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1.1. Introduction 

Constructal theory and the constructal law are terms that we see more and 

more in the current scientific literature. The reason is that increasing numbers of 

people use the constructal paradigm to optimize the performance of thermofluid 

flow systems by generating geometry and flow structure, and to explain natural self-

organization and self-optimization. Constructal theory is a principle-based method 

of constructing machines, which attain optimally their objective.  Constructal theory 

offers a different look at corals, birds, atmospheric flow and, of course, at machines 

in general. 

 There is an old history of trying to explain the forms of nature—why 

does a leaf have nerves, why does a flower have petals—this history is as old as 

people have existed.  Geometry has focused on explaining form, and has contributed 

to much of the knowledge inherited from antiquity. 

For the first time, engineers have entered an arena where until now the 

discussion was between mathematicians, physicists, biologists, zoologists.  The 

engineers enter with a point of view that is very original, and which may enlighten 

the questions with which others have struggled until now. 
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Adrian Bejan is at the origin of the constructal paradigm, which had its start 

in 1996. In his books [1,2] he tells that the idea came to him when he was trying to 

solve the problem of minimizing the thermal resistance between an entire heat 

generating volume and one point.  As the optimal solution, he found “a tree network 

in which every single feature was a result, not an assumption”, and drew the 

conclusion that every natural tree structure is also the result of optimisation of 

performance of volume-point flow. As natural tree structures are everywhere, and 

such structures are not deducible from a known law, he speculated that the 

optimisation of configuration in time must be a new principle and called it the 

constructal law. He stated this law as follows: For a finite-size system to persist in time 

(to live), it must evolve in such a way that it provides easier access to the imposed (global) 

currents that flow through it.  

A new statement deserves recognition as a principle only if it provides a 

conceptual framework for predicting form and evolution of form and for modelling 

natural or engineered systems. Bejan has not only formulated the constructal 

principle but also developed a method for applying it to practical situations. The 

constructal method (Bejan [1-6]) Bejan and Tondeur [7]) is about the generation of 

flow architecture in general (e. g. , duct cross-sections, spacings, tree networks). For 

example, the generation of tree-shaped architecture proceeds from small parts to 

larger assemblies. The optimal structure is constructed by optimizing volume shape at every 

length scale, in a hierarchical sequence that begins with the smallest building block and 

proceeds towards larger building blocks (which are called “constructs”).  

A basic outcome of constructal theory is that system shape and internal flow 

architecture do not develop by chance, but result from the permanent struggle for 

better performance and therefore must evolve in time. Natural systems that display 

an enormous variety of shapes are far from being perfect from the geometric point of 

view. Geometric perfection means symmetry (e. g., the sphere has the highest 

possible geometric symmetry) but in the physical (real) world the higher the 

internal symmetry the closer to equilibrium, to no flow, and death. We know that 

translational symmetry (invariance) with respect to temperature, pressure and 

chemical potential means thermal, mechanical and chemical equilibrium 

respectively, while translational angular invariance of the lagrangian means 

conservation of linear and angular momentum respectively (Noether’s theorem). 
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Nevertheless, it is almost impossible to find the perfect geometric form in animate 

systems because they are far from equilibrium: they are alive, and imperfection 

(physical and geometrical asymmetry) is the sign that they are alive. Yet, they work 

“best” because they minimize and balance together the resistances faced by the 

various internal and external streams under the existing global constraints. 

Non-equilibrium means flow asymmetry and imperfection. Imperfection is 

either geometric (e. g., quasi-cylindrical channels, quasi-spherical alveolus, quasi-

circular stoma, etc.) or physical (unequal distribution of stresses, temperature, 

pressure, etc.). Therefore, internal imperfections are optimally distributed 

throughout the system (Bejan [1,2]). The actual form of natural systems that were 

free to morph in the past is the result of optimal distribution of imperfection, while 

engineered systems approach the same goal and structure as they tend to optimal 

performance. 

The constructal law is self-standing and distinct from the second law (Bejan 

[1, 8, 9]). Unlike the second law that accounts for the one-way nature of flows (i.e., 

irreversibility), the constructal law is about the generation of flow configuration, 

structure, geometry. Its field of application is that of dissipative processes (flows 

that overcome resistances), entropy generation, and non-equilibrium 

thermodynamics. In recent papers, Bejan and Lorente [8, 9] outlined the analogy 

between the formalism of equilibrium thermodynamics and that of constructal 

theory (see section 6). In what follows, we outline the main features of constructal 

theory, and present an overview of recent developments and applications to various 

fields.  

 

1.2. Constructal method 

Constructal theory holds that every flow system exists with purpose (or 

objective, function). In nature, flows occur over a wide range of scales with the 

purpose of reducing the existing gradients (temperature, pressure, etc.). In 

engineered and living structures heat and mass flows occur for the same reason, and 

by dissipating minimum exergy they reduce the food or fuel requirement, and make 

all such systems (animals, and “man + machine” species) more “fit”, i.e., better 

survivors. They “flow” better and better, internally and over the surface of the earth. 
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The purpose of heat engines is to extract maximum useful work from heat 

currents that flow between systems at different temperatures. Other machines work 

similarly, i.e. with purpose, e.g. by collecting or distributing streams, or for 

enhancing heat or mass transfer. Performance is a measure of the degree to which 

each system realizes its purpose. The design of engineered systems evolves in time 

toward configurations that offer better performance, i.e. better achievement of their 

purpose. 

The system purpose is global. It is present along with fixed global 

constraints, which may include the space allocated to the system, available material 

and components, allowable temperature, pressure or stress ranges, etc.  The system 

designer brings together all components, and optimizes the arrangement in order to 

reach maximum performance. In this way he “constructs” the optimal flow 

architecture. Therefore, the flow architecture (shape, structure) is deduced, not 

assumed in advance. Unlike optimising procedures that rely on operational 

variables, constructal theory focuses on the construction of optimal flow 

architecture, internal and external. 

Optimization makes sense only when purpose exists and the problem-solver 

has the freedom to morph the configuration in the search of the best solution within 

the framework of a set of constraints. The constraints may vary from allowable 

materials, material properties, area or volume allocated to the system, requirements 

to avoid hot-spots, or not to surpass maximal values of temperature, pressure, 

stresses, etc. Depending on the system’s nature, optimization may focus on exergy 

analysis (e.g. Bejan [10, 11]), entropy generation (e.g. Bejan [12, 13]), 

thermoeconomics (e.g. Bejan et al. [14]) or minimization of highest stress, 

temperature or pressure (e.g. Bejan [2, 6], Bejan and Tondeur [7]).   

The minimization of pressure peaks (Bejan [1, 2, 6], Bejan and Errera [15]) is 

a good way to illustrate the constructal method. The problem may be formulated as 

follows: 

 “A fluid has to be drained from a finite-size volume or area at a definite 

flow-rate trough a small patch located on its boundary. The flow is volume-point or 

area-point. It is a special and very important type of flow, because it connects one 

point with infinity of points. The volume is a non-homogeneous porous medium 

composed of a material of low permeability K and various layers of higher 
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permeabilities (K0, K1,..). The thicknesses (D0, D1,…) and lengths (L0, L1,….) of these 

layers are not specified. Darcy flow is assumed to exist throughout the volume 

considered. Determine the optimal arrangement of the layers through the given 

volume such that the highest pressure is minimized.” 

A first result is the use of the high permeability material where flow-rates are 

highest. Conversely, low permeability material shall be used for low flow rates. 

Next, we choose an elemental volume of length L0 and width H0, filled with the low-

permeability (K) isotropic porous medium (e.g. Fig. 1), and use higher permeability 

(K0) material to drain the fluid from it.  The area A0=H0L0 of the horizontal surface 

is fixed but the shape H0/L0 is not. 

Because of symmetry and objective (optimization), the strip that collects 

fluid from the isotropic porous medium must be aligned with the x axis. And, 

because the flow-rate 0m& ′  is fixed, to minimize the peak pressure means to minimize 

the global flow resistance.  The peak pressure occurs in two corners (P, Fig. 1.1), and 

is given by: 

 ( )000000peak DK2LKL8HmP +′= ν&      (1) 

 

 

 
Fig. 1.1 - Elemental volume: the central high-permeability channel collects flow from 
low permeability material.  
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where D0 represents the thickness of the central strip. By minimizing the peak 

pressure with respect to the shape parameter H0/L0 we find that the optimum 

geometry is described by: 

( ) 4/1
00

2/1
0 K~2H~

−
= φ  ;     ( ) 4/1

00
2/1

0 K~2L~ φ−=      (2) 

( ) 2/1
0000 K~2LH

−
= φ ;     ( ) 2/1

00
1

0 K~2P~
−−= φ∆      (3) 

where φ0=D0/H0<<1, )K/Am/(PP~ 00peak0 ν∆ & ′=  and the symbol ~ indicates 

nondimensionalized variables based on  (A0)
1/2  and K as length and permeability 

scales. 

Equations (2) pinpoint the optimal geometry that matches minimum peak 

pressure and minimum resistance.  The first of Eqs. (3) indicates another important 

result: the two terms on the right hand side of Eq. (1) are equal; said another way, 

“the shape of the elemental volume is such that the pressure drop along the central 

strip is equal to the pressure drop along the isotropic porous medium (K layer)”. 

This is the constructal law of equipartition of the resistances (Bejan [1, 2], Bejan and 

Tondeur [7]). An analogous result for electric circuits was obtained by Lewins [16] 

who, based on the constructal theory, found an equipotential division between the 

competing regimes of low and high resistance currents. 

Next, consider a larger volume (a “first construct”) filled entirely with 

elemental volumes. This “first construct” is shown in Fig. 1.2.  

