
Optimization of the configuration in a CAES-TES system 

 
Adriano Milazzo 

Dipartimento di Energetica – Università degli Studi di Firenze 

 

 

Keywords: CAES TES, Constructal Law, Entropy Generation Minimization 

 

Abstract 

A compressor with heat recovery is thermodynamically analyzed from a second-law point of view, 

in terms of entropy generation minimization. The unit is optimized, accounting for heat exchange 

and pressure loss irreversibility, and the maximum output is found, in terms of combined 

mechanical and thermal energy, for a given input energy at the compressor shaft.  

This analysis is intended as a part of the thermal optimization on a CAES TES (Compressed Air 

Energy Storage with Thermal Energy Storage) plant. The latter, if an artificial reservoir is used for 

compressed air, requires high operating pressure. Hence, this work focuses on a staged compression 

with intermediate refrigeration. The principle of equal distribution of irreversibility, which is one of 

the aspects of the “Constructal Law” is then demonstrated. From these findings, a good 

approximation can be found for the optimal configuration of a complex multi-stage system. 

 

Nomenclature 
A Area  [m

2
] Greek  

C Flow heat capacity [W K
-1

1] β Volumetric expansion coefficient 

c Specific heat [J kg
-1

 K
-1

] β Compression ratio 

D Diameter [m] γ Specific heat ratio 

E Energy [J] ε Heat exchanger efficiency 

ex Exergy [J] η Efficiency 

h Specific enthalpy [J kg
-1

]   

L Length [m]   

m&  Mass flow rate [kg s
1
] subscripts  

N Entropy generation index  0 Ambient 

n Polytropic exponent c Compressor 

NTU Number of heat transfer units env Environment 

p Pressure [Pa] gen Generated 

Q Heat [J] i Inlet 

r Temperature ratio o Outlet 

R Ideal gas constant [J kg
-1

 K
-1

] pol Polytropic 

S Entropy [J K
-1

] rev Reversible 

t Time [s]   

T Temperature [K]   

v Specific volume [m
3
 kg

-1
] superscripts  

W Work [J] 0 Total (thermal + kinetic + potential) 

z Heat capacity ratio   

 

1. Introduction 

In the present energy situation Compressed Air Energy Storage (CAES) is receiving new interest, 

due to (hopefully) increasing share of renewable energy sources and market liberalization.  

Among various energy storage systems, CAES has been proposed for the high-energy, high-power 

end of the range, but practical realizations, at now, are just two [1,2]. Many authors have guessed 

that CAES could be useful in smaller sizes, as a complement, for example, to a wind farm or any 

other renewable power plant [3].  
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The two existing CAES plant include a combustion chamber where compressed air is pre-heated 

before expansion. Hence, they consume fossil fuels and emit pollutants. Moreover, the thermal 

energy released by the air after its compression is wasted, reducing the system efficiency.  

These two problems have prompted other proposals [4], based on the integration between a CAES 

and a Thermal Energy Storage (TES). Such integration can solve both issues: thermal energy is 

drawn from compressed air during the energy storage phase and released to expanding air during 

the energy recovery phase. As a whole, such a plant is adiabatic, that is free of emissions and fuel 

consumption. 

 

Compressed air 
storage Cold storageHot storage

M UC1 C2 C3 E1 E2 E3

Compression train Expansion train

 
Figure 1 – Scheme of CAES TES plant 

  

On the other hand, a CAES-TES system has many degrees of freedom and claims for a complex 

thermal optimization. Some aspects of this optimization have been presented elsewhere [5, 6]. For 

example, it has been shown that an artificial compressed-air storage has a decreasing cost with 

increasing storage pressure.  

