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Summary. — Stability properties of large-scale strongly nonlinear isolated vortices
in the rotating shallow water on the f-plane are analysed. Working first in the
framework of the balanced frontal dynamics equations we demonstrate that vortices
of arbitrary sign with monotonous profiles of the free-surface elevation are formally
stable and establish criteria for nonlinear stability. We then discuss stability in the
framework of the full rotating shallow-water equations and obtain a conditional
stability criterion.

PACS 92.10 – Physics of the oceans.
PACS 47.20 – Hydrodynamics stability.
PACS 92.10.Ei – Coriolis effects.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

It is well known that a hierarchy of the so-called balanced models for the slow (with
respect to the rapid gravity waves) vortical component of the flow may be deduced from
the rotating shallow-water equations (RSW in what follows) by filtering the
high-frequency fine-scale motions. The derivation of the balanced equations is
straightforward in the case when the vortical motion in question has a single
characteristic spatial scale (as, e.g., for an isolated vortex). The balanced equations
follow then from the direct asymptotic expansions in Rossby number and Burger
number ([1-4]. The obvious advantage of the balanced models is that they allow to
reduce a set of the RSW equations to a single equation for the pressure (the
free-surface elevation) variable. The most known balanced equation is, of course, the
standard quasi-geostrophic (QG) vorticity equation. However, by increasing the degree

(*) Paper presented at the International Workshop on “Vortex Dynamics in Geophysical Flows”,
Castro Marina (LE), Italy, 22-26 June 1998.
(**) The authors of this paper have agreed to not receive the proofs for correction.
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of nonlinearity of the vortex motions in question, one arrives at the intermediate
geostrophic (IG), nonlinear geostrophic (NLQG) and, finally, frontal dynamics (FD)
equations, respectively. In the present paper our main focus will be on the vortices in
the FD regime, i.e. those corresponding to small Rossby numbers and small Burger
numbers (cf. [3, 4]). In terms of the characteristic nonlinearities and scales this means
that the vortices in question have surface elevations comparable with the unperturbed
depth of the fluid and that their size is much larger than the Rossby radius. In what
follows we shall limit our study to the f-plane dynamics where the so-called scalar
nonlinearity leading to the steepening of the vortex profile in the zonal direction and
vortex breakdown (cf. [6]) are absent. The analysis of vortices in such regime was first
undertaken in [3,5]. Recently, vortices in this regime were observed experimentally [6]
in the rotating parabolic shallow-water layer (note that scalar nonlinearity disappears
in the parabolic geometry, [7, 4]). In this experiment anticyclonic vortices were easier
to generate and had much longer lifetimes than cyclonic ones, a possible reason for this
phenomenon stemming from a difference in stability properties of frontal cyclones and
anticyclones claimed in [5]. However, a trivial explanation related to the experimental
difficulties with producing an order one deep in a thin fluid layer could not be excluded
neither (cf. [6]). The cyclone-anticyclone asymmetry was the main motivation of the
present study of nonlinear stability of the FD vortices. We show below that, in what
concerns the FD equations, both cyclones and anticyclones may be stable. We also
make some comments on vortex stability in the framework of the full RSW equations.
No definite conclusions may be drawn there at the present stage.
The paper is organised as follows. In sect. 2 we display the Hamiltonian structure of the
underlying equations and remind the basics of the formal and nonlinear stability
analyses. In sect. 3 we study formal and nonlinear stability of the FD vortices and in
sect. 4 we comment on the stability properties of the RSW solutions.

2. – Hamiltonian structure of the RSW and FD equations and stabilty analysis
algorithm

2.1. RSW equations. – The standard system of the rotating shallow-water (RSW)
equations in the f-plane approximation is written as follows:

.
`
/
`
´

¯u

¯t
1u Q˜u1 f˜u1g˜h40 ,

¯u

¯t
1˜ Q (uh)40 .