 
Fig. 1.2 - First construct made of elemental volumes. A new channel of higher 
permeability collects flow from the elemental volumes. 
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Once again, symmetry and objective dictate that the higher permeability strip 

that collects all the currents from the elemental volumes must be aligned with the 

horizontal axis of the first construct. The geometry of the first construct, namely the 

number n1 of elemental volumes in the construct, is optimized by repeating the 

procedure used in the optimization of the elemental volume. If iii K~C φ= , the 

parameters defining the optimized first construct are (Bejan [1]): 

( ) 4/1
0

2/1
1 C2H~ =  ;     2/1

1
4/1

01 CCL~ −=      (4) 

( ) 2/1
1011 CC2LH = ;     ( ) 2/1

101 CC2P~ −=∆     (5) 

( ) 2/1
11 C2n =         (6) 

Higher order constructs can be optimized in a similar way until the specified 

area is covered completely. What emerges is a two-dimensional fluid tree in which 

optimization has been performed at every volume scale. The fluid tree is the optimal 

solution to two problems: the flow architecture that matched the lowest peak 

pressure, and the one that matched to lowest pressure averaged over the tree. 

The constructal law can also be used in the same problem by basing the 

optimization on minimizing the pressure averaged at each scale of the fluid tree. 

Three-dimensional fluid trees may be in an optimized analogous manner (Bejan [1, 

2, 6]). The same procedure applies to heat transfer trees (Bejan [1-3], Bejan and 

Tondeur [7], Bejan and Dan [17, 18], Ledezma and Bejan [19]). 

 

1.3. Optimisation as a trade-off between competing trends 

There are two competing trends in the example of section 2. Increasing in the 

length L0 of the central strip leads to a decrease in the resistance posed to flow in the 

K layer, but it also increases the resistance along the central channel (cf. Eq. (1)).  

Optimization meant finding the best allocation of resistances, and therefore the 

geometry of the system that allows best flow access from the area to the outlet. The 

law of equipartition of pressure losses summarizes the result of optimization of such 

flow access.  

The optimum balance between competing trends is at origin of “equilibrium” 

flow architectures in both engineered and natural systems, and is in the domain of 

constructal theory. Like the thermodynamic equilibrium states that result from the 

maximization of entropy (or the minimization of free energy) in nonflow systems 
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in classical thermodynamics, equilibrium flow architectures spring out of the 

maximization of flow access (Bejan and Lorente [8,9]).  

Consider the following example of optimization under competing trends. Air 

at temperature T0 is made to flow at rate m&  through a set of equidistant heat 

generating boards of length L and width W (perpendicular to the plane of the figure) 

filling a space of height H (Fig. 1.3).  

The board-to-board spacing D, is to be determined in order to maximize the 

rate q at which heat is removed. As a local constraint, the temperature must not 

exceed a specified value, Tmax. Other assumptions are laminar flow, smooth board 

surfaces, and that the temperature along every board is close to Tmax.   

Small board-to-board spacings permit a large number of boards (n=H/D) to 

be installed and cooled. Although in this limit the contact heat transfer area is large, 

the resistance to fluid flow is also large. The optimal spacing Dopt must come out of 

the balance between these two competing trends, fluid flow resistance against 

thermal resistance.  

 

 

 

Fig. 1.3 -  The optimal spacing comes out of the trade-off between heat transfer 
surface and resistance to fluid flow. Board to board spacing is optimal when every 
fluid volume is used for the purpose of heat transfer. 
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For very small spacings (large n) the heat transfer rate is (Bejan [1]): 

( )( ) ( )0maxp
2 TTcLP12DHWq −= ∆µρ      (7) 

where ρ, µ and cp stand for density, viscosity and specific heat, respectively.  For 

large spacing (small n), each plate is coated by distinct boundary layers, and the heat 

transfer rate is given by [1]: 

 ( )[ ] ( )0max
3/122 TTDPLPrkHW21.1q −= ρν∆     (8) 

where k, ν and Pr are thermal conductivity, kinematic viscosity and Prandlt number, 

respectively. 

Equation (7) shows that the heat transfer rate q increases asymptotically with 

D2 as n becomes smaller (Eq. 7), while when n becomes larger it varies 

asymptotically as D-2/3 (Eq. 8). Therefore, the number of boards for which the heat 

transfer rate is maximum can be determined approximately by using the method of 

intersecting the asymptotes (Bejan [1, 20, 21], as shown in Fig. 1.4.  

 

 

Fig. 1.4 – The intersection of the asymptotes corresponding to the competing 
trends indicates the optimum spacing for maximum thermal conductance of a 
stack of parallel boards. 
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The optimal spacing is given by: 

4/1
opt BeLD −∝        (9) 

where Be=(∆PL2)/(µα) is what Bhattacharjee and Grosshandler [22] Petrescu [23] 

called the Bejan number.   

The spacing defined by Eq. (9) is not only the optimal solution to maximum 

heat transfer while keeping the temperature below Tmax,  but also is the solution to 

the problem of packing maximum heat transfer rate in a fixed volume. The best 

elementary construct to this second problem is a heat transfer board whose length 

matches the entrance length XT (see Fig. 3). Maximum packing occurs when every 

packet of fluid is used for transferring heat. If L < XT, the fluid in the core of the 

channel does not interacts thermally with the walls, and therefore does not 

participate in the global heat transfer enterprise. In the other extreme, L > XT, the 

flow is fully developed, the fluid is saturated thermally and it overheats as it absorbs 

additional heat from the board walls.  

The optimal spacing determined in this manner enables us to see the 

significance of the Bejan number. In steady conditions, the rate at which heat is 

transferred from the boards to the fluid, WL)TT(h 0max − , must equal the rate of 

enthalpy increase ρvcp(Tmax-T0)DW,  where v=[(∆P)D2]/(12µ),  which is removed by 

the cooling fluid that flows under the pressure difference ∆P. Therefore, for Lopt = XT  

this equality of scales reads: 

( )4optoptD DLuN12Be =       (10) 

which matches Eq. (9). In Eq. (10), k/DhuN D = =(∂T*/∂z*) is Nusselt number based 

on Dopt (where T*=T/(Tmax-T0) and z*=z/Dopt), which is a constant of order 1.  

By analogy with section 2, optimized convective heat trees can be constructed 

at every scale by assembling and optimizing constructs that have been optimized at 

the preceding scale (Bejan [1], Ledezma and Bejan [19]). Similarity exists between 

the forced convection results and the corresponding results for natural convection. 

The role played by Bejan number Be in the forced convection is played in natural 

convection be the Rayleigh number Ra (Petrescu [23]). 
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1.4. The ubiquitous search for flow configuration: fields of application of 

Constructal Theory 

Flow architectures are ubiquitous in Nature. From the planetary circulations 

to the smallest scales we can observe a panoply of motions that exhibit organized 

flow architectures: general atmospheric circulations, oceanic currents, eddies at the 

synoptic scale, river drainage basins, dendritic crystals, etc. Fluids circulate in all 

living structures, which exhibit special flow structures such as lungs, kidneys, 

arteries and veins in animals, and roots, stems, leaves in plants (Fig.5),  

Transportation networks where goods and people flow have been developed 

on the purpose of maximum access - best performance in economics and for 

facilitating all human activities. Similarly, internal flow structures where energy, 

matter and information flow are at the heart of engineered systems.  

Flow architectures in both living and engineered systems evolve toward 

better performance, and persist in time (they survive) while the older disappear 

(Bejan [1, 24, 25]. This observation bridges the gap between the constructal law and 

the darwinian view of living systems. Results of the application of constructal 

theory have been published in recent years for various natural and engineered 

systems (Reis [25]). In the following, we review briefly some examples of 

application of constructal theory. 
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2. Architectures of particle agglomeration   

2.1. Introduction 

 The objective of this paper [1] is to bring to the attention of aerosol researchers a 

new physics principle – the constructal law [2, 3] –  the implications of which are 

general and important in natural, industrial and biological systems [3, 4]. 

Constructal theory is about the phenomenon of generation of architecture in flow 

systems. The acquisition of geometry is the mechanism by which the system meets 

its global objectives under the existing constraints. The objective is the 

maximization of global access for all the currents that flow through the system.  

Flow resistances cannot be eliminated.  They can be balanced against each other, so 

that their global effect is minimized.  This evolutionary process of balancing and 

distributing resistances constitutes the generation of flow configuration.  The 

resulting (constructal) configuration is deduced from principle, not assumed, and 

not postulated.  

 The global maximization of flow access predicts in simple manner not only the 

evolution of man-made systems but also the shapes and structures that occur in 

nature. The rapid development of constructal theory was reviewed by several 

authors [3 – 7]. 

 In this paper we use constructal theory to describe the morphology of 

agglomerates of particles.  

2.2. Shape and structure of agglomerates of particles 

 Agglomeration is the process by which particles collide to form larger particles, 

which typically have greater settling speed. Deposition describes the process by 

which particles collide and attach to surfaces. Collisions and the coming together of 

multiple particles result in aggregates that usually have dendritic shape. This pattern 

of agglomeration and deposition has a profound effect on filtration process, nano-

materials processing and the performance of such devices [8, 9]. 

 Agglomerates of aerosol particles often have dendritic shapes that can be 

observed experimentally [9] or based on numerical simulations [10 – 13]. Is dendritic 

shape the prevalent and natural form of particle agglomeration? If so, why do 

aggregates of particles exhibit this particular shape? 

 Here we address these issues in the framework provided by constructal theory 
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[2]. The constructal law requires the architecture of the aggregate of particles to evolve in 

time in such a way that the global rate of accumulation of the particles is maximized.  The 

generation of optimized architectures should bring the entire flow system (ambient 

+ particles) to equilibrium in the fastest way. 

 Consider the following illustration of why the occurrence of dendritic 

agglomerates can be anticipated by the constructal law.  The forces that make 

aerosol particles stick onto collectors (filter/beds/previously deposited particles) are 

of the electrical type. In fact, it is impossible to find electrically neutral surfaces in 

contact with air. Electrical bonds may occur through interactions of various types 

(e.g. charge-charge, charge-dipole, dipole-dipole, etc.). However, charge-charge 

interactions cancel the existing surface charge, and only the charge-dipole 

interaction ensures a steady and continuing process of deposition, because a dipole-

charge bond leaves the total charge amount invariant (Fig. 2.1).  

This is a very common form of interaction because almost all particles have 

significant dipolar moments.  

 Assume that a spherical surface with a surface charge density σ  collects particles 

from a surrounding cloud of dipolar particles having uniform concentration pC  in 

stagnant air.   

