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Summary. — A technique for estimating eddy diffusivities in a turbulent
atmospheric layer is presented; the scheme adopted is based on an inverse-problem
methodology. The inverse problem is formulated as a nonlinear constrained
optimization problem, where the objective function is defined through the square
differences between experimental and model data. The direct mathematical model is
given by the advection-diffusion equation, which is solved by second-order
finite-difference method. In the presence of noise it is necessary to use some
regularization term; the Tikhonov function and an entropic regularization of zeroth,
first and second orders are used in this paper. In addition, two inversion strategies
are used: alternate and simultaneous eddy diffusivities estimation. Numerical
experiments show a good performance of the proposed methodology.

PACS 92.60.Ry – Climatology.
PACS 92.60.Fm – Boundary layer structure and processes.

1. – Introduction

Turbulence has been a permanent challenge in science. A typically turbulent
flow exists in the atmospheric boundary layer [1]. Many ideas have been proposed to
understand and to represent the turbulence. An interesting approach is due to Osborne
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Reynolds: the flow is described as the sum of a mean stream plus a fluctuation term. In
this regard, the turbulence contribution is constituted by the mean of the product
between fluctuations, since individually the fluctuations have zero mean, according to
Reynolds postulates. These products, also called covariances, are the new unknowns of
the model, and represent the turbulent fluxes. Reynolds’ hypotheses cannot be applied
recursively, because it would lead to the appearance of higher-order correlations [2];
therefore, it is necessary to estimate the turbulence term or, in other words, to
parameterize the turbulent fluxes.

In order to close the equation system in a turbulent flow, the K-theory assumes that
the turbulent fluxes can be represented by means of the gradient-transfer assumption,
i.e., in the first-order closure the turbulence is modeled by a product between the
gradient of the mean stream and a K diffusivity. However, these diffusivities still need
to be determined.

Some approaches have been presented to estimate the turbulent diffusivities, based
on semi-empirical theories, as the Monin-Obukhov similarity theory [1], Taylor’s
statistical theory of turbulence [3-5], and parameterizations using data from Large
Eddy Simulation [6]. Some authors have proposed numerical procedures for estimating
the diffusivities from the experimental data, such as described by Sorbjan ([7], p. 170)
and Correa and Degrazia [8]. Another approach employing techniques of inverse
problems has also been used [9-13].

In this work the estimation of the vertical and horizontal eddy diffusivities in an
atmospheric stable boundary layer is done in such a way that an advection-diffusion
equation model can well describe the dispersion process of pollutants. Two inversion
procedures are considered: an alternate strategy, where at each iteration the value of
the vertical eddy diffusivity is estimated before that of the horizontal diffusivity; and a
simultaneous strategy, where both diffusivities are estimated in a unified fashion. In
both inversion procedures the inverse model is an implicit deterministic inversion
technique for function estimation from experimental measurements. However, inverse
problems belong to the class of ill-posed problems, whose solutions are unstable in the
presence of noise. It is well known that the presence of noise in the experimental data
represents an unrecoverable loss of information that makes a perfect inversion
impossible. Therefore, the observational data is often not sufficient to provide a
physically feasible solution. The approach in this case is to restrict the class of
admissible solutions (i.e., the solutions that are consistent with the available data) by
using a regularization operator [14].

The algorithm of the inverse problem is formulated as a constrained nonlinear
optimization problem, in which the direct problem is iteratively solved for successive
approximations of the unknown parameters. The objective function represents the
least-square fit between experimental and model data, associated to a regularization
operator. In the present paper six regularization methods are used: Tikhonov and
entropic regularizations of zeroth, first and second orders.

2. – Formulation of the direct problem

The model described below was used to test some turbulent parameterization
schemes [15, 16]. It represents a multidimensional steady state advection-diffusion
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equation. The system equation is expressed as
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where it is assumed that the transport in the x-directon is dominated by the advection,
and the diffusivity tensor can be written in the orthotropic form. In eq. (1) c(x , y , z)
represents the mean concentration of pollutants; Kyy (z) and Kzz (z) are the horizontal
and vertical eddy diffusivities, respectively; U is the mean wind speed; h is the height
of the stable boundary layer. Equation (2) models a source located at (x40, y4
yF , z4zF ); this condition is similar to that used by Giordana et al. [11]. The boundary
condition (3) does not permit exchange of vertical fluxes with the outside of the
boundary layer, and expression (4) is the same condition used by Shir and Shieh [17].