(1)

Here u4 (u , v) is the horizontal velocity, h is the free surface elevation, ˜u4 (2v , u)
and f is the (constant) Coriolis parameter. r will denote the radius-vector on the plane
expressed in Cartesian (x , y) or polar (r , u) coordinates. The nondimensionalisation
with the help of the characteristic turnover velocity U and the characteristic vortex
scale L in the horizontal direction and with the unperturbed fluid depth H in the
vertical direction naturally introduces the Rossby and Burger numbers

Ro4e4
U

fL
,(2)
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The system of equations (1) possesses a Hamiltonian structure (see, e.g., [8]) which is
provided by the nondimensional Hamiltonian

HSW [u , h]4
1

2
��dx dy k eh 2

2s
1

ehu2

2
l ,(4)

where

u4
m2hR

eh
(5)

and ˘RR4 f k is rescaled to have f41, and by the Poisson bracket

(6) ]F , G(SW4��dx dy { dF

dmi
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¯j h

dG

dmj
} .

We should remind, without dwelling on mathematical subtleties, that in general the
dynamical evolution of a set of variables v(x , y ; t) is Hamiltonian if it may be written in
the form

v
.
4]v , H[v]( ,(7)

where H[v]—a Hamiltonian—is a functional of v and for any pair of functionals
]A[v], B[v]( denotes a Poisson bracket obeying a cyclic Jacobi identity.

An infinite series of integrals of motion—so-called Casimir functionals—arise from
the continuous symmetry under relabelling of the Lagrangian particles

CSW [u , h]4��dx dy hF(q) .(8)

They are functionals of the dynamical variables u , h and their Poisson bracket (6) with
any function of dynamical variables is identically zero. Here the nondimensional
potential vorticity q is defined by

q4
11ev

h
, v4 (˘Ru) Qk ,(9)

where k here and before denotes a unit vector normal to the plane. The Hamiltonian (4)
is invariant with respect to spatial rotations. In the case where the boundary conditions
are also invariant, an additional conserved quantity—the angular momentum—appears:

ISW [u , h]4��dx dy(mRr) Qk .(10)

2.2. FD equations. – The FD equations arise from the direct asymptotic expansions
of eqs. (1) under the assumption sCe and by introducing multiple time scales [1, 3, 4].
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In slow time t4e22 t the equation of motion for the free-surface elevation is

¯h

¯t
4 J gh , h˜2 h1

(˜h)2

2
h ;(11)

here J(A , B)4¯x A¯y B2¯x B¯y A denotes the Jacobian of any pair of functions A and
B.

The Hamiltonian structure is given by the following Hamiltonian and Lie-Poisson
bracket:

HFD [h]f
1

2
��dx dy h(˜h)2 ,(12)

]F , G(FD4��dx dy h J g dF

dh
,

dG

dh
h .(13)

The Casimir functionals are

CFD [h]f��dx dy F(h) ,(14)

where F is an arbitrary real-valued function. Assuming axisymmetric boundary
conditions, one may check the conservation of the angular momentum

IFD [h]f
1

2
��dx dy r 2 h .(15)

2.3. Stability of stationary solutions. – Let us now remind the definitions of formal
and nonlinear stability of stationary solutions for arbitrary Hamiltonian system (7).

Formal stability

Suppose an equilibrium solution v e (t)4v e (0) is found such as ]v e , H[v e ](40.
Then this solution is formally stable if there exists a conserved quantity (an invariant of
motion) such that its first variation calculated on v e is zero and the second variation is
sign-definite.

Nonlinear stability

Nonlinear stability of an equilibrium solution is just the Lyapunov stability, i.e. v e

is nonlinearly stable if there exists a norm V QV such that

(eD0, )dD0: Vv(0)2v e VEd ¨ Vv(t)2v e VEe , (tD0 .

Usually, it is the second variation of the Hamiltonian (or the Hamiltonian
“augmented" by additional invariants introduced with their proper Lagrange
multipliers) which, if sign-definite, provides a norm for nonlinear stability proofs. It
does provide a norm for linear stability, however additional convexity estimates are
needed to get the full nonlinear stability (cf. [9]).

Note that in Hamiltonian systems possessing Casimir invariants, the dynamical
evolution in the phase space takes place on the surface of fixed Casimirs. So the
stability analysis may be done either on the fixed Casimirs’ surface by considering the
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“isovortical" variations, i.e. those variations of the dynamical variables that do not
change the Casimir invariants (cf. [10]), or in the full phase space by considering
arbitrary variations of the dynamical variables applied to the augmented Hamiltonian
(cf. [9]). In the latter case the formal stability analysis algorithm consists in finding the
Lagrange multipliers by vanishing the first variation of the augmented Hamiltonian
and then analysing the second variation.