 

 
 

  Fig 2.1. Dipolar particles near a charged surface. 
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Before binding to the surface, the small particles travel radially under the influence 

of charge-dipole forces.  For a very small particle travelling with a Stokes flow 

velocity up,  the drag force FD is 

    
c

pp
D c

ud3
F

πη
=   (1) 

Here η  is the dynamic fluid viscosity, dp is the particle diameter and cc is the 

Cunningham correction factor [8]. The charge-dipole force FC of attraction between 

the surface and a particle of dipolar moment aqrr =µ   is 

  3
A

0
C r

dAcos
4
1F ∫=

αµσ
πε

  (2) 

where ε is the electric permittivity of the air, and r is the distance between the dipole 

centre and the surface charge (Fig. 2.2). The evaluation of FC may be carried out for 

the cases of spherical, cylindrical, and planar geometries in the following way: 

 For spherical geometry, by considering Fig. 2, one has the following 

relationships: 

  ϕθ sinRsinr =   (3) 

  hRcosRcosr +=+ ϕθ   (4) 

 

 
Fig. 2.2 Interaction between dipole and a charged (spherical or cylindrical) surface. 
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In order to evaluate the charge-dipole force in the vicinity of the surface we consider 

h ~ a/2, 1~sin θ . Half of dipolar particles are repelled from the surface while the 

other half is attracted to the surface. The mean value of αcos   is π/2 . Therefore 

the mean attractive force between surface charges and dipole (see Eq. 2) reads: 

  ∫ 0
0 2

0
Csp sin

d
R

~F ϕ

ϕ
ϕ

πε
µσ

  (5) 

After evaluating the integral in (5) and with ( ) 2/1
0 R/h~sin ϕ , h ~ a/2, qa=µ , 

and R=D/2, one has: 

  2/12/1

0
Csp D)q(~F −µ

πε
σ

  (6) 

For the cylindrical geometry with 1~cos 0ϕ , Eq. (2) reads: 

  ( )∫ ∫
∞+
∞−

+
0
0 2/32220

2Ccy
sinRL

)R/L(dd
R2

~F ϕ

ϕ
ϕ

επ
µσ

  (7) 

or, with d = R/2 

  2/12/1

0
2Ccy d)q(2~F −µ
επ
σ

  (8) 

Finally, for the force between dipole and planar charged surface one has: 

  ∫= 2/
0

2

0
Cpl a

dcossin2F π θθθ
πε
σµ

  (9) 

or 

  
0

Cpl 3
q2F

πε
σ=   (10) 

 We assume that both forces, FD and FC, cancel each other so that just before 

particles bind to the surface they travel with the velocity up. Hence, from Eqs. (1) 

and (6) we may calculate the flux of particles ( 2/uCn ppsp =& , where pC is the 

concentration of dipolar particles in the vicinity of the surface) toward the surface of 

the sphere as 

  2/1

p
sp D

v
Kn −=&         (11) 

where 
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  2/1

p0
2

pcp )q(
d6
vcC

K µ
ηεπ

σ
=   (11a)  

 By using Eqs. (1) and (8), for a cylindrical surface of diameter d we calculate the 

flux of particles ( 2/uCn ppcy =& ) toward the surface as:  

  2/1

p
cy d

v
K2n −=

π
&   (12) 

while, with the help of Eqs. (1) and (10) the flow of particles toward a planar charged 

surface reads  

  
2/1

p
pl

q
v3
K2n ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛=
µ

&   (13) 

 Both spherical and cylindrical modes of agglomeration can occur in nature. The 

competition between these two modes is the origin of the dendritic shape that occurs 

throughout nature. 

 The constructal law requires the architecture of the agglomerate to evolve in 

time in such a way that the global rate of accumulation of the particles is 

maximized.  The total current of particles ( spspsp nAN && = ), that bind to a spherical 

surface (area 2
sp DA π= ) is  

  2/3

p
sp D

v2
KN π=&   (14) 

while the total current of particles that bind to a cylindrical surface (length L, area 

dLAcy π= ) is given by:  

  2/1

p
cy Ld

v
K2N =&   (15) 

While from Eq. (13) we see that the flux toward a planar surface depends only on 

surface charge density and dipole moment, Eqs. (14) and (15) show that the particle 

binding rate also depends on the geometry of the agglomerate. For the case of a 

spherical agglomerate we note that ( ) DDv2N 2
psp

&& π= , and after using Eq. (14) 

we obtain: 
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  3/2
3/2

t
2
K3D ⎟
⎠
⎞

⎜
⎝
⎛=   (16) 

On the other hand, for a cylinder of fixed lengthL  with ( ) dLdv2N pcy
&& π= , we 

obtain from Eq. (15): 

  3/2
3/2

tK6d ⎟
⎠
⎞

⎜
⎝
⎛=

π
  (17) 

Next, we use  Eq. (16) to calculate the volume of the spherical agglomerate, 

  2
2

sp t
8
K3V π=   (18) 

 Cylindrical growth may develop from a disc, as shown in Fig. 3.  

As the diameter increases with time (see Eq. 17) the agglomerate becomes conically 

shaped (Fig. 2.3).  In this case the growth speed along the axis is given by pplvnL && = . 

Then, by using Eq. (13) we obtain 

  

2/1
q

3
K2L ⎟

⎠

⎞
⎜
⎝

⎛=
µ

&   (19) 

Using Eqs. (17) and (19) and integrating with respect to time, we find the volume of 

the conically shaped agglomerate 

  3/7
2/13/1

co )Kt(q6
7
3V ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

µπ
  (20) 

 

 

 

 

 Fig. 2.3  Needle shaped agglomeration of particles. 
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From Eqs. (18) and (20) we see that the ratio 

  3/1
2/1

3/1
co

sp t
qK

2.2
V
V −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛= µ
  (21) 

is initially very high, and that it approaches 0 as t becomes sufficiently large. 

According to the constructal law this means that the agglomerate first must grow as 

a sphere, and change to the conical shape at a critical time later in its development.  

From Eq. (21) we see that for  

  

2/3

qK
9.9t ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛> µ
   (22) 

the conically shaped agglomerate is more efficient as a particle collector than the 

spherically shaped agglomerate.  

 For water nucleating in ambient air, K is of order 12/311 sm10 −− (which 

corresponds to a surface/water vapor field of order 210−  µV m-1) and 

( ) 42/1 10~q −µ m. Therefore, the critical time for switching between spherical and 

conical growth as a preferential mode of agglomeration is of order 1 s, which 

corresponds to D ~ 10-7 m for the diameter of the agglomerate. It is also interesting to 

compare the growth speeds of cone diameter and cone tip.  By using Eqs. (17) and 

(19) we obtain: 

  3/1
2/13/1

t
qK

36
L
d −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= µ

&

&
   (23) 

which decreases as 3/1t−  . This means that at later stages the agglomerate grows as 

a needle, the geometry of which is obtained from Eqs. (17) and (19) (Fig. 3) 

  3/2
3/13/2

L
q

9d ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= µ

π
  (24) 

As an example, dendritic snow crystals have a length scale of order 10-3 m, and, 

by taking into account Eq. (24), we find 31210 /L~L/d −−  , which for L ~ 1 mm 

yields d/L ~ 10-2.  This agrees with the order of magnitude of the diameter/length 

ratio of snowflake needles. Moreover, following Eq. (19) the needle tip growth speed 

is constant in accordance with experimental results [18]. 

  One interesting aspect of the geometry predicted in Eq. (24) is that it depends 

only on the dipole moment µ.  This means that weakly dipolar molecules will 
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agglomerate in a needle that is more slender than the needle formed by strongly 

dipolar molecules. 

 Another noteworthy aspect is that the critical time for switching from spherical 

to needle shaped growth depends only on the dipole strength, cf. Eq. (24).  From Eqs. 

(16) and (22) we calculate the critical diameter of the original sphere as 

  a6~
q

6~Dcrit
µ

  (25) 

This means that a universal behaviour of particle agglomeration exists: when the 

sphere diameter reaches 6 particle diameters, the agglomerate (of 

113~6)6/( 3×π particles) must switch from spherical to needle-shaped growth as a 

preferential mode of particle agglomeration.  

 Secondary needles may grow from specific points of the needle surface, 

generating in this way dendritic-growth architectures. A heat diffusion mechanism 

for explaining dendritic growth in snowflakes was proposed in [3]. 

 In summary, the constructal law enables us to predict important features of 

shape generation and architecture of particle agglomeration. In the very beginning 

the agglomerate grows as a sphere, because at short times this shape is more effective 

in collecting particles from the environment.  

 There are many natural flow systems for which the architecture was proven to 

be optimized in accordance with the constructal law.  Examples include the 

respiratory tree [15], river basins [5, 6], bacterial growth [5], patterns of cracks on the 

ground [3], and dendritic crystal growth  [3, 16].   

 

2.3. Concluding remarks 

We showed that structure of particle agglomeration is generated in the pursuit of the 

equilibrium in the fastest way (constructal law) i.e., trough the maximization of 

particle agglomeration rate. At small times, spherical agglomeration of particles 

around a particle collector is the most effective mechanism.  After a critical time the 

configuration switches from spherical symmetry to needle-shaped agglomeration, 

which performs best as a particle collector at long times. Secondary needle 

developments give rise to dendritic patterns. It was shown that the shape of the 

needle depends on the dipolar moment of the particles and that the critical number 

of particles in the spherical agglomerate before switching to needle shape does not 
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depend on the particle properties.  

