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Summary. — We present an asymptotic theory for the long-time evolution of an
intense barotropic vortex on the S-plane. Three stages are described: first, the
near-field development of S-gyres; second, the intensification of the quadrupole and
secondary axisymmetric components with vortex deceleration; third, the vortex
decay. Our theory takes account of all three stages and provides estimates for the
vortex lifetime.

PACS 92.10.Ei — Coriolis effects.

PACS 47.32.Cc - Vortex dynamics.

PACS 47.15.Ki - Inviscid flows with vorticity.
PACS 01.30.Cc — Conference proceedings.

1. — Vortex evolution stages

In its simplest form the problem of the evolution of a localised vortex on the
rotating Earth can be stated as follows:

5} v
M S (PW=RFEW+—— +JW, W) =0, W, y,0) = Wo().
L

Here the motion is assumed to be barotropic, and the B-plane and quasigeostrophic
approximations are used, W is the streamfunction, x, ¥ denote eastward and northward
coordinates and ¢ time; V? and J are Laplacian and Jacobian operators, while Ry is the
Rossby radius of deformation. Importantly, R, is finite and non-zero in the present
theory. W,(7) is the initial axisymmetric vortex.

We suppose that the initial vortex scale is of the order of Ry and the typical orbital
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velocity is U,. Then we can produce three different time scales using the parameters f,
U,, Ry; T,=R4/U,, Ty =1/BRy and Ty = U, /B*R}.

Only two of these scales are independent. The “advective” scale T, is a typical time
required for a fluid particle to move the distance of the order of the vortex size. The
“wave” scale T, is the typical time it takes for the vortex to move its own size;
accordingly, the vortex translational speed scale is equal to U, = SR} (see Reznik, 1992;
Reznik and Dewar, 1994). The “distortion” time T is the time for the vortex relative
vorticity change to be of the order of the relative vorticity itself. Conservation of
potential vorticity Q=@ + By, where Q@ =V?W — R;2W is the relative vorticity,
implies that the vortex relative vorticity change is AQ = —pL,, where L, is the
meridional drift of the vortex. Since @ scales with U, /R4 we see that AQ is of the order
of @ when L, = U, /BR,. Ty is then determined as L, /U,.

It is now readily seen that

— , where a = — = .
T, «a U, U,

1 T 1 U, R2
@) _:g’ d — t_ﬁd

Since a real atmospheric or oceanic eddy is generally highly nonlinear, its orbital
velocity greatly exceeds the translation velocity, and the parameter «a is small, ¢ <<1. In
this case the typical times are well separated, T, << T, <<T,. Hence we are able to divide
the vortex evolution into three different stages.

The first stage, T < T, is characterised by the development of a secondary dipole
circulation (the so-called f(-gyres) in the vicinity of the vortex. To describe this
mechanism we see that the monopole, for instance a cyclone, induces a northward
(southward) motion to the east (west) of itself. In accordance with the conservation of
potential vorticity the p-effect generates anticyclonic (cyclonic) vorticity to the east
(west) of the initial vortex, i.e. a dipole (8-gyre) is generated. Due to nonlinearity, the
B-gyres advect the vortex along the dipole axis. In turn the dipole is advected by the
vortex resulting in a turning of the dipole axis in the sense coinciding with the sense of
the vortex; that is, clockwise (counterclockwise) for an anticyclone (cyclone). Thus a
cyclone (anticyclone) moves northwestward (southwestward) along some curved
trajectory; the trajectory shape and the f-gyres structure are related to the strength
and structure of the initial vortex (see, for instance, the laboratory experiments of
Firing and Beardsley, 1976, the numerical experiments of McWilliams and Flierl, 1979,
Mied and Lindemann, 1979, Fiorino and Elsberry, 1989, and the analytical theories of
Reznik, 1992, Reznik and Dewar, 1994, and Sutyrin and Flierl, 1994).