3. – Stability properties of the FD vortices

Any axisymmetric profile he (r) is, obviously, a stationary solution of (11). In the
present paper we are studying the stability of the isolated vortices. An isolated vortex
is the one with zero circulation at spatial infinity, where the velocity in FD regime is
determined from h via the geostrophic balance equations. The simplest isolated
vorticity configuration consists of a vortex core surrounded by a ring of opposite-sign
vorticity. In what follows only smooth profiles of vorticity will be considered. Note that,
according to our nondimensionalisation he (r) tends to unity when r goes to infinity.
Monotonous he (r) correspond to “non-sheared" vortices having azimuthal velocity of a
definite sign.

3.1. Formal stability analysis. – We apply now the standard formal stability
analysis algorithm by constructing an augmented Hamiltonian H C

FD4HFD1CFD and
calculating its first variation

DH C
FD [he ]4��dx dy g2he ˜

2 he2
(˜he )2

2
1F8 (he )h dh .(16)

Vanishing this expression gives

F8 (he )4he ˜
2 he1

(˜he )2

2
.(17)

The second variation is then

D 2 H C
FD [he ]4��dx dy[ (F9 (he )2˜2 he )(dh)21he (˜dh)2 ] .(18)

If the vortex height profile is monotonic, then F9 (he ) as a function of r may be obtained
from (17)

F9 (he )4˜2 he1
he (˜2 he )81 ((˜he )2 O2)8

h 8e
,(19)

where primes in the r.h.s. denote differentiation with respect to r. Although h 8e
vanishes at zero and at infinity, this expression has no singularities there according to
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our assumptions on the structure of the vortex profile. After some algebra one gets

(20) he he82k˜ g dh

h 8e
hl24

4he (˜dh)21 y he (˜2 he )81 ((˜he )2 O2)8
h 8e

z (dh)21 [˜2 he82 (˜2 he )8 ]
he

h 8e
(dh)2 .

Note that for the radial part of the Laplacian of he (r)

˜2 he (r)4h"e (r)1
h 8e (r)

r
(21)

the bracket in the last term in (20) does not vanish giving 2h 8e Or 2. Hence, the second
variation of the Hamiltonian for Fourier-expandible perturbations

dh(r , u , t)4 !
n�N

dh×n (r , t) e inu1c.c.(22)

is

(23) D 2 H C
FD [he ]4��dx dy mhe he82k˜ g dh

he8
hl22 he

r 2
(dh)2n4

4 !
n�N
�2pr dr yhe he82Ng dh×n

he8
h8N2

1
(n 221) he

r 2
Ndh×n N2z .

The axisymmetric n40 perturbation mode may be considered as part of the initial
steady profile. Therefore, if we restrict the vortex profile perturbations to those with
zero angular mean, then n40 mode is excluded, (23) is positive-definite and we get
formal stability of any monotonous vortex profile. Note that both monotonous cyclones
and anticyclones are formally stable with respect to zero angular mean modal
perturbations according to this result.

3.2. Nonlinear stability analysis. – As usual in the stability analysis (cf. [9]) we
form the following combination from the variation of H C

FD with respect to finite
perturbations Dh of he and DH C

FD [he ]:

(24) var (H C
FD ) »4 [H C

FD [he1Dh]2H C
FD [he ]2DH C

FD [he ] QDh4

4 var (F)1��dx dy(2˜2 he (Dh)21 (he1Dh) (˜(Dh) )2 ) ,

where

var (F) »4��dx dy(F(he1Dh)2F(he )2F8 (he ) Dh) .(25)

In order to establish upper and lower bounds for var (H C
FD ) we, first, have to bound

var (F). For this we need to bound the second derivative of F(h) in the domain Dof the
flow. For axisymmetric vortex profiles the domain D is either a circular disc or the full
plane; in the latter case we will consider perturbations with a compact support D . We,
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thus, require

2QEaGF9 (he )GAE1Q .(26)