Nomenclature 
a – spacing between charges (dipole), m 
A – area, m2 
B – pressure drop number 
cc – Cunningham factor 
C – concentration, kg m-3 

d – diameter of cylinder or distance, m 

d&  – speed of diameter growth, m s-1 

D – diameter of sphere, m 
Ddf – diffusion coefficient, m2s-1 

Dh – hydraulic diameter, m 
F – force, N 
H – height, m 
K – constant (Eq. 11), m5/2 s-2 

L – length, m 
L&  – speed of needle tip growth, m s-1 

m –  particle transfer density, kg m-3 s-1 

n&  – flux of particles, s-1 m-2 

N&  –  current of particles, s-1 
p – pressure, Pa 
P0 – Poiseuille number  
q – charge, C 
Re – Reynolds number 
Sc – Schmidt number 
Sh – Sherwood number 
t – time, s 
U – velocity, ms-1 

V – volume, m3 
H, L, W – height, length, width, m 
Z – wetted perimeter, m 

Greek Symbols 
α, ϕ, θ – angle, rad 
ε – porosity  
ε0 – electric permittivity, C2 N-1 m-2 
φ – number of tubes/plates 
η – viscosity, N s m-2 
κ  –  permeability, m2 

λ – particle transfer coefficient, ms-1 

µ – dipole moment, C m  
ρ – air density, kg m-3  
σ – surface density of charge, C m-2 
τ  – shear stress, Nm-2

Subscripts 
C – charge/dipole 
cy – cylinder 
D – drag 
 

 
op – optimized  
p – particle 
pl – plane 
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3. Flow architecture of the lungs 
 
3.1 Introduction 

The Constructal Principle that has been originally formulated by Adrian Bejan 

states that every system with internal flows develops the flow architecture that 

maximizes the heat and mass flow access under the constraints posed to the flow. In 

all classes of flow systems (animate, inanimate, engineered) the generation of flow 

architecture emerges as a universal phenomenon. This has been shown in a number 

of articles by Bejan and is summarized in a recent book [1]. 

By using the Constructal Principle, Bejan has addressed the rhythm of 

respiration in animals in relation with the body size and found that the breathing 

time increases with the animal body size rose to a power of 1/4, which is in good 

agreement with the biological observations.1 A number of other recent studies have 

focused either on the characteristics of the airflow and gas diffusion within the lungs 

[2-6] and the form of the arterial bifurcations [6, 7] or statistical description of the 

respiratory tree [8,9]. 

In this work [15] we focus on the structure of the pulmonary airflow tree. 

The respiratory system is basically a fluid tree that starts at the trachea and 

bifurcates 23 times before reaching the alveolar sacs [4, 10] The reason for the 

existence of just 23 bifurcations in the respiratory tree (Fig. 3.1) has remained 

unexplained in the literature. Has this special flow architecture been developed by 

chance or does it represent the optimum structure for the lung’s purpose, which is 

the oxygenation of the blood? The view that the Constructal Law which has been 

originally developed for engineered systems, holds also for living systems will guide 

us in finding the best airflow architecture for the respiratory system. 

 

3.2  A fluid tree with purpose 

The oxygenation of blood takes place in the tissues that shape the surface of the 

alveolar sacs. High alveolar surface promotes better oxygenation, but requires 

increased access to the external air. In fact, if the access to the external air faces high 

flow resistance the rate of oxygen diffusion into the blood is lowered due to the poor 

oxygen concentration in the air within the alveolar sacs.  
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Fig. 3.1  Model of the respiratory tree with trachea, 23 bronchial bifurcations and 
alveolar sacs. 
 

According to the Constructal Law a fluid tree that performs the oxygenation 

of blood and removal of carbon dioxide at the lowest flow resistance should exist 

under the constraints posed by the space allocated to the respiratory process. This 

fluid tree should be able to promote the easiest access to the external air. Two 

possibilities exist for accomplishing this purpose: (I) a duct system that ends with an 

alveolar volume from which the oxygen diffuses to the tissues, where it meets the 

blood, and in which the carbon dioxide diffuses after being released from the blood, 

or (II) a unique volume open to the external air, in which the oxygen reaches the 

blood in the tissues, and removes the carbon dioxide rejected from the blood, only by 
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diffusion through the internal air. 

This second possibility is clearly non-competitive as compared to the first. 

The access time for a diffusive process between the entrance of the trachea and the 

alveolar sacs at a distance L~5×10-1 m is tdiff =L2/D ~104 s, where D ~2×10-5 m2/s is the 

diffusion coefficient for oxygen in air. The access time for duct flow is of order tflow= 

πηL2/(D0
2∆P )~1 s, where D0 ~10-2 m is the trachea diameter,  η ~2×10-5 Ns/m2 is air 

dynamic viscosity, and ∆P~1 Pa is the scale of the average pressure difference. 

Therefore the channeling of the air from the outside to the alveolar surface enables 

better performance of the respiratory process. 

However, a cavity (or alveolar sac) at the end of the channeling tree must 

exist, as the oxygenation of the blood occurs by diffusion from air into the tissues. 

Oxygen diffusion is proportional to the alveolar surface that, in turn, is proportional 

to the number of bronchioles corresponding to the final level of bifurcation, which is 

2N, N being the number of bifurcation levels. On the other hand, the higher the 

number of alveolar sacs is, the higher the complexity gets as well as the flow 

resistance of the duct network. Therefore, the optimum flow structure must emerge 

from the minimization of the overall resistance, i.e. the duct resistance plus the 

diffusive resistance. 

 

3.3 Bronchial tree resistance and alveolar resistance 

Oxygen and carbon dioxide flow within the respiratory tree (bronchial tree 

plus alveolar sacs) under several driving forces. So as to evaluate and compare the 

flow resistances we will express the flow rates in terms of a unique potential. 

Airflow within the bronchial tree is assumed to be laminar, isothermal and 

incompressible. As this flow is also adiabatic, i.e. ∆s=0, conservation of total energy 

per unit mass that is the sum of internal energy, u =-P/ρ+Ts+µ (where P is pressure, 

ρ is density, T is temperature, s is entropy and µ is chemical potential) plus kinetic 

energyε , along the respiratory tree, implies: 

ε∆∆ρµ∆ += − P1                                                                                   (1) 

Oxygen and carbon dioxide are assumed to be in equilibrium with the air 

that flows within the bronchial tree, which means that all gases in the airflow have 

the same chemical potential and move as a whole between the entrance of the 

trachea and the alveolar sacs. In this way, the airflow is driven by the gradient of the 
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chemical potential within the bronchial tree, which in each duct is related to the 

pressure gradient by Eq. (1) as P∆ρµ∆ 1−= . Hence, by considering the bronchial tree 

as composed of cylindrical channels and assuming Hagen-Poiseuille flow, the 

airflow rate is determined by  

                    cn
n

4
n

n L128
D

m µ∆
ν

πρ
=&                                                                                   (2) 

where nm&  and ∆µcn stand for airflow rate and chemical potential difference between 

the ends of a channel at the nth bifurcation level, respectively, and ν is the air 

kinematic viscosity. For laminar flow the minimum flow resistance at a bifurcation 

is achieved if the ratio between consecutive duct diameters is [12,14]: 

                   Dn/Dn-1=2-1/3                                                                                                 (3) 

and if the ratio of the respective lengths, Li ,  is 

                   Ln/Ln-1=2-1/3                                                                                                  (4) 

            Eqs. (3) and (4) represent constructal laws that hold for consecutive channels 

at a bifurcation. They are robust in the sense that hold for any bifurcation angle [12-

14] and express the empirical relation known as Murray’s law. Taking into account 

Eqs. (3) and (4), the resistance to laminar flow posed by the nth  bronchial tube is 

                     4
0

0n

n

cn
cn

D
L1282

m
r

πρ
νµ∆ ==

&
                                                                     (5) 

where D0 and L0 are the diameter and the length of the first tube in the tree i.e. the 

trachea, respectively.  

Each bifurcation implies an additional resistance to airflow. In the derivation 

of Eq. (2) it has been assumed that pressure has no radial variation along each 

channel. Such a condition implies that in a bifurcation the variation of the chemical 

potential is entirely due to the variation in the kinetic energy, as shown in Fig. 3.2 

Therefore considering Eq. (1) the airflow rate in a bifurcation may be described by: 

                        
bn

bn

bn

bn
n rr
m ε∆µ∆ −==&                                                                          (6) 

where ∆εbn is the variation of the average kinetic energy per unit mass in the 

bifurcation. Taking into account the velocity (U) profile of cylindrical Hagen-

Poiseulle flow, the variation of the kinetic energy per unit mass that flows trough a  
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Fig. 3.2 Hagen-Poiseille flow in a bifurcation. The resistance to airflow is due to the 
variation of the average kinetic energy per unit mass, and proportional to the mass 
flow rate. 

 

bifurcation is calculated as ( )∫∫ −= + n
3

1n
3

n dAUdAU2)m/( &ρε∆ , together with Eqs. 

(2)-(4), gives the airflow resistance in a bifurcation in the form: 

                         3/n
4
0

2
0

bn 2
D8

m
r

πρ
&

=                                                                             (7) 

where 0m&  represents the airflow rate in the trachea. In this way, with the exception 

of the channels that connect to the alveolar sacs, every other channel may be viewed 

as having a Hagen-Poiseulle type resistance given by Eq. (5) plus a resistance at the 

end due to bifurcation given by Eq. (7).  

 If  bncnn µ∆µ∆µ∆ +=  denotes the total variation of the chemical potential in 

channels in the nth level of bifurcation (n=0, for the trachea), from Eqs (5) and (7) 

and taking into account that in this level there are 2n bronchial tubes, we obtain the 

total resistance of the nth level as 
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                                                              (8) 

Then, the overall convective resistance of a tree with trachea (n=0) plus (N-1) 

bifurcation levels is given by 
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             For a normal breathing frequency of 12 times per minute and tidal air of 

about 0.5 dm3 we conclude that ( ) 1)L379(21m 0
3/N2

0 <<− − πρν& , and this term that 

corresponds to the sum of airflow resistances in the bifurcations may be neglected in 

Eq. (9). 

            If (φox)0 and φox denote the average relative concentration of the oxygen in the 

air at the entrance of the trachea and at the bronchial tree, respectively, the average 

oxygen current towards the interior of the bronchial tree is 

                        ( )[ ] ( )Box

b
box0oxox R
m

2
1m

µ∆
φφ =−= &&                                               (10) 

where the subscript ox means oxygen. In Eq. (10) the factor 1/2 arises because either 

inhaling or exhaling last half of breathing time, ∑ −
== 1N
0n NB µ∆µ∆  is the absolute 

value of the variation of the chemical potential of the air in the trachea plus the (N-

1) levels of bifurcation, and ( ) ( )( )ox0oxBBox /R2R φφ −=  is the resistance to oxygen 

transport. 