In the second stage, T, <t < Ty, the influence of the other azimuthal harmonics
generated by wave radiation and nonlinearity has to be taken into account. This
influence gradually reduces the vortex amplitude and in doing so decelerates the
vortex motion (e.g., Reznik and Dewar, 1994, Sutyrin et al., 1994). At the same time
changes to the relative vorticity of the vortex remain relatively small, so that the vortex
amplitude exceeds the amplitude of the radiated field. In the final third stage, ¢t > T},
the vortex distortion becomes strong and its amplitude decreases to the background
level, .e. the vortex ceases to exist as a coherent structure.

The second stage has been less well studied than the first stage. Numerically it was
investigated by Sutyrin et al. (1994), while there have been a few attempts to describe
this stage analytically for various types of eddies (Flierl, 1984, Korotaev and Fedotov,
1994, Flierl and Haines, 1994). But all these theories are based on the assumption that
in the course of time the vortex tends to some quasistationary state when its zonal
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velocity greatly exceeds the meridional one and the Rossby wave wake can be
considered to be resonantly excited. This means that the wake is calculated in a similar
manner to the calculation of lee waves behind an obstacle in a uniform zonal flow on the
B-plane.

Although these theories give qualitatively reasonable results, nevertheless there
remain unanswered some important questions. First, there is no evidence (numerical
or observational) that the wave field radiated by the vortex can be considered as
quasiresonant. Second, the quasiresonant Rossby wave wake has infinite energy (see,
for example, eq.(23) from Flierl, 1984). This is of no great importance when
considering the flow around an obstacle, in which case the infinite energy is a
consequence of making a long-time quasisteady approximation in the frame of
reference of the obstacle. But a vortex does not behave like an obstacle in this respect,
it loses energy when radiating Rossby waves and therefore cannot possess an
infinite-energy wave wake. Third, none of the theories cited above (not only the last
three ones) provide conservation of energy and enstrophy which are particularly
important for the second stage of the vortex development. In this paper we report
briefly on an asymptotic theory for a vortex which initially has piece-wise constant
relative vorticity. Here we will focus on the issue of the vortex lifetime. A much fuller
account which addresses all issues in greater detail is given by Reznik and Grimshaw
(1998) (henceforth denoted as RG).

2. — Intense vortex with initially piece-wise constant relative vorticity

To focus in detail on the second stage, we consider the model of an intense initial
vortex with piece-wise constant relative vorticity, suggested by Sutyrin and Flierl
(1994). We proceed from the non-dimensional form of eq. (1):

5} v
3) E(V“P—‘P)-I—J(‘P-I—aUy—an, VZ‘P—‘I’)—I—aa— =0, Y(x,y, 0)=W(r),
x

which is written in moving coordinates attached to the vortex center; here U and V are
non-dimensional zonal and meridional translation speeds, respectively, scaled with
U, = BRZ; the advective time T, = R4/ U, is used as a time scale.

Let the initial potential vorticity be

) Q=Q =H(1-7+ay,

where H(z) is the usual Heaviside function. By the conservation of potential vorticity
the discontinuity on the right-hand side of (4) is conserved in time, i.e. the potential
vorticity can be represented as follows:

®) Q=Q+ay, Q=VPW-W=H@r—r)+aqx,y,?).

Here q(«, ¥, t) is a continuous function and the patch boundary » = (0, t) depends on
0 and t.

Substituting (5) into (3) and equating to zero the singular and regular parts in the
resulting equation we obtain,

dq o

6 2w, ) =0,
(6) Frir ( )
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0 1 ovP* 0 1 ovP*
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where W* =W + Uy — Vx and the subscript “0” means evaluation at r = r(6, t). The
initial conditions are that

® W(r,0,0)=Wy(r), VW-W=H1-7r), q0,0,00=0, n(,0=1.

