(x)4

2(1 /R) !
n41

N

Gn xn .

The momentum map is equivariant, that is Ad*g21 (J(x) )4J(g(x) ), for all g�SO (3).
Here, the map Ad*k21 : a[ (3)*Ka[ (3)*, defined for each k�SO(3), denotes the coad-
joint action of SO(3) on a[(3)*. In our case, this can be seen directly from the form of J;
the coadjoint action corresponds simply to rotations in the dual space a[(3)*CR3.
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It follows from the equivariance of J that VJV2 is invariant under the coadjoint action.
Hence, smooth functions of VJV2 are also invariant. Thus, if b4 (b1 , b2 , b3 )�R3 are
coordinates in the dual a[ (3)*, then any smooth function of VbV2 is a Casimir function.
Correspondingly, the generic symplectic leaves of a[ (3)* are spheres defined by the
level sets VJV24constc0. Note that since SO(3) is compact, its action on both P and
a[ (3)* is proper.

1.3. The Hamiltonian. – The Hamiltonian describing the motion of N vortices on the
surface of a sphere of radius R is given by (see, e.g., Kidambi and Newton [4])

H4
1

4pR 2
!

mEn
Gm Gn ln (l 2

mn ) ,(3)

where l 2
mn42(R 22xm Qxn ) is the square of the chord distance between two vortices

with positions xm and xn . Keep in mind that the constraints Vxn V4R are assumed. The
volume of the parallelepiped formed by the vectors x1 , x2 , x3 is denoted V and of course
it is given by the triple product, namely, V4x1 Q (x23x3 ). Notice that the Hamiltonian
(3) is invariant with respect to the diagonal action of SO(3) on P described above.
Hence, the momentum map J is constant along the flow of this Hamiltonian.

2. – Stability of relative equilibria

2.1. The energy-momentum method. – We shall now utilize the energy-momentum
method (see Marsden [7] for a summary and references) for the analysis of the stability
of relative equilibria. Relative equilibria are dynamical orbits with initial conditions xe

such that x(t)4exp (j e t) xe for some Lie algebra element j e and any time t. As is well
known for relative equilibria, the augmented energy function Hj e

»4H2 aJ2m e , j e b
has a critical point at xe , where m e4J(xe ) is the value of the momentum at the relative
equilibrium. For notational convenience we will occasionally omit the subscript e.

The orbital stability of a relative equilibrium is equivalent to the stability of the
corresponding equilibrium of the reduced system that is induced on the quotient
manifold P/SO(3). The energy momentum method is designed to enable one to test for
orbital stability directly on the unreduced manifold P by constructing a special
subspace G’Txe

P. This is done by considering a tangent space to the level set of
constant momentum J21 (m e ) and eliminating the neutrally stable directions associated
to the isotropy subgroup

SO(3)m e
»4]g�SO(3)NAd*g m e4m e( .

This subgroup is sometimes called the stabilizer of m e since it consists of
transformations which leave the momentum value invariant. The energy-momentum
method determines stability by examining definiteness of the second variation of Hj e

restricted to the subspace G. A detailed description of this method can be found in
Simo, Lewis and Marsden [10].

If one has a definite second variation, then Patrick’s theorem (see Patrick [11])
guarantees stability modulo the isotropy subgroup, provided its action on P is proper,
the Lie algebra admits an inner product invariant under the adjoint action of the
isotropy subgroup and the momentum map has a regular value. From the expression



J. E. MARSDEN, S. PEKARSKY and S. SHKOLLER796

for the momentum map and the fact that SO(3) is compact, we conclude that the
assumptions of Patrick’s theorem are automatically satisfied for our applications.

As was mentioned above, relative equilibria are critical points of the augmented
Hamiltonian Hj . For variational calculations, we extend all functions on P to functions
on the ambient space R3N, and then restrict variations to the tangent space to P by
requiring dF(x) Qh40 for all h�Tx P. For the augmented Hamiltonian corresponding
to (3), this results in the following conditions on x:

Gr

R
gj(x)2

1

2pR
!

ncr
Gn

xn

l 2
nr
h4k r

Gr

R 2
xr ,(4)

where k r are constants to be determined.