However, no such equilibrium conditions exist between the components of 

the air within the alveolar sacs, because the chemical potential of oxygen in the 

alveolar tissues is lower than that in the alveolar air, while the chemical potential of 

carbon dioxide in the tissue is higher than that in the alveolar air. Therefore oxygen 

diffuses from the alveolar air into the tissues, while carbon dioxide diffuses in the 

opposite direction. It is assumed that oxygen diffuses at the 2N alveolar sacs 

according to Fick’s law, consequently the total oxygen current to the alveolar sacs, 

which are considered to be in a spherical shape with diameter d and total area πd2 

(see Fig. 3), is given by 

                       
( )

∫= 0
2

aox
ox

N
ox 2

dsind
D2m π δ

θθπρ∆
&                                              (11) 

where Dox is the oxygen diffusivity, (∆ρox)a is the difference between the oxygen 

concentrations at the entrance of the alveolar sac and the alveolar surface, and 

2/)cos1(d θδ −= , (see Fig. 3.3). Taking into account that 

( ) ( ) ( ) TR/ oxgaoxoxaox µ∆ρφρ∆ = , where (Rg)ox=R/Mox is the gas constant for oxygen 

and φox is the relative concentration of oxygen in the alveolar air, and assuming that  
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the chemical potential of oxygen 

does not vary over the alveolar 

surface, integration of the r.h.s. of 

Eq. (11) yields: 
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oxg

aoxoxoxN
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µ∆ρφπ
=&                             

(12) 

            The diameter of the 

alveolar sac may be determined as 

the difference between the overall 

lengths L, of a bronchial tree with 

infinite bifurcations, which is the 

limiting length defined by the 

constructal law, Eq. (4), and that 

of the actual tree with N 

bifurcation levels, i.e. 

       ∑
=

−=
N

1i
iLLd                      (13)                               

The length LN of a tree with N 

bifurcations may be determined 

from Eq. (4) as the length of the trachea plus the lengths of the N consecutive 

bronchioles is given by the sum of N + 1 terms of a geometric series of ratio 2-1/3 as: 

                         03/1
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Therefore, ∑
=∞→

=
N

0i
iLL lim

N
, namely 0L85.4L = . Eqs. (13) and (14) enable us to 

determine the diameter of the alveolar sac as 

                          0
3/)1N( L285.4d +−×=                                                                     (15) 

In consequence, Eq. (12) may be written as 

                           ( ) ( )aox
oxg

3/N2
oxox0ox TR
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Fig. 3.3  Model of the respiratory tree with a 
conductive part (bronchioles) and a diffusive 
space (alveolar sac) 
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In this way, the resistance of the Nth level of bifurcation that is the sum of 

the convective resistance of the last 2N channels, which is given by 2-NrcN  (see, Eq. 

(5)), plus the alveolar diffusive resistance given by Eq. (16), (see also Eq. (10)) is 

                            ( )
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ox0ox
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oxg4
0ox0ox
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D
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Therefore, if aoxNoxBoxox )()()( µ∆µ∆µ∆µ∆ ++=  is the total difference 

between chemical potential of the oxygen in the external air and the oxygen close to 

the alveolar surface, the total resistance, oxoxox m/R &µ∆= , posed to oxygen as it 

moves from the external air into the alveolar surface, which is the sum of the 

resistance (Rox)B, given by Eq. (9), with (Rox)N given by Eq. (17),  reads:  
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where the resistances in the bifurcations have been neglected due to the fact that its 

value is very small as compared to channel resistances. The total resistance is 

composed of a convective resistance and a diffusive resistance represented by the 

first and the second terms of the r.h.s of the Eq. (18), respectively.  

 

3.4 Optimisation of the respiratory tree based on the Constructal Law  

According to the Constructal Law the flow architectures evolve in time in order to 

maximize the flow access under the constraints posed to the flow. We believe that, 

during millions of years of human evolution, the oxygen-access performance of the 

respiratory tree was optimized naturally, through changes in flow architecture.  

In Eq. (18), the convective part of the resistance increases as the number of 

bifurcations increases, while the diffusive resistance decreases.  The number of 

bifurcations is the free parameter that can be optimized in order to maximize the 

oxygen access to the alveolar surface or, in other words to minimize the total 

resistance to oxygen access.  

The average value of oxygen relative concentration within the respiratory 

tree, φox, may be evaluated from the alveolar air equation in the form: ((φox)0-φox)Q-

S=0, where (φox)0 ~1/2(φair+φox) and φair are the oxygen relative concentration at the 

entrance of the trachea, and in the external air, respectively, Q is the tidal airflow 
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and S is the rate of oxygen consumption. With φair=0.2095, Q~6 dm3/min and S~0.3 

dm3/min [5,11] we obtain φox ~ 0.1095. 

For L0 we take the sum of the larynx and trachea lengths (first duct), which is 

typically 15 cm, while the trachea diameter, D0, is approximately 1.5 cm [10,11). Air 

and oxygen properties were taken at 36º C, namely ν = 1.7×10-5 m2/s, Dox = 2.2×10-

5m2/s, (Rg)ox=259.8 J/(kg.K),  The plot of the total resistance of the respiratory tree 

against the bifurcation level is shown in Fig. 3.4. In can be seen that the minimum is 

flat and occurs close to N=23.  

A more accurate value of this minimum is obtained analytically from Eq. 

(18). The optimum number of bifurcation levels is given by 
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which yields 4.23Nopt = . As N must be an integer, this means that the optimum 

number should be 23. 

 

 
Fig 3.4 Total resistance to oxygen and carbon dioxide transport between the entrance 
of the trachea and the alveolar surface is plotted as function of the level of 
bifurcation (n). The minimum resistance both to oxygen access and carbon dioxide 
removal corresponds to N=23. 
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In view of the simplifications of the model (mainly the geometry of the 

bronchial tubes which are assumed to be cylindrical and the geometry of the alveolar 

sacs which are viewed as spheres, this result is in a very good agreement with the 

literature, which indicates 23 as the number of bifurcations of the human bronchial 

tree [4,10].  

The respiratory tree can also be optimized for carbon dioxide removal from 

the alveolar sacs. In this case the correspondent equation to Nopt is Eq, (18) with r.h.s 

multiplied by –1 and the correspondent values of the diffusion coefficient, which is 

Dcd=1.9×10-5m2/s for carbon dioxide, the gas constant (Rg)cd=189 J kg-1 K-1, and the 

value of the average relative concentration of carbon dioxide in the respiratory tree, 

φcd=0.04. In the calculation of φcd we used S=0.24dm3/min since the respiratory 

coefficient is close to 0.8 and (φcd)air ~ 0.315×10-3.  The plot of the resistance to carbon 

dioxide removal against bifurcation level is shown in Fig. 4. The minimum 

resistance, as calculated from Eq. (18), corresponds to Nopt = 23.2.  

We can say that the human respiratory tree, with its 23 bifurcations, is 

optimized for both oxygen access and carbon dioxide removal. For N=23 the 

resistance to carbon dioxide removal is 4.8×106 J s kg-2 and higher than the resistance 

to oxygen access that is 2.60×106 J s kg-2.  

One of the initial assumptions of this model of respiratory tree was that 

diffusion can be neglected within the bronchial tree where oxygen is transported in 

the airflow while diffusion is the main way of oxygen transport in the alveolar sacs. 

By using Eq. (2) and considering tidal volume of 0.5 dm3, breathing frequency of 12 

times per minute and trachea diameter of 0.015 m, we calculate the average velocity 

of the airflow, and therefore of the oxygen current, in the last bronchiole before the 

alveolar sac, which is of order 6mm/s. On the other hand, the average velocity of the 

diffusive current of oxygen in the alveolar sacs is of order Dox/2πd ~1.3 mm/s. These 

results are consistent with the initial assumptions of the model. However, as in this 

idealized model the velocities of the oxygen for convective and diffusive current 

simply approach each other, in the real respiratory tree we can expect that in some 

branches they are of the same order, what indicates the possibility of developing 

alveoli before the end of the bronchial tree as really happens in the human 

respiratory tree [5]. 
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If the number Nopt=23 is common to mankind then a constructal rule emerges 

from Eq. (19): “the ratio of the square of the trachea diameter to its length is constant and a 

length characteristic of mankind” 

                              m105.1.const
L
D 3

0

2
0 −×===λ                                                      (20) 

             This number has a special relationship with some special features of the 

space allocated to the respiratory process as we show next. From Eqs. (3) and (4) we 

can estimate the volume occupied by the bronchial tree, which is the sum of the 

volumes of the 23 bifurcation levels, as VB=23×(π/4)D0
2L0. The total volume of the 

alveolar sacs is V=223(π/6)d3. We see that VB/V<<1, which means that the volume of 

the lungs practically corresponds to the volume, V, occupied by the alveolar sacs. 

The internal area of the alveolar sacs is A=223×πd2, and therefore A/V=6/d. By using 

the Eqs. (14), (15) which lead to d2L 3/)1N( += , together with Eq. (18) we obtain the 

following relationship: 
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               The non-dimensional number AL/V, determines the characteristic length 

λ=D0
2/L0, which determines the number of bifurcations of the respiratory tree by Eq. 

(19). This constructal law is formulated as  follows: “The alveolar area required for gas 

exchange, A, the volume allocated to the respiratory system, V, and the length of the 

respiratory tree, L, which are constraints posed to the respiratory process determine 

univocally the structure of the lungs, namely the bifurcation level of the bronchial tree.” 