Equation (1) is numerically solved using the Crank-Nicolson method in the
x-direction and a centered finite-difference method for the diffusion operator. There-
fore, the numerical solution can be expressed in a matrix form by

(I2uDz ) Ci114 [I1Dy1 (12u) Dz ] Ci ,(5)

where Cf [Ci1 Ci2 RCi , Ny
] is the state vector, with Cijf [Cij1 Cij2 RCi , j , Nz

], Cijk being
the approximate solution for mean concentration c at point (xi , yj , zk ); IfIy7Iz , with
Ia the identity matrix of order Na3Na (a4y , z); Dy and Dz the finite-difference
operator for horizontal and vertical diffusion as follows:
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The vertical boundary conditions are

Bottom : (s2
bc )z , 14 (s2

z , 12s 0
z , 1 ) ,
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bc )z , 14s1

z , 1 ;

Top : (s2
bc )z , Nz
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bc )0
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42 (s 0

z , Nz
2s1

z , Nz
)

and for the y-direction: (s 0
bc )a14 (s1

bc )a14 (s2
bc )a , Na

4 (s 0
bc )a , Na

40. More details can be
found in Campos Velho et al. [15].

In the present simulation the eddy diffusivity is assumed to be a function of the
vertical space variable only; however situations exist when this assumption is not
valid [15, 18].

3. – Formulation of the inverse problem

The inverse methodology adopted is an implicit technique based on the least-square
formulation, which can guarantee existence and uniqueness for the solution of the
inverse problem, even though this solution can be unstable in the presence of noise in
the experimental data, requiring the use of some regularization technique [14].

Some inverse problems require the estimaton of very different types of parameters
(or functions). These parameters cause a very different impact on the direct model, as
in radiative transfer problems [19, 20]. In the radiative process two phenomena occur
simultaneously: the absorption and scattering of photons, which are respectively
represented by their coefficient. However, the same percentual change for the
absorption and scattering coefficient could give different outputs for irradiances,
becoming difficult to estimate these coefficients in a unified inversion. In this case, it is
possible to get good results only by adopting an alternate strategy.

The present estimation of eddy diffusivities will be applied for y and z directions,
that is, Kyy and Kzz reconstruction, which can assume different values for each
direction [4]. In order to verify the influence of each direction in the eddy diffusivities
estimation two inversion strategies were elaborated:

a) Alternate strategy:

1. Solve the optimization problem:

min Jg z
(Kn

z ) ;

Jg z
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z )1g z V(Kn
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2. Solve the optimization problem:
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3. If: VKn
a2Kn21

a V /VKn
aVEe stop! Otherwise , go back to step 1 .

In the first estimation, the value of Ky is taken from the literature, for example the
value used by Shir and Shieh [17], in which the horizontal diffusivity is assumed to be a
simple scalar number.
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b) Simultaneous strategy:

In this case only the follow optimization problem is solved:

min Jg (K) ;(8)

Jg z
(K)4R(K)1g V(K) ;(9)

K4 [Ky Kz ]T .

In both strategies the vector of parameters is the sampled eddy diffusivity
function

Ka4 [Ka , 1 Ka , 2 RKa , Na
]T , Ka , n4Kaa (z01n Dzn ) .(10)

In eqs. (6)-(8) a smooth solution is obtained by choosing a function Ka that optimizes
those functionals, where V(K) is a regularization operator, g’s are the Lagrange
multipliers, R(K) is a norm l2 of the difference between experimental and model
data:
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3.1. Regularization operators. – As already mentioned, the least-square approach
gives a unique solution for an inverse problem. However, ill-posed problems can yield
stable solutions if sufficient a priori information about the true solution is available [14];
such information is added to the least-square approximation by means of a regulariza-
tion term, in order to complete the solution for the inverse problem. The regularization
operators used in this paper are described below.

3.1.1. T i k h o n o v r e g u l a r i z a t i o n . The regularization operator is expressed by [14]

V(K)4 !
m40

p

g m VK(m)
V

2
2 ,(12)

where K(m) denotes the m-th difference, and g mF0 are regularization parameters. The
effect of zeroth-order regularization is to reduce the amplitude of oscillations on the
parameter vector (smooth function Kaa (z)), while first-order regularization acts on the
difference NKm2Km21N (that is, Km is constant in the limit of g 1KQ).

It can be noted that as g mK0 the least-square term in the objective function is
over-estimated, and this might not give good results in the presence of noise. On the
other hand, if gKQ, all consistency with the information about the system is lost.

3.1.2. E n t r o p i c r e g u l a r i z a t i o n . The maximum entropy principle was first
proposed by Jaynes [21] on the basis of Shannon’s information theory [22]. Similar to
the Tikhonov approach, this general inference method searches for a global regularity,
yielding the smoothest solution which is consistent with the available data.