The variation of storage pressure during charge/discharge can be addressed by a variable 

configuration of the multi stage compression-expansion train, as shown for example in [6]. Here the 

focus is on heat transfer problems, accounting for pressure losses in the heat exchangers and trying 

to optimize the whole system configuration 

 

2. Background 

As shown for example in [7], for a system exchanging heat with various sources at different 

temperatures Ti (including the environment at T0) and mass flows with different enthalpy, kinetic 

and potential energy through various inlet and outlet ports (including a port toward the 

environment), the energy and entropy balance are: 

0
0

00

0

≥+−−=

−+−=

∑∑∑

∑∑∑

=

=

outin

n

i i

i
gen

outin

n

i

i

smsm
T

Q

dt

dS
S

hmhmWQ
dt

dE

&&

&
&

&&&&

    (1 

In these equations, E is the system internal, kinetic and potential energy, S is its entropy and h
0
 is 

the total enthalpy (including kinetic and potential terms) of the inlet/outlet flows. Solving for the 

heat and mass transfers towards the environment and summing the two balances, the maximum 

work can be calculated as:  
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Maximum work is obtained through reversible process and by definition is: 
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The system optimization is then pursued by minimizing the term: 

genrev STWW &&&
0=−       (4 

In the case of a CAES-TES system, both mechanic and thermal energy are stored. The system 

objective is to reach the maximum energy recovery efficiency, that is the ratio between compression 

and expansion work. 

The elemental system unit is a compressor coupled with a heat exchanger (or an exchanger coupled 

with a turbine stage). The best working conditions are sought for this unit and the relation between 

this elemental optimum and the complete system optimum is investigated.  

By the way, such analysis may be useful beyond the specific CAES study, being the compressed air 

production a primary process in any industry and being the heat recovery from compressed air a 

significant opportunity, if low-temperature thermal loads are to be covered.  

 

3. Heat Exchanger optimization 

Heat exchanger optimization has been dealt with by many authors [8, 9]. For example, the 

following analysis is a generalization of the one presented in [10]. Given a heat exchanger between 

a hot fluid 1 and a cold fluid 2, neglecting any energy loss towards the environment, the entropy 

production is: 

       2211  dsm   dsm dS && +=       (5 

Being the entropy variation: 
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by integration from inlet to outlet, one has: 
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where specific heats are averaged between inlet and outlet temperatures. 

For a liquid:     cost==
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In the second expression, we can introduce the pressure loss ∆p = pi – po and consider that ∆p << pi 

in order to reduce the logarithm to its first order Taylor series: 
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Therefore, in both cases we have: 
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being  l = βv  for liquids and l = R/pi for ideal gasses. 

Introducing Kays efficiency:
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assuming   cp1m1 = C1 = Cmin    and   cp2m2 = C2 = Cmax,  

and introducing the ratios r = T2/T1 and  z = C1 / C2  

we have: (To/Ti)1 = 1 – (Ti1 – To1) / Ti1 = 1 – ε (Ti1 – Ti2) / Ti1 = 1 – ε (r – 1)/r 

and  (To/Ti)2 = 1 + (To2 – Ti2) / Ti2 = 1 + ε z (Ti1 – Ti2) / Ti2 = 1 + ε z (r – 1) 

The entropy variation therefore is: 
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This quantity has two contributions, accounting for heat exchange and pressure loss irreversibility. 

Entropy generation can be divided by the minimum heat capacity Cmin, so introducing the non-

dimensional entropy generation index: 

        NS =∆S/Cmin= NSP + NSε     (9 

where: 
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As a rule, any improvement in terms of heat exchange gives increased pressure losses and vice-

versa. Therefore, we expect the two contributions NSP and Nsε to have opposite trend and their sum 

to have a minimum. Actually this may often be untrue, and so other entropy generation indexes 

have been introduced. For example, the entropy generation ∆S can be related to its maximum value, 

which would be attained if heat were directly transferred between the farthest system temperatures 

Ti1 e Ti2. Such entropy generation would be: 

∆SQ = Q(1/Ti1 – 1/Ti2) 

Another entropy generation index is hence defined [10]: 

     NQ =∆S/ ∆SQ = (NS/ε) [r/(r – 1)
2
]    (11 

In view of application to a CAES, we focus on a counterflow, shell and tube heat exchanger, with 

air flowing inside the tubes and refrigerant around them. Optimization is performed with fixed heat 

exchange area and length and variable number of tubes. Concentrated pressure losses are neglected.  

The TES fluid is water, at suitable pressure in order to avoid evaporation. Water enters the 

exchanger at ambient temperature. Air and water properties are evaluated by interpolation from data 

found in [11].  