Note that F9 (h) is still given by (19) and the fact that it is bounded means that he (r) is
necessarily monotonous. Then

aVDhV2G var (F)GAVDhV2(27)

and we get the following bounds for var (H C
FD ):

ka1 inf
D

(2˜2 he )1C 21
D inf

D
(he1Dh) lVDhV2G var (H C

FD )(28)

and

var (H C
FD )G kCDgA1sup

D
(2˜2 he )h1sup

D
(he1Dh)lV˜DhV2 ,(29)

where V QV denotes the L2 norm and CD is a constant depending on D. We use here the
Poincaré inequality

��
D

dx dyNfN2GCD��
D

dx dyN˜fN2(30)

which is valid for compact domains, domains bounded in one direction or finite-measure
sets on the plane. Hence, if we limit ourselves to the finite-variation perturbations whose
maximum and minimal values are bounded (i.e. perturbations which do not change the
peak value of he are physically plausible; note that in any case inf

D
(he1Dh)D0) and if the

following inequality holds:

a1 inf
D

(2˜2 he )1C 21
D inf

D
(he1Dh)D0 ,(31)

then there exist positive constants c and C such that

cVDhV2G var (H C
FD )GCV˜DhV2 .(32)

This inequality holds for all tD0 as H C
FD is an integral of motion. Hence,

cVDh(t)VGCV˜Dh(0) V .(33)

This relation provides a criterion for Lyapunov stability (note that this is a slight
generalisation of the nonlinear stability definition given above as two different norms
enter) of the FD vortices. The condition (31) is not symmetric with respect to the
change of vortex sign but eddies of both signs may verify it. A detailed analysis of
F(he (r) ) and, hence, he (r), cf. (19), satisfying this criterion will be presented else-
where.

4. – Stability of localised vortices in the full RSW equations

In the preceding section we have shown that the FD vortices with monotonous
profile of the free surface elevation are formally stable. The FD equations are,
however, highly “processed” with respect to the parent RSW equations and the
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question arises what is the counterpart of this stability property in the full RSW
equations.

Let us define the augmented Hamiltonian (cf. [11]) by

H C
SW4HSW1CSW1VISW ,(34)

where V is an arbitrary real constant. Note that this is a most general form of H C while
we managed to establish formal stability in FD without including angular momentum.
The equilibrium solution ue , he satisfies the following equations:

ue Q˘ g she

e
1

eue
2

2
h40 ,(35)

ue Q˘qe40 .(36)

Hence, there exists a real-valued function K verifying

she

e
1

eue
2

2
4K(qe ) .(37)

The first variation of the augmented Hamiltonian,

(38) DH C
SW [ue , he ] Q (du , dh)4

4��dx dy mk she

e
1

eu2
e

2
1F(qe )2qe F8 (qe )2V(erue Qeu1r 2 /2 )l dh1

1[ehu2ekR˘F8 (qe )2Vhe reu ] Qdun
is zero, provided

K(qe )1F(qe )2qe F8 (qe )2Verue Qeu40 ,(39)

where eu , er are the unit vectors in polar coordinates. The second variation is

(40) D2 HSW
C [ue , he ] Q (du , dh)4

4��dx dy y e(d(huA) )2

he

1 g s

e
2

eNue2VrN2

he
hNdhN21he F9 (qe )(dq)2z ,

where uA4u2Vreu and

F9 (qe )4
he (r)[ue (r)2Vr]

qe8 (r)
,(41)

ue (r) denoting the azimuthal velocity component.
This derivation follows literally the one given in [9] for an arbitrary barotropic fluid

in a rotating framework, RSW being a particular example of such system. Obviously, it
is sufficient that the second and the third term in the integrand of (40) be positive for
the positive-definitedness of the second variation of the augmented Hamiltonian and,
hence, formal stability. These conditions give exactly the ones obtained in [9, 11] (in a
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nondimensional form). However, as is easy to see, this stability criterion is empty for
isolated vortices. Indeed for rapidly decaying ue (r), he (r) the second term in the
integrand of (40) can be everywhere positive only for V40. Now, the quantity
ue (r) /qe8 (r) cannot be positive-definite in the whole intergration domain. Indeed, the
localised equilibrium solution verifies

ue4
2r1kr 214she8 (r)

2e
,(42)

so ue and he8 always have the same sign. For the vortex to be isolated its core should be
surrounded by a ring of the opposite vorticity (we are mostly interested in non-sheared
azimuthal velocity configurations; the argument below may be, however, extended to
sheared eddies, too). Let us consider the case of a cyclonic core (the proof is similar in
the anticyclonic case). Then ue is everywhere positive being zero at the origin and
decaying rapidly at infinity. The vorticity v e4ue81ue /r is then positive in the core
region and the potential vorticity value is qe (r)4 [(11ev e (r) )Ohe (r)] (remember that
he (r) is everywhere positive and growing in this case). Now, in the ring region vorticity
is negative and he (r) is larger than in the core. Hence, the potential vorticity is smaller
in the ring than in the core and its derivative should be negative at least somewhere in
between.