Now we define a method to determine the translation speed U= (U, V), based on
tracing the centroid of the vortex patch S bounded by the curve r = 7(6, t). In moving
coordinates attached to the centroid x, = y. = 0, and so, on using the equations,

jsacdacdy jsydxdy
©) Xe=—""—, Y= —
Jsdxdy Jsdxdy
we have
21 2
(10) pg’(a, £) cos0d0 =0, frg(a,t) sin0do=0.
0 0

Equations (10) close the problem (6), (7) and (8).
In the limit a<<1 of an intense vortex the solution is sought in the following
asymptotic form:

(11) V=Y r)+a¥(r,0,t)+..., q=q.(r, 0,t)+ag(r,0,t) + ...,

(12) ro=1+a?(0,t)+ a0, t)+..., (U, V)= (U, Vo) +a(Uy, Vi) +....

3. — Asymptotic solution

Substitution of (11) and (12) into the governing equations gives at each order a
system of linear equations for the coefficients in the expansions. To solve these systems
we use decomposition into Fourier series in the angle variable 6.

The initial streamfunction W,(r) has the form (fig. 1)

(13) g, _ | TTHEROLm, <1,
=1;(1) Ky(7), r>1,

where K, (), L,(r) are the modified Bessel functions of order n. For the first-order
quantities we have

(14) ¢1 = ¢158In 0 + gy, cos 6, Q= qis+iq.= —r(1—exp[—iQ1)),
15) (0,t) =0, W, =A,(r,t)sin@+ A, (r, t) cos b,

(16) Ug‘f’iVO:_A*(l,t).
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Fig. 1. - The lowest-_and the first-order fields. Left: the initial streamfunction W,(r) (solid) and
the angular velocity ©(r) (dashed). Right: the streamfunction W, (3-gyres) at ¢ = 100.

Here
an) A=Ay +id, = —I,(7) j rQ, K, (r) dr — K, (r) f rQ,I,(r) dr,
r 0

and Q(r) is the angular velocity of the initial vortex, that is Q(r) = oW, /ror. This
solution was derived by Sutyrin and Flierl (1994) (with a slightly different notation).
Here we consider some important properties of this solution which were not analysed
in their paper.

This lowest-order approximation describes the developing beta-gyres (the function
Y, in (15)) gradually amplifying and expanding, with a broadening large-scale
approximately rectilinear flow forming in the central region (fig. 1); the vortex patch
shape remains unchanged. This flow advects the vortex along the dipole axis, i.e.
northwestward (see figs. 1 and 4 below) with the translation speed U = (U,, V,) given
by (16). The advecting flow appears to be practically uniform in some region near the
vortex center since the residual flow W, =W, + U,y — Vo« practically vanishes in
some region 7 < 7, (t) centred at the vortex center, i.e.

(18) W=+ Uyy — Vo =0, 7 < Pres (1) .

The size (somewhat arbitrary) #..(f) of this region monotonically increases with
increasing time: 7,,(50) =1, 7(100) =2. So, as time passes the region becomes
larger than the vortex patch.

The smallness of the residual flow W, + U,y — Vyx in the main vortex region has
been seen in all numerical experiments with localised vortices (e.g. Fiorino and
Elsberry, 1989) and is of great importance for understanding the long-term vortex
evolution. For example, it greatly reduces the Jacobian term in the right-hand side of
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the equation

8¢, — @
(19) % + ) ai; = — JW, + Uy — Vo, ¢, +7) — Vo

for the second-order vorticity correction g,. According to (14), the spatial derivatives of
q, grow proportionally to ¢ with increasing ¢ but due to the exponential behaviour of W,
as r— o the region of rapid growth is concentrated near the vortex center where the
growth is compensated by the smallness of W, in the Jacobian. This effect results in a
very slow increase of this Jacobian with increasing time. But the right-hand side of (19)
multiplied by «? is nothing but the main part of the remainder arising when
substituting the approximate solution W+ aW; into the basic equation (3). The
smallness of the remainder means that this solution can be a good approximation for
many turnaround times exceeding the wave time T,. This conclusion is confirmed by
numerical experiments performed for various initial vortices in divergent (Sutyrin et
al., 1994) and non-divergent (Reznik and Dewar, 1994) models. Obviously, the
behaviour of the right-hand side of (19) retards also the growth of the second vorticity
correction g, which also contributed to the greater “longevity” of the expansions (11)
and (12).
One can show that locally the approximate solution W, + aW; tends to

(20) P, =W,(\V@+al+y?)+ay as t—>o.