              From Eq. (14), we obtain 0L85.4L = =0.73m for the total length of the 

respiratory tree and from Eq. (21) we obtain d=6V/A=2.86×10-3m. Therefore we have 

the alveolar surface area as A=223πd2 =215.5m2 and the total alveolar volume 

V=223(π/6)d3 =102.7dm3. The alveolar surface area A, is not much far from the values 

found in literature that fall in the range 100-150m2. However, the value found for the 

total alveolar volume is much higher than the average lung capacity (~7.5 dm3). This 

may arise from lung’s volume being calculated as the alveolar sacs were fully 

inflated. Nevertheless, the value found for total alveolar volume suggests that the 

dimension of the alveolar sacs was somehow overestimated. 
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3.5 Conclusions 

The Constructal Principle that has been successfully employed in engineered 

systems also proved to be a fundamental tool for the study of flow structures like the 

respiratory tree. The best oxygen access to the tissues where it reaches the blood is 

performed by a flow structure composed of ducts with 23 levels of bifurcation. The 

same structure has been shown to being optimized for carbon dioxide removal as 

well. At the end of the smallest duct, spaces exist (alveolar sacs) from which the 

oxygen diffuses to the tissues and in which the carbon dioxide that is removed from 

the tissues diffuses before reaching the bronchial tree that transports it to the 

exterior air.  The optimized number of bifurcation levels matches the 23 levels that 

the physiology literature indicates for the human bronchial tree.  

  In addition, the optimization also predicts the dimension of the alveolar sac, 

the total alveolar surface area, the total alveolar volume, and the total length of the 

airways. These values agree, at least in an order of magnitude sense with the values 

found in the physiology literature. Furthermore, it was shown that the length λ 

(defined as the ratio between the square of the first airway diameter and its length) 

is constant for every individual of the same species and related to the characteristics 

of the space allocated for the respiratory process. This number is univocally 

determined by a non-dimensional number, AL/V, which involves the characteristics 

of the space allocated to the respiratory system, namely the total alveolar area, A, the 

total volume V, and the total length of the airways, L. 

In general, we conclude, from Eq. (19), that for every species whose 

respiratory tree is optimized the same rule must hold, and exhibit the respective 

characteristic length, λ. 

The application of the Constructal Law to the generation of the optimal 

configuration of the respiratory tree was based on the view that Nature has 

optimized the living flow structures, in time. The work described in this paper 

support this view. 

  

Nomenclature 
A –  alveolar area (m2) 
d – diameter of the alveolus (m) 
D – diffusion coefficient (m2 s) 
L –  length from the entrance of the 
trachea to alveolus (m) 

m& – mass flow rate 
M – molar mass (kg mol-1) 
N – total number of bifurcations 
P – pressure (Pa) 
Q – tidal airflow (dm3)  
r – resistance (J kg-2 s-1) 
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R – total resistance (J kg-2 s-1)  
Rg – specific gas constant (J kg-1 K-1) 
s – specific entropy (J kg-1 K-1) 
S – rate of oxygen consumption (kg s-

1) 
t – time (s) 
T – temperature (K) 
u – specific internal energy (J kg-1) 
U – velocity (m s-1) 
V – volume (m3) 
δ – distance from the entrance to the 
surface of the alveolus (m) 
ε –  mechanical energy per unit mass 
(J kg-1) 
φ – relative gas concentration 
η – dynamic viscosity (Ns/m2) 
λ – characteristic length (Eq. 20) (m) 

µ – chemical potential (J kg-1) 
ν - kinematic viscosity (m2 s) 
ρ – density (kg m-3) 
 
Subscripts 
a – relative to alveolus 
air – relative to air 
B – relative to the bronchial tree 
bn – relative to the nth bifurcation. 
cd – relative to carbon dioxide 
cn – relative to channel of order n 
diff – diffusive 
i – running index 
n – order of bifurcation (0 for trachea) 
N –  relative to the last bifurcation  
opt – relative to the optimal value 
ox – relative to oxygen 
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4. Scaling laws of river basins 
 
4.1 Introduction 

Flow architectures are ubiquitous in nature. From the planetary circulations to the 

smallest scales, we can observe a panoply of motions that exhibit organized flow 

architectures: general atmospheric circulations, oceanic currents, eddies at the 

synoptic scale, river drainage basins, dendritic crystals, etc. Fluids circulate in all 

living structures, which exhibit special flow structures such as lungs, kidneys, 

arteries, and veins in animals and roots, stems, and leaves in plants.  

Rivers are large-scale natural flows that play a major role in the shaping of the 

Earth’s surface. River morphology exhibits similarities that are documented 

extensively in geophysics treatises. For example, Rodríguez-Iturbe and Rinaldo 

(1997) gave a broad list of allometric and scaling laws involving the geometric 

parameters of the river channels and of the river basins. 

In living structures, heat and mass flow architectures develop with the purpose of 

dissipating minimum energy, therefore reducing the food or fuel requirement, and 

making all such systems (animals and “man + machine” species) more “fit,” i.e., 

better survivors.  

Constructal theory views the naturally occurring flow structures (their geometric 

form) as the end result of a process of area to point flow access optimisation with the 

objective of providing minimal resistance to flow (see Bejan, 2000; Bejan and 

Lorente, 2004). The Constructal law first put forward by Bejan (1997) stated that 

“for a finite-size system to persist in time (to live), it must evolve in such a way that 

it provides easier access to the imposed (global) currents that flow through it.”  

In the past few decades, extremal hypothesis (e.g. maximum sediment 

transporting capacity, minimum energy dissipation rate, minimum stream power, 

minimum Froude number) have been proposed as basis for deducing specific 

features of river basin morphology and dynamics (see for example the review by 

Huang and Nanson, 2000). Fractal geometry has also been used to describe river 

basin morphology (eg., Cieplak et al, 1998; Rodríguez-Iturbe and Rinaldo, 1997). 

Fractals do not account for dynamics, hence are descriptive rather than predictive.  
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Because the same morphological laws may be deduced in apparently different 

contexts some authors have considered fluvial networks and basin geometries as 

canonical examples of equifinality, which is a concept invented by Beven (2003). 

Equifinality arises when many different parameter sets are equally good at 

reproducing an output signal. As pointed out by Savenije (2001), although these 

models may be based on physical relationships they are not unequivocal, and hence 

are not fit to be used as predictive models. 

What is new with Constructal theory is that it unites geometry with dynamics in 

such a way that geometry is not assumed in advance but is the end result of an 

optimisation procedure. Constructal theory is predictive in the sense that it can 

anticipate the equilibrium flow architecture that develops under existing constraints. 

In contrast with fractal geometry, self-similarity needs not to be alleged previously, 

but appears as a result of the constructal optimization of river networks. Moreover, 

Constructal theory shows that the hypothesis of minimum energy dissipation rate 

and minimum stream power are corollaries of the Constructal law under particular 

constraints (Reis, 2006).  

The aim of this paper is twofold: to show how the scaling laws of river basins may 

be anticipated based on Constructal theory, and to present this theory to 

geomorphologists as a useful tool for the study of the structure of natural flows and 

landforms. This work adds to a constructal model of erosion put forward by Errera 

and Bejan (1998), which is able to generate dendrite like patterns of low resistance 

channels by invoking the Constructal law at each optimization step.  

4.2 Scaling laws of river basins 

River basins are examples of area-to-point flows. Water is collected from an area 

and conducted through a network of channels of increasing width up to the river 

mouth. River networks have long been recognized as being self-similar structures 

over a range of scales. In general, small streams are tributaries of the next bigger 

stream in such a way that flow architecture develops from the lowest scale to the 

highest scale, ω  (Fig. 1). 

The scaling properties of river networks are summarized in well-known laws.  If 

iL denotes the average of the length of the streams of order i, Horton’s law of stream 

lengths states that the ratio  
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Fig. 4.1 River network with streams up to order ω  

 

Lii RLL =−1   (1) 

is a constant (Horton, 1932; see also Raft et al., 2003; Rodríguez-Iturbe and Rinaldo, 

1997). Here, the constant RL is Horton’s ratio of channel lengths. On the other hand, 

if iN  is the number of streams of order i, Horton’s law of stream numbers asserts 

constancy of the ratio 

Bii RNN =−1   (2) 

where RB is Horton’s bifurcation ratio. In river basins, RL ranges between 1.5 and 3.5 

and is typically 2; while RB ranges between 3 and 5, typically 4 (Rodríguez-Iturbe and 

Rinaldo, 1997). 

The mainstream length ωL  and the area ωA  of a river basin with streams up to 

order ω  are related through Hack’s law (Hack, 1957; see also Rodríguez-Iturbe and 

Rinaldo, 1997; Schuller et al., 2001):  

( )βωω α= AL    (3) 

where α  ~ 1.4 and β  ~ 0.568 are constants.  
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If we define a drainage density A/LD T=ω  (where TL  is the total length of 

streams of all orders and A the total drainage area) and a stream 

frequency A/NF ss =  (where Ns  is the number of streams of all orders) then 

Melton’s law (Melton, 1958; see also Raft et al., 2003; Rodríguez-Iturbe and Rinaldo, 

1997) indicates that the following relation holds: 

( )26940 ω= D.Fs   (4) 

Other scaling laws relating discharge rate with river width, depth, and slope 

may be found in the book by Rodríguez-Iturbe and Rinaldo (1997). 

 

4.3 River networks as constructal fluid trees 

  River basins are examples of area-to-point flow, which is a classical topic of 

Constructal theory. Darcy flow through a porous medium (soil) predominates at the 

smallest scale. Channelling develops at a higher scale when it becomes more 

effective than Darcy flow as a transport mechanism. Bejan has addressed this type of 

flow and, according to the Constructal law, optimized the channel network that 

minimizes the overall resistance to flow.  A detailed treatment can be found in one 

of his books (Bejan, 2000, Ch. 5). Here, we summarize the optimized area-to-point 

flow geometry when the conductance of a channel of width W is given by 

2121 W)/(K = , which corresponds to Hagen-Poiseuille flow between parallel 

plates. 