One can, neveretheless, establish necessary conditions for the sign-definiteness of
(40). Note that there exists a class of perturbations rendering D2 H C

SW [he , ue ] Q (du , dh)
positive. It is clear that potential vorticity does not depend on the potential part of the
velocity. By decomposing velocity perturbation into vortical and potential parts du4
kR˘dc1˘dj and taking perturbations with dc4dh40 one gets

D2 H C
SW [ue , he ] Q (˘dj , 0 )4��dx dy(ehe (˘dj)2 )F0 .(43)

Hence, D2 H C
SW he , ue (du , dh) cannot be negative-definite.

If now F9 (qe ) is not positive-definite D2 H C
SW he , ue (du , dh) may be rendered

negative by the following choice of perturbations. Take

du Qer4du4 !
n�N

du×n (r) e inu1c.c.,(44)

du Qeu40 ,(45)

dh40 .(46)

Then the second variation for a single harmonic du×n (r) becomes

D2 H C
SW [ue , he ] Q (du , 0 )4�2pr dr yehe Ndu×n N21

F9 (qe ) n 2 Ndu×n N
2

he r 2
z .(47)

If du×n (r) is peaked in the region where F9 (qe ) is negative, one can choose n as large as
necessary to make D2 H C

SW [ue , he ] Q (du , 0 ) negative.
Therefore, F9 (qe ) should be necessarily positive-definite for sign-definiteness of

D2 H C
SW [ue , he ] Q (du , dh). As was just demonstrated, ue (r) /qe8 (r) cannot. Hence, this

latter quantity should be negative-definite along with [ue (r)2Vr]Oue (r). Yet, these
conditions are not sufficient to guarantee stability unless the free-surface perturbation
dh are confined to the region where (sOe2eNue2VrN2 Ohe ) is non-negative. This gives
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a conditional stability condition. Note, however, that the monotonicity of potential
vorticity is essential and that potential vorticity degenerates to the inverse surface
elevation in the FD approximation which makes a link with the above-established FD
stability result.

5. – Discussion

Thus, we have demonstrated formal stability of vortices with monotonous elevation
profile within the framework of the FD equations and established criteria for nonlinear
stability. The fact that the elevation represents, in fact, potential vorticity in this
regime corroborates the earlier results on stability of vortices with monotonous
vorticity profiles in 2D Euler and QG equations (cf. [12, 13]). We have seen that the
monotonicity of the potential vorticity is important in the framework of the full RSW
equations, as well. However, we were unable to establish unconditional formal RSW
stability criteria for isolated vortices. Of course, the sign-definiteness of the second
variation of the augmented Hamiltonian is a sufficient formal stability condition and
the fact that we cannot establish it does not, obviously, mean that RSW vortices are
unstable. However, the fact that stability conditions valid in a balanced model have no
clear counterpart in the full equations is somewhat disturbing. The energy-Casimir
approach is the only regular method to get stability proofs and, hence, in the absence of
these latter the only way to proceed is numerics. In this connection the analysis of
potentially dangerous perturbations rendering the second variation of the augmented
RSW Hamiltonian negative which was done in the last section may give some useful
hints.

We should mention that our analysis of formal and nonlinear stability of the FD
vortices is similar to that undertaken in [14] and then in [15] for linear fronts (i.e.
equilibrium solutions of the form he4he (y)). Note, that on the level of the formal
stability the different geometry leads to the appearance of the second term in (23). On
the level of nonlinear stability the authors of [14] and [15] have limited themselves to
the energy bounds. However, the energy is a cubic function of h in FD and, hence, is
not a norm because it does not satisfy the triangle inequality.
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