Recently, a higher-order entropic regularization has been proposed [23-27].
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A generic expression for entropic regularization can be written as
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Here z is a small positive constant, which assures that entropies of higher order will
always have a definite value. The function S m attains its global maximum when all the
rq are the same, i.e., a uniform distribution with Smax4 log (Nq ); in contrast, the lowest
entropy value Smin40 is reached when all the elements rq but one are set to zero [28].

3.2. Optimization algorithm. – There are many techniques to solve an optimization
problem, as conjugate gradient method [29, 30], techniques based on fuzzy theory [31]
and stochastic methods, such as genetic algorithms [32, 33] or simulated annealing [34].
In the present paper, the problem given by eqs. (6)-(8) is iteratively solved by a
quasi-Newtonian optimizer E04UCF routine from the NAG Fortran Library [35]; this
algorithm is designed to minimize an arbitrary smooth function subject to constraints
(simple bound, linear or nonlinear constraints), using a sequential programming method.

The approach used here has been sucessfully adopted in other works [23, 36-38]. In
addition, Afonso and Horowitz [39] have investigated four different sequential
quadratic programming algorithms for structural shape optimization procedure; the
NAG routine was the only one that solved all the examples presented.

4. – Numerical results

The two inversion strategies presented in the previous section were tested with
synthetic data generated by the direct numerical model and corrupted by white
Gaussian noise with different levels of noise, being the exact eddy diffusivities given by
Degrazia and Moraes [4]:

Kzz

u * h
4

0.32(12z/h)a 1 /2 (z/h)

113.7(z/h)(h/L)
,(16)

Kyy

u * h
4

0.55(12z/h)a 1 /2 (z/h)
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AN AUTOMATIC METHODOLOGY FOR ESTIMATING EDDY DIFFUSIVITIES ETC. 71

TABLE I. – Numerical and physical parameters.

Nx Dx Ny Dy Nz Dz L u *

100 20 m 40 2.5 m 40 2.5 m 60 m 0.09 m s21

where u * is the friction velocity, h is the height of the stable boundary layer, z is the
height above the ground, L is the local Monin-Obukov length given by

L

L
4 g12 z

h
h3a 1 /22a 2

;(18)

L is the surface Monin-Obukov lenght, a 143/2 and a 241 are used for fully developed
stable boundary layer (SBL), as observed in the Cabaw experiment [4]. The physical
and numerical parameters are given in table I, where: Lx4Nx Dx, Ly4Ny Dy, h4
Nz Dz; being Lx the maximum.

The pollutant source is located at (0 , Ly /2 , h/4 ). The SBL height is a typical value
for this layer [40], and it is lying in the interval 0Eh/LE2 that is representative for a
stable layer.

Figure 1 shows the reconstruction of the diffusivities for the simultaneous strategy
without regularization (g40 in eqs. (8)), where Kaa2 re (a4z , y) is the real value given
by eq. (16) and eq. (17), and Kaa2 mo is the diffusivity obtained with the inversion
model. Clearly, some spurious spikes appear in the estimation, indicating that some
regularization is needed. In the next sections different regularization operators will be
tested, in the context of both the alternate and simultaneous strategies.

The influence of noise is clearly noted in fig. 1, where the increase in the level of
noise implies an amplification of the spikes. Although the tests had been performed for
two levels of noise, the results are shown only for data with 5% of noise, but the
numerical values of the Lagrange multipliers for 1% and 5% are indicated.

4.1. Alternate strategy. – The regularization parameters for these estimations are
determined by numerical experiments and are presented in table II; the number of
iterations to reach the final result is shown in tables III and IV for 1% and 5% of noise,
respectively.

Results using objective functions (6) and (7) are shown below. The estimation using
zeroth-order regularization is shown in figs. 2a for Tikhonov and 2b for entropic
approaches. The entropic regularization reduced the oscillations in comparison to the
reconstruction displayed in fig. 1. The Tikhonov approach yielded smoother results
than the entropic method, but near to the ground (z/hE0.3) the estimation was not
sufficiently effective.

First-order regularization methods are plotted in figs. 3a for Tikhonov and 3b for
entropic regularizations, respectively. The worse results are obtained for the Tikhonov
method, mainly on the top of the boundary layer; but we do not have significant
difference related to the zeroth-order Tikhonov estimation. The entropic scheme does
not present any improvement.
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Fig. 1. – Eddy diffusivity estimation without regularization: (A) 1% and (B) 5% of noise data.
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TABLE II. – Regularization parameters (g m ) in alternate strategy, for entropic—eq. (13)—and
Thikhonov—eq. (12)—regularizations.