2.2. Equidistant relative equilibria. – An equidistant configuration is, by
definition, one that satisfies l 2

mn4 l 2 for all mcn. Whatever its dynamics, such a
configuration is possible only for N42, 3 , 4 (this follows by geometric arguments
similar to those used for the study of regular polytopes in three space); we exclude the
simple case N42 from our considerations.

To verify that an equidistant configuration is a relative equilibrium, one checks that
indeed the conditions (4) are satisfied. In fact, j(x)4!

n
Gn xn /2pRl 242 J(x) /2pl 2

solves (4) with k r4Gr /2pl 2. Notice that the vectors j and J have opposite
directions.

2.3. Great circle relative equilibria. – For N43 vortices, we have the following
classification of great circle equilibria (see Kidambi and Newton [4]); we introduce the
following notations: a14 l 2

23 , a24 l 2
13 , a34 l 2

12 .

1. Generic momentum, J(xe )c0.

General relative equilibria correspond to vortices lying on a great circle (and thus
satisfying V40, where V is the volume of the parallelepiped spanned by x), and
satisfying the condition

2R g a32a1

a2

(G11G3 )1
a12a2

a3

(G21G1 )1
a22a3

a1

(G31G2 )h2
2

1

R
(a3 (G12G2 )1a2 (G32G1 )1a1 (G22G3 ) )40 ,

obtained by setting V
.
40. This implicit formula determines another relation (in

addition to V40), between a1 , a2 and a3 for each fixed set of G’s. This is a nonlinear
equation and thus can have multiple solutions.

a) Isosceles triangular great circle equilibria. A particular family of isosceles
triangular relative equilibria for arbitrary values of G’s is given by the following
configuration: a14a242R 2 , a344R 2 or, equivalently, a 14a 24p/2 , a 34p, as well
as configurations obtained from it by cyclic permutations of indices. The whole
configuration rotates around the vector j(x)42J(x) /4pR 2.

b) Equilateral triangular great circle equilibria. A great circle equilateral
triangle relative equilibrium with l 2

mn4 l 243R 2 and j given by j(x)42J(x) /2pl 2.
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Note: When the term equilateral triangle relative equilibrium is used, and we do
not append “great circle”, we will mean that it is a non-great circle equilateral triangle
relative equilibrium.

2. Degenerate momentum J(xe )40.

In this case, the vortices again lie on a great circle, and the whole configuration
rotates around the vector

j(x)42
1

2pR
g G1 x1

l 2
23

1
G2 x2

l 2
13

1
G3 x3

l 2
12
h .

If we consider the “inverse” problem, namely, given a configuration on a great circle
find Gn satisfying (5) so that this configuration is a relative equilibrium, then condition
(5) becomes a linear equation in Gn of the form b 1 G11b 2 G21b 3 G340, where b n4
b n (a1 , a2 , a3 ) are functions of a great circle configuration. One would expect this to
have a two parameter family of solutions.

2.4. Definiteness of the second variation. – For the calculation of the second
variation the Lagrange multiplier method is used. Define the extended Hamiltonian
HAj »4Hj1!

n
l n (Vxn V

22R 2 ), where Vxn V
22R 240 constrains the motion of vortices to

the sphere S 2. The Lagrange multipliers l n are determined by the condition
dHAj (xe )40 and are given by l n42k n Gn /2R 2, where k n are determined from (4).
Then the second variation at xe is well defined as a bilinear form on Txe

P. It is given by
the following expression:

¯ 2 HAj

¯x j
s ¯x i

r

4

.
`
/
`
´

2l r d ij2
Gr

pR 2
!

ncr
Gn

x i
n x j

n

l 4
nr

, r4s ,

2
Gr Gs

2pR 2 l 2
rs
gd ij12

x i
s x j

r

l 2
rs
h , rcs .