 
Fig. 4.2 First construct made of elemental areas, A0 = H0L0. A new channel of higher flow 
conductance collects flow from the elemental areas. 
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Table 4.1 The optimized geometry of area-to-point flow (channels with Hagen-Poiseuille 

flow; Bejan, 2000) ( 0A/KK̂ = ; 21
0

/
iiii )A/()L,H()L~,H~( = ; iii H/W=Φ )  

If Hi and Li represent  the dimensions of the area Ai = Hi × Li allocated to each 

stream of order i, the peak pressure Ppeak,1  at the farthest corner of the first construct 

(see Fig. 2) is given by (Bejan, 2000) 
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where 1m′&  represents total mass flow rate, ν  is viscosity of water, K/KK~ ii = ,  

and iii H/W=Φ . Minimizing the flow resistance over the first construct is 

equivalent to minimize the peak pressure, Ppeak,1  in Eq. (5). Each new construct Ai 

contains ni constructs of area Ai-1, the flow of which is collected by a new high 

conductance channel. The maximum pressure difference sustained by Ai is equal to 

the sum of the pressure difference across the already optimized constituent Ai-1 that 

occupies the farthest corner of Ai, and the pressure drop along the central channel of 

Ai (Bejan, 2000): 

ii

i
ii,peaki,peak WK

LmPP
21 ν′+= −

&  (6) 

With ni representing the number of streams of order i that are tributaries of each 

stream of order i+1, the optimized values of stream channels up to order 4 are shown 

in Table 4.1.   
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Table 4.2 The jointly optimised network parameters (minimization of the 
overall resistance to flow and optimisation of void stream area allocation) 

 

 

 

 

 

 

 

 

 
 Table 4.3 Constructal Horton ratios of stream lengths, RL 

 

 

 

 

A second kind of constructal optimization is performed with respect to the 

optimal distribution of the total void volume corresponding to the channels. The 

optimal allocation of channel volume is such that it minimizes the global void 

volume under both constant basin area and flow resistance (see Bejan and Lorente, 

2004). The void-allocation (channel) optimization provides the following additional 

relationships (Bejan, 2000, pp. 91-94): 

 01 Φ=Φ     ;    ( ) 02 76 Φ=Φ   ;   ( ) 03 7760 Φ=Φ    ;   ( ) 04 118 Φ=Φ  (7) 

With Eq. (7), iL
~

 and in  may be rewritten in the forms shown in Table 2. Both iL
~

 

and in  depend uniquely on 31
0

/K̂ −Φ  which, in turn, is the product of two terms:  

(i) 0Φ  that represents the ratio of the area of the smallest (first order) channel to the 

area of the porous layer that feeds it and (ii) the dimensionless conductance 

K̂ raised to the power ( – 1/3 ). As none of these parameters depend upon the 

particular geometry of the layer, we conclude that despite the relationships of Tables 

4.1 and 4.2 being derived from constructs of regular geometry as that of Fig. 4.2, the 

relationships in Table 4.2 are applicable to any hierarchical stream network 

irrespective to its particular geometry.  
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Table 4.4  Dimensionless area of constructal river basins up to order 4 

 

Channel hierarchy is understood in the Hortonian sense, i.e., all streams of 

order i are tributaries of streams of order i+1. 

River basins are examples of area-to-point flows that approach the Hortonian 

hierarchy; therefore,  the constructal rules defined in Table 2 for stream networks up 

to order 4 must hold, at least approximately. For example, with the use of Table 2, 

the ratios of the lengths of consecutive streams are given in Table 3.  We see that the 

ratio of the characteristic lengths of streams of consecutive order 31
01

/
ii K̂~L~L~ −

− Φ  

is practically constant as required by Horton’s law of stream lengths (Eq. 1). 

To check if the constructal relations in Table 2 match Horton’s law of stream 

numbers (Eq. 2), we calculate the number Ni of streams up to order i, which is given 

by 

121 n...nnnN iiii ××××= −−   (8) 

where nj is the number of streams of order j that are tributaries of each stream of 

order j+1. Taking into account Eq. 8, the ratio of the number of streams up to order i 

to the number of streams up to order i-1 is given by 

iii nNN =−1   (9) 

The ratios ni are shown in Table 4.2. We conclude that these ratios are almost 

of the same order, i.e., ( )231
01

/
ii K̂~NN −
+ Φ ; therefore matching Horton’s law of 

stream numbers, closely. Recalling that the ratio of stream lengths is 

31
01

/
ii K̂~L~L~ −

+ Φ , we conclude that 

( )211 iiii L~L~~NN ++   (10) 

i.e., the ratio of stream numbers is of the order of the square of the ratio of stream 

lengths. As stated in the introduction, in real river basins Lii RLL =−1 ranges 

between 1.5 and 3.5, and is typically 2, while Bii Rnn =−1  ranges between 3 and 5, 

typically 4 (Raft et al., 2003; Rodríguez-Iturbe and Rinaldo, 1997), i.e., the constructal 

rule evinced by Eq. 10 is closely verified for the real river basins. 

 

0A
~  1A

~  2A
~  3A

~  4A
~  

1 ( )231
0330 /K̂. −Φ  ( )431

0210 /K̂. −Φ  ( )631
0190 /K̂. −Φ ( )831

0370 /K̂. −Φ  
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 Table 4.5 Constructal Hack’s exponent β for river basins up to order 4 
 

 

 

 

Next we are going to show that Hack’s law (Eq. 3) also follows from the 

constructal relationships of Tables 4.1 and 4.2. Noting that iii LHA =  and using 

Table 4.1 and Eq. (7), we obtain the sub basin areas shown in Table 4.4. The 

constructal relationships between mainstream length ωL  and the area ωA  of a river 

basin with streams up to order ω  is determined by using Table 4.4 together with 

Table 4.2 and is shown in Table 4.5. Gray (1961) found β ~ 0.568 while Muller (1973) 

reported that β  ~ 0.6 for river basins < 8000 mi2 (1 mile = 1609.3 m), β  ~ 0.5 for basins 

between 8000 and 100,000 mi2, and β  ~ 0.47 for basins > 100,000 mi2 (see also Schuller 

et al., 2001).        

The constructal rule for the exponent β  is the following: 

ω
+ω=βω 4

12
  (11) 

We see from Eq. 11 that as the order of the river basin increases, β approaches 

0.5 in good agreement with Muller’s findings for actual river basins. 

In order to check Melton’s law, first we calculate the drainage density ωD  as 

ωω

ω

=
ω ∑= L~H~L~nD

i
ii

1
  (12) 

and the stream frequency as 

ωω

ω

=
ω ∑= L~H~NF

i
i

1
  (13) 

By using Tables 1 and 2 and with the help of Eq. (8) we obtain: 

( ) ( ) ( ) ( ) 5231
0

5131
0

5031
0

31
04 440350140180

././.// K̂.K̂.K̂.K̂.D
−−−−−−− Φ+Φ+Φ+Φ=

   (14) 

and 

( ) ( ) ( ) 631
0

431
0

231
04 4211613801

−−−−−− Φ+Φ+Φ+= /// K̂.K̂.K̂.F          (15) 

We note that the drainage density of a stream of order 0 is 21
00

/)HL( , while the 

stream frequency is 1, which is the lowest limit. 

750
11
.A~L~  

750.=β  

620
22
.A~L~  

630.=β  

580
33
.A~L~  

580.=β  

560
44
.A~L~  

560.=β  
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Fig. 4.3 For a river basin of order 4, the constructal relationships indicate that steam 
frequency is proportional to drainage density raised to a power of 2.45, which is close to 2 
(Melton’s law). 

 

The variation of F4 with D4 is shown in Fig. 4.3. We see that the constructal 

relations in Eqs.  14 and 15 follow Melton’s law quite approximately in the range 1 < 

D4 < 102, i.e., F4  is proportional to D4  raised to the power 2.45.  

The scaling laws of river basins evince the organized flow architectures that 

result from the underlying struggle for better performance, by reducing the overall 

resistance in order to drain water from the basins the fastest (Constructal law) and 

the best uniformly distributed all over the basin area.  

 

4. Conclusions 

Despite only basins with streams up to order 4 having been considered in this 

paper, we believe that the conclusions do extend to higher order river basins.  

The scaling laws of geometric features of river basins can be anticipated based 

on Constructal theory, which views the pathways by which drainage networks 

develop in a basin not as the result of chance but as flow architectures that originate 

naturally as the result of minimization of the overall resistance to flow (Constructal 

law).   
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The ratio of constructal lengths of consecutive streams match Horton’s law 

for the same ratio, while the same occurs with the number of consecutive streams 

that match Horton’s law of ratios of consecutive stream numbers. 

Hack’s law is also correctly anticipated by the constructal relations that 

provide Hack’s exponent accurately. 

Melton’s law is anticipated approximately by the constructal relationships 

that indicate 2.45 instead of 2 for Melton’s exponent. However, the difficulty to 

calculate correctly the drainage density and the stream frequency from field data 

indicates that some uncertainty must be assigned to Melton’s exponent. 

These results add to many other examples of complex flows, either from 

engineering (e.g., Bejan 2000; Bejan et al., 2004) or from animate structures (e.g. 

Bejan, 2000; Reis et al., 2004), in which the Constructal law proved to play a 

fundamental role.  

 
 
NOMENCLATURE 

A – Area (m2) 

D – Drainage density (m-1) 

F – Stream frequency (m-2) 

H – Width of a construct (m) 

K̂ , K~ – Dimensionless channel flow 

conductance 

L – Stream length (m) 

L~  – Dimensionless length (construct, 

channel) 

iN – Total number of streams of order i 

n – Number of streams that are tributaries 

of each stream of the next order  

 

RB – Horton’s bifurcation ratio 

RL – Horton’s ratio of stream lengths 

W – Channel width (m) 

Φ – Aspect ratio, W/H  

 

Subscripts 

i – Order of a stream 

s – Relative to stream 

T – Total  

ω  – Order of the river basin 

0 – Relative to the elemental construct 
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5. Scaling laws of street networks – the dynamics behind 

geometry 
 

5.1 Introduction 

Cities are very complex systems that have developed in time under the 

influence of multiple factors (politics, social structure, defence, trade, etc). Even 

though the relative weights of these factors seem to vary very much from city to 

city, some features have been noticed that are common to all cities. For example, it 

has been verified that cities possess self-similar structures that repeat over a 

hierarchy of scales [1, 2]. This provided the basis for many authors to claim that 

many aspects of cities allow a fractal description [3 - 9]. This observation, however 

does not explain why cities do share this architectural similarity. Idealists would 

claim that, as cities are complex man-made systems this common aspect springs 

from the congenital ideas of beauty and harmony shared by mankind.  On the other 

hand, constructal theory considers that dynamics is behind geometry, such that 

geometry evolves just as the envelope of underlying dynamic processes. The 

Constructal law first put forward by Bejan [10] states that “for a finite-size system 

to persist in time (to live), it must evolve in such a way that it provides easier access 

to the imposed (global) currents that flow through it.” 