Air conditions are those calculated at the exit of a compressor with pressure ratio β = 3 and 

polytropic efficiency ηpol = 0.92.  
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Table 1 – Heat exchanger data 

Tair 422 K Twater 288 K 

pair 304 kPa pwater 101 kPa 

mair 1 kg/s mwater 0.2432 kg/s 

L 10 m A 25 m
2
 

 

 

Other variables are the heat capacity ratio z =C1/C2 and the shell diameter. This latter, given the low 

pressure loss on the water side, is set to the minimum geometrical value for the given number of 

tubes. This minimum has been graphically evaluated and can be expressed in the form D2 = y D1 n
x
, 

being y ≈ 1.3 and x ≈ 0.47. In practice we assume y = 1.35, in order to avoid direct contact between 

tubes. 

Nsε

Nsp

Ns

0.00

0.01

0.02

0.03

0.04

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
NTU

N
s

 
Figure 2 – Entropy generation index Ns Nsε and Nsp for a water-air, shell and tube heat exchanger - 

data from table 1,  z = 1 

 

Even if water flow section has been set to a minimum value, the entropy contribution due to water 

pressure loss is always less than 1% of that due to air pressure loss.  

The Ns index in figure 2 has a relative minimum, but it also shows an upward slope for NTU < 1. 

Even if this zone must be discarded for design purpose, it makes the optimization result less 

evident. Moreover, at certain values of the design parameters, the minimum disappears. Therefore, 

the NQ index is more convenient, having always a minimum as shown in figure 3. 

The minimum position slightly changes with z between NTU = 3.5 and NTU = 4. Further data are 

given in table 2. 

 

Table 2 – Optimum heat exchanger design for various z 

z NQ NTU n. of tubes DTube [mm] DShell [mm] 

0.3 0.446 3.53 31 26 172 

0.5 0.362 3.77 33 24 166 

0.8 0.283 4.00 35 23 161 

1 0.263 3.89 34 23 163 
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Figure 3 – Entropy generation index NQ v/s NTU for various z values 

 

The NQ index decreases with z, even if curves become closer as this parameter approaches unity. 

Assuming  z = 1 and optimum design, heat exchanger efficiency is ε = 0.795. 

 

4. Entropy generation in the compressor  

The compressor can be modeled by a polytropic transformation pv
n
 = cost. For a perfect gas, the 

entropy generation along this transformation (which, by definition, is equal to that of the real 

compression) is given by: 
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where γ = cp / cv . Introducing the compression ratio β and integrating: 
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The entropy increment can hence be related to the polytropic exponent n, which in turn is related to 

the polytropic efficiency: 
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Use of polytropic efficiency is correct for a compression, as it measures the “quality” of the 

transformation independently from β. Again, the entropy generation can be translated in a non-

dimensional entropy generation index Ns-comp =∆s / cp . 

Figure 4 shows that Ns-comp increases with β and decreases with the compressor polytropic 

efficiency, as expected.  
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Figure 4 – Entropy generation index for a compressor with given β e ηpol 

 

 

5. Compressor plus heat exchanger 

When the compressor is coupled to a heat exchanger with a given pressure loss ∆p, if the delivery 

pressure of the system is fixed, it must work at an increased compression ratio: 
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being pic the compressor inlet pressure. 

At this point we must decide what the real objective of the system is. If the air has to be stored in a 

reservoir at ambient temperature, any excess temperature at the compressor exit is actually lost. 

Therefore we must add this loss to the system irreversibility, in terms of entropy generation. 

In the following, fluid 1 is air and fluid 2 is water. If To1 is the air residual temperature at heat 

exchanger exit, the heat Qenv = C1 (To1 – T0) is discharged to the environment.  

It should be reminded that:  

pi1 = β*· pic  and  Ti1 = Tic (β*)
(n-1)/n

.  

For a single stage we may assume Ti2 = Tic= T0  and  pic = p0. Hence r = (β*)
(n-1)/n

.  

Furthermore: 

To1 = Ti1 – ε(Ti1 – Ti2) = T0 [r – ε(r – 1)].  