(6)

We summarize below the stability results in the form of theorems and omit the
corresponding calculations of the restriction of the second variation.

Theorem 2.1 (Stability of non-great circle equilateral triangles):

An equilateral triangle configuration of non-great circle relative equilibria xe is
stable modulo SO(2) rotations around the vector J(xe ) if !

nEm
Gn GmD0 and is unstable

if !
nEm

Gn GmE0.

This theorem generalizes the known results of Synge [12] for the stability of
equilateral relative equilibria of three vortices on a plane. Indeed, the stability
conditions are independent of the radius R. Thus, in the limit RKQ the spherical
stability conditions agree with those for the planar case.

Conjecture. The condition !
nEm

Gn Gm40 corresponds to a (degenerate) Hamiltonian
bifurcation.
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Theorem 2.2 (Stability of isosceles triangle great circle equilibria):

A great circle configuration of relative equilibrium xe given by a14a242R 2 , a34
4R 2 is stable if G2

11G2
2D !

ncm
Gn Gm and unstable if G2

11G2
2E !

ncm
Gn Gm . The stability

is modulo SO(2) rotations around J(xe ).

2.5. Stability of great circle equilateral triangle relative equilibria (GCET). – The
stability analysis of a GCET differs from the non-great circle equilateral triangle case
for the following reason. The two-dimensional subspace to which the second variation
of the augmented Hamiltonian is restricted in the general case fails to be a transversal
subspace to the Gm orbit (rotations around J) within Ker DJ but rather degenerates to a
one-dimensional subspace. A complimentary direction transversal to the plane of the
triangle has to be taken into account. A straightforward computation gives the
following expression for the restriction of the second variation:

d 2 HAj N G4
1

12p
u0

0

0

92 (G11G21G3 ) g 1

G1

1
1

G2

1
1

G3
hv .

One concludes from this that these GCET equilibria are at best, neutrally stable. The
reasons for the degeneracy are discussed in [8].

The degenerate case J(xe )40. Stability in this case is a simple task and can be done
by a dimension count. This results in the following theorem.

Theorem 2.3 (Stability of great circle equilibria with J40). A relative equilibrium
with zero vorticity momentum J(xe )40, which necessarily lies on a great circle, is
stable modulo SO(3).

Proof. The isotropy subgroup SO(3)m40 is, in this case, the whole group SO(3) and
hence the dimension of J21 (0)OSO(3)m40 is zero. This implies that

Ker DJ(x)4Tx (SO (3)m40 Qx) .

The assumptions of Patrick’s theorem are satisfied as SO(3) is compact, and so this
proves the theorem. r

3. – Numerical simulations

In this section we outline results of some numerical simulations of the dynamics
of three point vortices on a sphere. The numerical integration of the differential
equations was performed using the Matlab ODE45 package with the tolerance set to
10210. Numerical simulations using various values of vorticities G have confirmed the
stability results of theorems 2.1 and 2.2. Changes in the stability types of equilateral
triangle relative equilibria and isosceles triangle great circle relative equilibria have
been observed when the following conditions are approximately satisfied: !

nEm
Gn Gm40
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Fig. 1. – Chord distances as functions of time. Great circle relative equilibrium. a) Unstable,
G143, G242, G340.2, det d 2 Hj421. b) Stable, G143, G242, G340.02, det d 2 Hj40.8.

and G2
11G2

24 !
ncm

Gn Gm , respectively. Figures 1 and 2 demonstrate typical behavior of

the chord distances of an equilibrium as a function of time for stable and unstable types
of motion depending on the value of the second variation d 2 Hj .

Notice that while for a stable great circle relative equilibrium the chord distances
exhibit small oscillations (fig. 1b)), one observes a slight drift in the case of a stable
equilateral triangle relative equilibrium (fig. 2b)). One possible explanation for this
numerical drift is that ODE45 is not a structure-preserving algorithm and so this could
be a numerical difficulty.