The state W, is an exact solution to eq. (3) (with U=V=0) for an arbitrary
axisymmetric function W,(r). One can say that the transformation (20) “kills” the
p-effect, which is why an arbitrary axisymmetric vortex moving with the drift velocity
on the background of a uniform zonal flow with the same velocity does not radiate any
Rossby waves. The tendency of the solution to the state (20) can be considered as a fine
example of a transient non-linear self-organisation when the non-linearity and
near-field radiated Rossby waves (the -gyres) create the tendency for the vortex to
adopt a non-radiating state and in doing so retard the vortex decline. Of course, this
tendency holds only when the vortex is sufficiently strong.

At the second approximation ¢, is determined from (19), followed by W,, 7, and
(Uy, V7). We shall not give details here (see RG), but note that at this stage the relative
vorticity consists of an axisymmetric component . (7, t) as well as quadrupole
components proportional to sin26 and cos 26. The streamfunction W, has an analogous
structure. Also it is found that 7, contains only quadrupole components, while
(Ui, V1) =0. A plot of gy and W, is shown in fig. 2 at a late time in the evolution. In
accordance with the potential vorticity conservation, gs, is negative in a region around
the vortex center. As the vortex travels along the meridian the region becomes wider
and “deeper” giving rise to a broadening annulus in the field @, + g», with vorticity
opposite in sign to the main vortex. The vorticity in the annulus has a clearly seen fine
structure with scale decreasing with increasing time because of the relatively rapid
differential rotation in the main vortex for the range 1 <r <2 (see fig.1). One can
expect that such a structure exists only in the absence of friction which, being included
in the model, would result in homogenisation of the vorticity inside the annulus.

The occurrence of such an annulus was qualitatively predicted and demonstrated in
some numerical experiments by Sutyrin ef al. (1994) and Korotaev and Fedotov (1994).
Note, however, that this annulus is not alone. It is followed by two broadening rings
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Fig. 2. — The second-order corrections. Left: radial profile of the relative vorticity gsy. Right: the
streamfunction W, at ¢ = 100.

with alternating signs. We emphasize also that gy is of the same sign as @, at the vortex
periphery, .e. the angle-averaged relative vorticity increases with increasing time far
from the vortex center. It means that the localized vortex weakens in the central region
and intensifies at the periphery, t.e. it gradually broadens and “flattens”. This
behaviour is qualitatively the same as the behaviour of azimuthally averaged
perturbation vorticity in the case of a non-divergent vortex examined numerically by
Smith et al. (1995) (see fig.2 of their paper). Therefore one might expect that this
behaviour is typical for vortex evolution on the S-plane.

The second-order correction W, is also shown in fig. 2. The developed structure
consists of a strong axisymmetric central vortex surrounded by weaker azimuthally
elongated four vortex-satellites with alternating signs. The system expands and
intensifies with incrasing time, the satellites centres gradually migrating radially
outward rather than rotating around the main vortex center. The evolution of vorticity
Q> is quite similar to that of W,, except that much stronger gradients develop in the
vorticity field.

At the third order, there is the generation of secondary S-gyres (i.e. dipoles
proportional to sin@ and cos 6, but of O(a®)) as well as components proportional to
sin30 and cos36. The secondary p-gyres are responsible for (U,, V,), the O(a?)
corrections to the vortex velocity. It is found that whereas U, <0 and V> 0, both U,,
V, > 0. Hence the secondary g-gyres tend to oppose the zonal motion to the west, but to
enhance the meridional motion to the north (for more details, see RG).