Air enters the compressor at ambient conditions p0; T0 and is stored at p = β p0 ; T0. Its entropy 

variation is: 
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Water enters the exchanger at p0, Ti2 = T0 and, neglecting its pressure loss, exits at p0, 

( )2122 iiio TTzTT −+= ε . Its entropy variation is: 
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The environment receives the heat Qenv while remaining at T0. 
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Finally: 
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The same result could be obtained through an exergy balance. If air enters the system at T0 and is 

stored at the same temperature, the air non-dimensional exergy increase, per unit mass flow rate, is: 
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Meanwhile, the water flow increases its specific exergy (neglecting pressure losses), by: 
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Using the heat exchanger efficiency: 

( ) ( )2122 iipiowater,pwater TTcmTTcm −⋅=− && ε    

Hence, being acqua,pacquap cm/cmz &&=  

( ) 122 1 iio TzTzT εε +−=      

Therefore, referring the exergy increase to the unit mass flow of air:  

( )








+−−

−
=

∆

2

1

0

21

0

1
1

i

iii

p

water

T

T
zzln

zT

TT

Tc

ex
εεε     (20 

The system exergy input is the compression work: 
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Using again the assumptions Ti2 = Tic= T0  and  pic = p0, we may write the system exergy destruction 

as follows: 
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Therefore the entropy generation index Ns = ∆s/C  calculated by equation (17) is equal to the non-

dimensional exergy loss calculated by equation (22) and will be used in the following to find the 

system optimum.  

Figure 5 shows that optimum NTU for the heat exchangers increases with β. Selecting the optimum 

values, we obtain the results shown in Figure 6, where the increase of NTU is shown together with 

the increase of entropy generation.  

For β = 3 we find an optimum NTU around 3.75, as shown in the heat exchanger analysis. 

The increase of optimum NTU can be interpolated as a polynomial in β as follows: 

 

NTU =  – 1.717 · 10
-3 β 4

 + 4.466 ·10
-2 β 3

 – 4.510 ·10
-1 β 2

 + 3.060 β – 2.533 
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Figure 5 – Entropy generation index v/s exchanger NTU for various values of β  (ηpol = 0.9, z = 1) 
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Figure 6 – Optimum heat exchanger design and exergy efficiency for a single stage v/s β  

(ηpol = 0.9, z = 1) 

 

6. Two compressors/heat exchanger assemblies, arranged in series  

If the compression ratio has a high value, as in a CAES system, it may be useful to divide the 

compression into several stages, each followed by a heat exchanger.  

Starting from two stages, we may fix a global compression ratio β = 10 and try to find the best 

values of the stage compression ratios β1 and β2, being β1· β2 = β, in terms of minimum entropy 

production (or maximum exergy efficiency). For each couple of compression ratios, the two heat 

exchangers are optimized, in terms of NTU, through the beforehand discussed optimizing criterion.  

The exergy destruction is the sum of those registered in the two stages.  
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The second stage has a different behavior with respect to the first one. The residual temperature at 

first stage exit is not simply an energy loss, but it causes an increase in the compression work of the 

second stage. The entropy generation index of the second stage has therefore a different shape. 

Again, the entropy generation increases with the compression ratio and its minimum occurs for 

higher values of NTU. This is summarized in figure 8. 

Coupling the two stages we have the final results shown in figure 9, where the two entropy 

contributions are plotted with their sum. The compression ratio reported on the abscissa refers to the 

first stage. The second is β2 = 10 / β1. Therefore the entropy generation of the first stage increases 

and the second decreases. 
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Figure 7 - Entropy generation index of the second stage v/s heat exchanger NTU for various values 

of β  (ηpol = 0.9, z = 1) 
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Figure 8 – Optimum heat exchanger design and exergy efficiency for the second stage v/s β  

(ηpol = 0.9, z = 1) 
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The global entropy generation has a minimum which basically coincides with the intersection of the 

two curves, i.e. with the point where the entropy generation is equal between the two stages. This is 

in good agreement with all the literature on entropy generation minimization, as well as with one of 

the basic principles of Constructal Design [12], i.e. the equal distribution of irreversibility between 

the units of a complex system. 
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Figure 9 – Optimum design of a two stage system v/s β of the first stage 

 

The global entropy generation can be interpolated by the polynomial: 

 

Ns = 6.961·10
-6 

x
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 x

4
 – 1.616·10

-2 
x

3
 + 5.850·10

-2 
x

2
 – 1.139·10

-1
x + 0.230 

 

The minimum of this polynomial is at β1 = 3.26, i.e. β2 = 3.07. The intersection of the two curves is 

instead at β1 = 3.05 and β2 = 3.28. Apparently, this increased load on the first stage is beneficial 

because it reduces the loss toward the environment at the exit of second stage.  