Furthermore, numerical (stability) bifurcation analysis, as d 2 Hj passes through
zero, requires long time simulations, and standard algorithms, such as ODE45, cannot
be reliably used. Hence, there is a great need for structure-preserving numerical
algorithms for the vortex dynamics problem on a sphere, and we shall address this
issue in the next section.

Fig. 2. – Chord distances as functions of time. Equilateral triangle relative equilibrium.
a) Unstable, G142, G241, G3422, det d2 Hj424. b) Stable, G142, G241, G344, det d2 Hj414.
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4. – Structure-preserving algorithms for vortex dynamics on a sphere

Historically, there have been many approaches devised for constructing symplectic
integrators, beginning with the original derivations based on generating functions (see
de Vogelaere [13]) and proceeding to symplectic Runge-Kutta algorithms, the shake
algorithm, etc. A fundamentally new approach to symplectic integrators was that of
Veselov [14, 15] who developed a discrete mechanics based on a discretization of
Hamilton’s principle. For standard mechanical systems defined on TQ of some
configuration manifold Q, this method leads in a natural way to symplectic-momentum
integrators (see Marsden, Patrick, and Shkoller [16] and references therein). In this
section we shall outline the construction of a structure-preserving integrator for the
vortex dynamics problem on a sphere which does not literally fall into this framework.

As we described, the Hamiltonian description of our problem has phase space P4
S 23R3S 2 which is not a cotangent bundle, and the symplectic form V on P is not
canonical. Consequently, the Hamiltonian of the system is not of the form kinetic plus
potential energy, but rather has a logarithmic dependence on conjugate variables.
Thus, direct application of the theory in [16] is not appropriate for our setting, and an
alternative approach is presented which is founded on Lie-Poisson theory.

We consider vortex dynamics on a sphere as a Hamiltonian Lie-Poisson system for a
Lie group G. This setting is described in detail in [17] (for Lie-Poisson systems on Lie
groups G see, for example, [18]). The idea is to construct a discrete algorithm which
preserves the Lie-Poisson structure, and all of the symmetries associated with it, and
this is accomplished by duality with the Lagrangian side. Namely, the Hamiltonian we
consider is reduced from a G-invariant Hamiltonian which can be associated with a
G-invariant Lagrangian by the fiber derivative of L, the Legendre transform. Now, on
the Lagrangian side, we develop a discrete Euler-Poincaré algorithm whose solution
naturally provides an algorithm for time-stepping in S* in such a way that the coadjoint
orbits as well as the orbit structure is manifestly preserved. Details of this general
construction may be found in [19, 17]; herein, we shall only give a brief overview.

Consider a Lie group that is a direct product of N copies of SO(3), i.e. G4SO(3)3
R3SO(3). As our phase space, we consider the symplectic manifold (T * G , V), where
V is the g n-weighted canonical symplectic form defined as

V(v , w)4!
n

g n Vcan
n (vn , wn ) ,

and where g n are as yet unspecified constants. Let G act by cotangent lift of left
multiplication. The coadjoint orbit reduction theorem (see, e.g., [18]) states that the
symplectic reduced space J 21

G (m)OGm is identified via left translation with Om , the
coadjoint orbit through m. Moreover, the reduced symplectic form coincides, in our
case, with the minus g n-weighted coadjoint symplectic form v2, which is induced on
each symplectic leaf of S by the minus (appropriately weighted) Lie-Poisson structure.