4. — Energy and enstrophy decay
The energy conservation law for (3) is
21) j[(le)Z + W2 ds = — jpo ds = E, = const

where E| is the initial energy. Substitution of the expansions (11) and (12) into (21)
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Fig. 3. — The energy E;(t) gained by the beta-gyres and lost by the axisymmetric component.

gives the equation
(22) [(W Q0+ Woqo) ds + [Wqids =0

relating the energy of the amplifying S-gyres to the decreasing energy of the axially
symmetric vortex component (the second and first terms on the left-hand side of (22),
respectively). We find that the dependence of the S-gyres energy Ej(f) on the time ¢ is
almost linear (fig. 3) and with a good accuracy can be approximated as

(23) Ey(t) = 27a®(0.1t).

Note that the vortex energy is then Ky — E(%).

A qualitative explanation for this linear dependence on ¢ can be found by observing
first that only the axisymmetric component Wy, of W, and ¢, of g, contribute to the first
term in (22), and second that @, =0 in » > 1, while we can approximately put ¥, equal
to zero in r > 1. (t) > 1 (see fig. 1 and recall that »,.(¢) increases with ). Hence, the
time rate of decay of the S-gyres is approximately given by

Tres

dEﬁ 2
(24) E =4ga® | Wyqqrdr,
0

where we have used integration by parts on the first term in (22). But we recall from
(19) that the Jacobian term on the right-hand side is approximately zero for » < 1.,
and so qy; = — V). Hence, it follows that

dE
(25) i 2ra?I(t) Vy(t),

where I(t) =1 — 21,(1) 7.5 Ki (7). Here we have used (13) to evaluate the integral of
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+rW,. Although this expression is not constant in time, it is shown in (RG) that 7,..(t) and
V,o(t) are both slowly varying functions of t. Indeed we estimate that at ¢ =50, IV, =
0.08 while at t=100, IV,=0.14. The agreement with the numerical result (23) is
reasonable.

Using (23) one can find the typical lifetime #; of the vortex as the time when the
energy of the axisymmetric component becomes equal to the energy of beta-gyres (i.e.
a’Es=E, /2),

(26) ty = 0.8 JafpR,.

According to (26) the lifetimes of mid-oceanic eddies and rings are approximately equal
to 130 days and 650 days, respectively. Typical oceanic parameters in midlatitudes are
B=210"2m 's"! and R,=45km; the typical swirl velocity in mid-oceanic eddies
(rings) is assumed to be 20 m/s (1 m/s). Being rather crude (the energy losses caused by
the higher azimuthal harmonics are not taken into account) these estimates are quite
reasonable and suggest that the energy transfer from the axisymmetric component to
the beta-gyres really plays a substantial role in the vortex decay.

Similar estimates for the vortex lifetime can be obtained from the enstrophy
conservation law

@20 jQ2d8=N0=c0nst.
Substitution of the expansions (11) and (12) now gives
28) jZQOqde jqfds:o.

We find that the enstrophy of the S-gyres Ny (%) is also almost linear in time ¢, and given
by (see (RG))

(29) Ng(t) = ma®(0.45¢).

Note that the vortex enstrophy is then Ny — Ny(t). Lifetime estimates based on (29) are
slightly larger by a fraction of 1.4 than those given by (26). Since @, =0 for »>1 and
Q20: = —V, when r<1 for large times, we can obtain the following approximate
expression for the rate of change of N4(¢) analogously to (25) for E4(%):

(30)

Using the results from (RG) we find that V, = 0.25(0.2) for ¢ = 50(100), which is in very
good agreement with (29).

We conclude that the vortex decay is mainly determined by the growth of the
primary S-gyres, and most significantly by the generation of the quasi-steady state (20)
in the vortex centre for large times. Although, as shown in (RG), this quasi-steady state
essentially holds for ¢ in the range a ! to a2 and does not persist indefinitely,
nevertheless its occurrence seems to be the major factor in determining the near-linear
decay in the vortex energy and enstrophy.
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