Entropy-0 Entropy-1 Entropy-2 Tikhonov-0 Tikhonov-1 Tikhonov-2

1% noise 1 Q1024 1 Q1024 7 Q1024 0.6 0.2 0.08
5% noise 1 Q1024 1 Q1025 7 Q1024 1.3 1.5 1.0

TABLE III. – Number of (glocal, G.) iterations (iter.) up to the convergence for 1% of noise.

V(K) Entropy-0 Entropy-1 Entropy-2 Tikhonov-0 Tikhonov-1 Tikhonov-2

G. iter. Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz

1 85 68 74 43 81 43 43 27 59 34 58 34
2 99 39 71 63 110 71 91 56 86 74 81 58
3 110 45 97 42 121 46 48 57 54 45 47 59
4 68 40 49 38 43 37 26 48 28 40 27 53
5 26 30 47 35 36 33 23 28 24 43
6 26 23 32 31 27 26 22 28 20 37
7 22 28 28 36 22 29 20 20 21 39
8 22 33 27 30 19 28 19 19 19 33
9 22 32 23 36 19 27 19 18 19 34

10 22 30 24 36 20 25 16 19 18 21
11 19 21
12 16 30
13 15 14
14 17 19
15 17 17
16 19 27
17 16 26
18 16 14
19 10 29
20 11 11

TABLE IV. – Number of (global, G.) iterations (iter.) up to the convergence for 5% of noise.

V(K) Entropy-0 Entropy-1 Entropy-2 Tikhonov-0 Tikhonov-1 Tikhonov-2

G. iter. Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz Kyy Kzz

1 69 73 75 44 88 64 38 34 57 28 61 40
2 117 42 56 75 111 67 66 66 68 62 61 64
3 105 54 92 46 101 45 45 57 41 40 36 47
4 75 37 44 41 50 27 28 39 25 41
5 27 36 38 31 47 33 25 23 25 36
6 25 28 32 28 32 32 23 21 23 39
7 25 37 29 33 27 30 21 22 24 33
8 25 31 25 34 25 27 20 22 22 20
9 23 26 24 26 24 27 15 19 23 29

10 23 29 23 24 22 24 16 20 22 21
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Fig. 2. – Turbulent diffusivities by alternate strategy with zeroth-order regularization:
(A) Tikhonov and (B) entropic.
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Fig. 3. – Turbulent diffusivities by alternate strategy with first-order regularization:
(A) Tikhonov and (B) entropic.
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Fig. 4. – Turbulent diffusivities by alternate strategy with second-order regularization:
(A) Tikhonov and (B) entropic.



AN AUTOMATIC METHODOLOGY FOR ESTIMATING EDDY DIFFUSIVITIES ETC. 77

TABLE V. – Regularization parameters (g)—eqs. (13) and (12)—and number of iterations in
simultaneous strategy for 1% and 5% of noise.

Entropy-0 Entropy-1 Entropy-2 Tikhonov-0 Tikhonov-1 Tikhonov-2

1% g 1 Q1026 1 Q1027 5 Q1028 0.01 0.09 0.1
iter. 136 118 118 75 49 50

5% g 1 Q1026 1 Q1026 0.09 0.1 0.7 0.8
iter. 112 116 58 72 52 52

Figure 4 shows the estimation for second-order Tikhonov and entropic regularizations
method. The result for Tikhonov method is close to that obtained with first order, but
some oscillations on the top of boundary layer, were persistent. The entropic scheme
presented the same performance of previous cases.

Tables III and IV show the number of iterations needed to reach the convergence.
As in the alternate strategy the eddy diffusivity is found for each direction, in which
the estimation is also done through an iterative process. Therefore, two iteration cycles
occur: a global iteration (a complete cycle of estimation of eddy diffusivities) and an
internal iteration in order to solve the optimization problem. The first column in
tables III and IV refers to the former iteration, while other columns denote the local
iterations for each regularization method.

From all these results the entropic regularization showed a better fit (see
table VI); the smallest for second-order approach. However, the Tikhonov regulariza-
tion presented a smoother solution.

4.2. Simultaneous strategy. – In sect. 3 the estimation of the eddy diffusivities was
presented as being a unique problem: the simultaneous estimation strategy, where the
unknown parameter vector is formed by both diffusivities.

Figure 5 shows the estimation for zeroth-order regularization. This reconstruction
is better than that presented in fig. 2 with the alternate strategy for Tikhonov
regularization. Nevertheless, better results are obtained with first-order (fig. 6) and
second-order (fig. 7) Tikhonov regularizations, being second-order a little bit better.

The entropic scheme presented the same results than those shown in the alternate
strategy, except for second-order approach, with significant improvement.
Table V shows the regularization parameters used and the number of iterations needed
to the convergence.