Actually, the system design is quite robust, as shown in figure 8, being the minimum zone very flat 

from β1 = 3 to 3.5. 

The optimum value of Ns is around 0.14, while for a single stage system with β = 10 it was around 

0.16 (see figure 6). 

 

7. Higher number of stages 

When the number of stages exceeds two, the single stage can be optimized independently, using the 

method above described. If the equal distribution of loss has given a close-to-optimal solution in the 

case of two stages, even if the last stage works in slightly different conditions, we may well say that 

it should work for the other stages, which work in the same condition.  

For a more precise solution, one should use a complex multi-variable optimization method, but the 

equal distribution of losses is useful for a first design and may even suffice as a thermal analysis, if 

the precise system design is dictated by other constraints. 
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8. Closure 

Compressed air energy storage is widely recognized as a valuable option for energy storage. 

Coupling it with a thermal energy storage may significantly improve its viability and attractiveness, 

but requires a careful thermal optimization. To this aim, well assessed results on heat exchangers 

optimization through entropy generation minimization can be used as a starting point. When the 

system becomes increasingly complex, as in the case of several stages connected in series, the 

principles of Constructal Law, i.e. the use of a single optimized building block and the assembly of 

several blocks having the same entropy generation, can be invoked.  

In this paper the compression phase of the energy storage has been analyzed. The principle of 

uniform distribution of losses has been shown to be valid in a simple configuration and is proposed 

as a guideline for the design at higher degrees of complication.  

Expansion phase can be dealt with in a similar fashion.  

Further work will be done on the Constructal optimization of the complete system, including the 

storage size and pressure. 

 

Acknowledgement 

The author is obliged to professor Giuseppe Grazzini for his precious support and guidance 

throughout the preparation of this paper. 

 

 

References 

1] Bradshaw D T, “Pumped Hydroelectric Storage (PHS) and Compressed Air Energy 

Storage (CAES)”, IEEE PES Summer meeting, Seattle, July 2000 

2] Schoenung S.M., “Characteristics and technologies for long-vs.short-term energy storage”, 

Sandia  Lab. 2001 Rep. SAND2001-0765 infoserve.sandia.gov/sand_doc/2001/010765.pdf 

3] Kukhartsev V, Motulevich V, Spiridonov A, Power system on the basis of wind-generated 

compressed air, IX WREC, Florence, August 2006 

4] Zunft S, Jakiel C, Koller M, Bullough C, Adiabatic Compressed Air Energy Storage for the 

Grid Integration of Wind Power, 6
th

 Int. Workshop on Large-Scale Integration of Wind 

Power and Transmission Networks for Offshore Windfarms, October 2006, Delft, NL 

5] Grazzini G., Milazzo A., “Thermodynamic analysis of CAES/TES systems for renewable 

energy plants”, Renewable Energy, 33 (2008) 1998-2006 

6] Grazzini G., Milazzo A., “Exergy analysis of a CAES with thermal energy storage”, 5
th

 

European Thermal Sciences Conference, Eindhoven (NL) 18-22 May 2008 

7] Bejan A., “Entropy generation minimization: the new thermodynamics of finite-size 

devices and finite-time processes”, Journal of Applied Physics, 79 (3), 1996 

8] Bejan A,. Advanced Engineering Thermodynamics, Wiley & sons, 1988 

9] Hesselgreaves J.E., “Rationalisation of second law analysis of heat exchangers”, 

International Journal of Heat and Mass Transfer 43 (2000) 4189-4204 

10] Grazzini G., Gori F., “Entropy parameters for heat exchanger design”, International 

Journal Heat and Mass Transfer, vol. 33 no. 12 (1998), 2547-2554 

11] Raznjevic K., “Thermodynamic Tables” (in Italian), Del Bianco, 1971 

12] Bejan A., Shape and Structure, from Engineering to Nature , Cambridge University Press, 

2000 

 

 

 

 