Thus, we can conclude that for m4 (m 1 , R , m N )�R3N, v2 is determined (as a
product form) by v2

n 42 g n dSOVm n V in each copy of R3, where dS is the standard area
form on a sphere of radius Vm n V (we abuse notations here as the form dS is obviously
not exact). We can fix a particular coadjoint orbit by choosing Vm n V4R for any n for a
fixed R. This orbit corresponds to a tensor product of N spheres of radius R with the
following symplectic structure v24!

n
g n v2

n 42!
n

g n dS/R, where dS is the area
form on a sphere of radius R.
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Notice that this is exactly the phase space corresponding to the dynamics of N point
vortices on a sphere, where we set g n4Gn , the vortex strengths. Thinking of the phase
space as a coadjoint orbit, we can extend the Hamiltonian (3) arbitrarily to all of S*.
Then, the point vortex system may be thought of as a Lie-Poisson system, obtained by
reduction from a system on T * G. This point of view enables us to construct the
corresponding Euler-Poincaré system on the Lie algebra S by performing Legendre
transformations.

Once we obtain the Euler-Poincaré description of the vortex dynamics, its
discretization can be performed in the following way [19]. Following Moser and
Veselov [20], we start with a Lagrangian L system on TG and discretize TG by G3G.
We define the discrete Lagrangian, L : G3GKR, by L(g1 , g2 )4L((g11g2 ) /2 ,

(g22g1 ) /h). The action sum S4 !
k40

N21

L(gk , gk11 ) is formed and the discrete Euler-Lagrange

(DEL) equations D2 L(gk21 , gk )1D1 L(gk , gk11 )40 as well as the discrete symplectic
form v L given in coordinates on G3G by v L4 (¯2 L/¯g i

1 ¯g j
2 ) dg i

1Rdg j
2 are obtained by

extremizing S : G N11KR with arbitrary variations. One checks that the discrete
Lagrangian L : G3GKR is left (right) invariant under the diagonal action of G on
G3G, whenever L : TGKR is left (right) invariant.

The reduction of this system proceeds as follows. Recall that the induced group
action is simply the left multiplication in each component: k : (g1 , g2 ) O (kg1 , kg2 ) for all
k , g1 , g2�G . Then the quotient map is given by p : G3GK (G3G) /G`G ,
(g1 , g2 ) O g 21

2 g1 . We note that one may alternatively use g 21
1 g2 instead of g 21

2 g1 ; our
choice is consistent with other literature (see, for example, [16]). The projection map p
defines the reduced discrete Lagrangian l : GKR for any G-invariant L by l i p4L,

so that l (g 21
2 g1 )4L(g1 , g2 ), and the reduced action sum is given by s4 !

k40

N21

l ( fk11k ),

where fk11kfg 21
k11 gk denote points in the quotient space. A reduction of the DEL

equations results in the discrete Euler-Poincaré (DEP) equations and the
corresponding constrained variation principle for the reduced action sum. The
resulting algorithm is then formulated in terms of reduced variables only, and it can be
readily reconstructed to an integrator on the original unreduced space.

5. – Conclusions

The simple physical system of three point vortices on a sphere reveals a
surprisingly rich geometrical structure. By applying the energy-momentum method,
we have found explicit criteria for the stability of different configurations of relative
equilibria with generic and non-generic momenta. In each case we have specified a
group of transformations modulo which stability in the unreduced space is understood.
Numerical simulations of the vortex dynamics have been performed which confirmed
the results of stability theorems 2.2 and 2.1.

We presented an outline of a construction of a symplectic-momentum algorithm for
the vortex dynamics on a sphere. We refer the reader to [19, 17] for a detailed
description of the vortex dynamics on a sphere as a Lie-Poisson system as well as a
discrete counterpart of the Euler-Poincaré reduction and the resulting discrete
Euler-Poincaré (DEP) equations. We also note that Patrick has constructed some
efficient symplectic integrators for the N vortex problem using splitting methods.



J. E. MARSDEN, S. PEKARSKY and S. SHKOLLER802

Finally, we mention that it would be of interest to extend the results here to the
case of rotating spheres.

* * *

The authors would like to gratefully thank P. NEWTON, A. BLAOM, G. PATRICK and
T. RATIU for their helpful comments and advice on this and related work.
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