4.3. Influence of the boundary conditions. – Although the boundary conditions (3)
and (4) are more adequate in a pollutant dispersion problem, in order to investigate the
robustness of the present methodology an inversion for other boundary conditions was
performed, i.e., the Dirichelet conditions:

c(x , y , z)40 at y4z40 and y4Ly , z4h .(19)

This reconstruction was carried out only with 1% of noise with simultaneous
strategy. It was also tested with six regularization functions, but fig. 8 shows the
estimation with the second-order Tikhonov regularization only. It can be seen that
there is a good agreement between the exact solution and the vertical eddy diffusivities
estimated. For horizontal eddy diffusivity the solution was not so good for z/hE0.25.
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Fig. 5. – Turbulent diffusivities by simultaneous strategy with zeroth-order regularization:
(A) Tikhonov and (B) entropic.
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Fig. 6. – Turbulent diffusivities by simultaneous strategy with first-order regularization:
(A) Tikhonov and (B) entropic.
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Fig. 7. – Turbulent diffusivities by simultaneous strategy with second-order regularization:
(A) Tikhonov and (B) entropic.
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Fig. 8. – Estimation of eddy diffusivity with Dirichelet boundary condition, using second-order
Tikhonov regularization with 1% of noise: vertical eddy diffusivity Kzz and horizontal eddy
diffusivity Kyy .

TABLE VI. – Square differences sum between exact and estimated values for alternate (Alter.) and
simultaneous (Simul.) strategies: !i40

Nz [K Exact
yy , i 2K Estim.

yy , i ]21 [K Exact
zz , i 2K Estim.

zz , i ]2.

Entropy-0 Entropy-1 Entropy-2 Tikhonov-0 Tikhonov-1 Tikhonov-2

1% Alter. 1.35 Q 1025 1.45 Q 1025 1.27 Q 1025 4.49 Q 1025 4.38 Q 1025 1.51 Q 1025

simul. 2.31 Q 1026 3.50 Q 1026 3.02 Q 1026 7.00 Q 1026 9.68 Q 1026 3.92 Q 1026

5% Alter. 1.50 Q 1024 1.51 Q 1024 1.41 Q 1024 7.10 Q 1025 1.61 Q 1024 1.85 Q 1024

simul. 5.76 Q 1025 6.13 Q 1025 5.00 Q 1025 1.42 Q 1024 6.71 Q 1025 3.46 Q 1025

5. – Conclusions and comments

A methodology for estimating the eddy diffusivities from experimental data based
on the minimization of the difference between experimental and model data, added to a
regularization operator, was presented. The use of alternate and simultaneous
strategies yielded good reconstructions for the eddy diffusivities.

Looking at tables III and IV it is seen that for the present simulations the
simultaneous strategy needed smaller computational effort than the alternate
strategy. In both strategies the Tikhonov regularization operator presented smoother
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results. Moreover, on the whole, the present analysis shows that the best results and
lowest computatonal cost were achieved with the second-order Tikhonov regularization
with simultaneous strategy (see table VI). The entropic approach presented a poorer
smoothness, since the regularization parameter must be very small (less than 1025 for
the alternate strategy, and 1026 for the simultaneous strategy—except for second-
order entropy with 5% of noise, see tables II and V) and then unable to efficiently
reduce the noise effect in the experimental data. It is believed that the entropic method
of high order requires more study for a definitive opinion.

This methodology is robust in the sense that it can be applied for different boundary
conditions. In addition, it can be extended for estimating parameters for other types of
phemomena, such as momentum and energy transport. The inversion scheme
presented can also be used for the different descriptions of dispersion pollutant
problem. For example, the Lagrangian direct model can be coupled to the inverse
problem, but in the Lagrangian modeling other parameters must be estimated, as the
decorrelation time scale [41] and the Kolmogorov constant [42]. It is also important to
note that every improvement in the direct model can be immediately incorporated with
this inverse formulation. However, simplified direct models could be useful in the sense
that it is possible to get a good first approach for more complex models, because a more
suitable first guess tends, in principle, to decrease the number of iterations required to
get the solution for the optimization problem.

Another interesting application of this methodology would be the use to determine
a more adequate parameterization scheme, when many turbulence models and
experimental data are available. Other applications to this inversion method in the
turbulent flows could be the identification of the counter-gradient term [43], where the
turbulent flux is expressed by

w 8f 84Kzz (z) k ¯f

¯z
2x z (z)l .

Finally, other promising techniques deserve to be investigated for inversion, as
neural networks [44] and Kalman filter scheme [45].
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