Cities are living systems in the sense that they have proper “metabolism” 

driven by the activities of their inhabitants, are open to flows of goods and people, 

and evolve in time. Lanes, roads, streets, avenues constitute the vascular network of 

cities. As with every living system, city networks have evolved in time such as to 

provide easier and easier access to flows of goods and people. Street networks of 

today’s cities tell the old story of the dynamics of the past. From the ancient to the 

newest district we can observe the development of streets of decreasing flow 

resistance, or, said another way increasing access for people and goods [11]. The 

street networks of the old parts of today’s cities are fossils that testify the past 

dynamics of the city.  

 

5.2 Fractal description 

Hierarchically organized structures, in the sense that a structure of 

dimension x is repeated at the scales rx, r2x, r3x, ..., where r is a scale factor, have 
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been noticed in most of today’s cities. Structure self-similarity at various scales 

indicates that such structures allow fractal description if some property φ  of the 

self-similar structure obeys the relationship 

( ) ( )xrrx mφ=φ  (1) 

where m is the fractal dimension. Examples of repeated self-similar structures are 

some patterns of street networks that look the same at various scales.   

In a city the number of pieces (e.g. streets) N(X) of size X seems to follow an 

“inverse-power distribution law” of the type 

 ( ) mCXXN −=  (2) 

where C is a constant and 21 ≤≤ m  [12]. Therefore, if X0 is the dimension of the 

city, by using eq. (1), the number of pieces of dimension n
0n rXX −= is given by 

nm
0n rCX)X(N −=  (3) 

The rule conveyed by eq. (3) is a distribution of geometric patterns solely, and does 

not make clear why city structures organize in such a way. We sustain that the 

reasons for such a particular distribution grounds on the underlying city dynamics. 

 

 

5.3 Flow structures in a city 

Cities have their own metabolism that consists of people’s everyday 

activities. People exchange and consume goods and services in cities and, because 

cities are open systems, with the rest of the world. The various flows that cross the 

cities distribute people and goods to the proper places for daily activities.   

By walking or by using means of transportation, people and goods flow 

through the inner vascular system that covers the city territory. Each of these means 

of transportation uses a proper channel to move in. People’s movements starts being 

unorganized (erratic when if we consider a group of individuals) showing the 

characteristics of a diffusive flow, then becomes progressively organized (more and 

more people moving in the same ways) as people move into the larger ways. Public 

transportation exists because individuals agree in moving together in some direction. 

It is also a way of saving exergy and time. The speed of transportation increases as 

individuals proceed from home to the larger ways (Fig. 5.1)  
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Fig. 5.1 Area to point and point to area flows. Individuals move from one area to another by 
using successively faster means transportation first, this rule being inverted as they 
approach the area of destination.  

 

In some aspects, modelling flows of people is not the same as modelling flows 

of inanimate fluids. In fact, fluids are ensembles of particles that act in a purely 

mechanistic way, i.e. under the action of known external forces. In the later case, the 

Navier-Stokes equation, which equates driving against dissipation (brake) forces, 

together with boundary and initial conditions, is sufficient to predict the flow. 

However, in flows of people, the individuals are not only subjected to external forces 

as fluids are, but as living systems experience also “internal” forces, most known as 

desire, decision, etc. Then, how to physically model such biased forces? In fact we 

cannot, but instead we can model their effect by accounting for the resulting entropy 

generation rate.  In this way we will be able to precisely define the resistance to 

flow. 

For example, consider a street of width W, with spatial concentration of cars, 

σ (cars/m2), that flow with an average velocity v (m/s). If some car proceeds with a 

positive velocity difference of order v∆  with respect to the next one, then its driver 

has to slow down on the same v∆  in order not to hit that car. Therefore, the exergy 

lost is the process is ( )vmv ∆−=ε , to which corresponds the entropy generation, 

Tsgen ε−= , where T is ambient temperature (Guy-Stodola theorem).  
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 Fig. 5.2 Flow at average speed v in a street of width W. 

 

Let iθ  be the fraction of the number of cars in the control area W×L, with 

velocity difference iv∆  with respect to the next car, and let λ  be the safety distance 

between successive cars (see Fig. 5.2).  

Then, the total number of decelerations per second in the control area is 

given by ( ) λ∆θσ∑ LWvi
i

i , while the total power (exergy/s) lost iE&  is given by 

( ) ( ) ( )iii
i

i vvmLWvE ∆λ∆θσ= ∑&  (4) 

where v is the average speed of the cars. According the Guy-Stodola theorem the 

entropy generation rate genS& is given by: 

EST gen
&& −=  (5) 

Then, eq. (5) enables us to define the flow resistance, R, as 

2
gen ISTR &=  (6) 

where I represents the car (people) flow rate in the street, which is given by 

vWI σ=  (7) 

According to eq. (6) the resistance to flow is proportional to the entropy 

generation rate per car (people) flow rate.  Therefore, whatever the nature of the 

potential difference V∆ that drives the flow is, the end result is always exergy 

dissipation, ( )IV∆ , which balances entropy generation 
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ISTV gen
&−=∆  (8) 

By considering the eqs. (4-7) the flow resistance reads 

( ) ( )vWLvmR 2
ii

i
i σλ∆θ= ∑  (9) 

It is commonly observed that the wider the street, the higher the average 

velocity of what flows in. We assume, as a first approach, that the average velocity 

is proportional to street width, i.e. kWv = , and therefore eq. (9) reads 

( ) ( )22
ii

i
i kWLvmR σλ∆θ= ∑  (10) 

The group ( ) ( )kmvm 22
ii

i
i σλ∆θ=ν ∑ , where m represents average mass of 

cars (people) has dimension of viscosity and characterizes the “fluid” that flows in 

the street. Then, then by inserting ν  in eq. (10) it turns into 

2WLR νλ= , (11) 

which indicates that the flow resistivity is directly proportional to the “viscosity” of 

what flows and inversely proportional to street width. The resistibility of the “street 

flows” shows the same dependence on channel width W as with “Hagen-Poiseuille 

flow” between parallel plates. This feature enables us to use the results of constructal 

optimizations previously carried out for river basins [13, 14]. In fact, Chen and Zhou 

[15] had already noticed that the city scaling laws take the form of known laws of 

geomorphology, namely of river basins. What we show next is that as with the river 

basins also the scaling laws of city networks emerge from the underlying dynamics. 

 

5.4 City networks and fractal dimension  

Bejan (2000), optimized flow trees for area-to-point flows, of resistivity  R/L∝1/W2, 

in two ways: (i) by minimizing global resistances under constant flow rate and 

“drainage area”; (ii) by minimizing the volume (area) allocated to channels (streets) 

in the tree subject to fixed global resistances and “drainage area”. Reis [14] showed 

that Bejan’s relations anticipate known scaling laws of river basins (Fig. 5.3).  
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Fig. 5.3 River basin with streams up to order ω . Streams of order 1n −−ω are tributaries of 
streams of order n−ω . 
 

One of such laws tells us that the ratio of the average lengths of streams of 

consecutive hierarchical order is constant, i.e.  

L
1n

n R
L
L

=
+

 (12) 

where 2~R L , while the same happens with the average number of streams of 

consecutive hierarchical order, i.e. 

N
n

1n R
N

N =+  (13) 

which is also a constant, 4~R N  (see Fig. 5.4). Reis [14] showed that despite the 

relationships (12) and (13) have been derived from constructs of regular geometry as 

those of Fig. 5.4, they hold for any hierarchical stream network irrespective to its 

particular geometry. Moreover, relationships (12) and (13) imply that they are self-

similar in its range of validity (see also Fig.2). 
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Fig. 5.4 Hierarchy of streams in a city network. People living in the area of the smallest 
construct (top) walk “diffusively” before reaching the first channel where the flow becomes 
“organized”. Then, flows proceed to a larger channel (street) that is tributary of the next 
order channel (bottom). Known scaling laws (constant ratio between consecutive channel 
lengths and consecutive numbers of channels) emerge from flow access optimization. 
 

Because these scaling laws emerge from the optimization process carried out under 

the eq, (11) that hold for both Hagen-Poiseuille flow and street flow (cars, people) it 

follows that Eqs. (12) and (13) must also hold for the city street networks. Therefore, 

if L0 represents the scale of the largest stream in the city, from eq. (12) one obtains 

the following scaling law: 

n
L0n RLL =  (14) 

Analogously, from eq. (13) one obtains: 

n
N0n RNN =  (15)  
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Taking into account eq. (14), by denoting nn N)L(N = and 00 N)L(N =  and aplying 

eq. (1) one has: 

)L(NR)RL(N)L(N 0
mn

L
n

L0n
−− ==  (16) 

or,  

n
N0

n
N

mn
Ln R)L(N)RR()L(N −=  (17) 

Then, by comparing with eq. (15) one obtains the fractal dimension as:  

2~
Rlog
Rlogm

L

N=  (18) 

which indicates that the fractal dimension must approach 2 for a city that developed 

its street network under the purpose of optimizing flows of people and goods. Of 

course many other factors do influence city development. However, if the purpose of 

making city flows easier and easier is the leading one, then we do expect that the 

fractal dimension gets closer to 2. 

Batty and Longley [14] have determined the fractal dimension of cities by using 

maps from different years. They found values typically between 1.4 and 1.9. 

London’s fractal dimension in 1962 was 1.77, Berlin’s in 1945 was 1.69, and 

Pittsburgh’s in 1990 was 1.78.  Dimensions closer to 2 stand for denser cities. 

Shen [7], carried out a study on the fractal dimension of the major 20 US cities and 

found that the fractal dimension, m, varied in between 1.3 for Omaha (population – 

0.86 million) and 1.7 for New York City (population – 16.4 million). In the same 

study it is also shown that in the period 1792–1992 the fractal dimension of Baltimore 

has increased from 0.7 to 1.7, which indicates that the city network has been 

optimized in time. 

Chen and Zhou [15] found that the fractal dimension of some German cities range 

from 1.5 (Frankfurt) to 1.8 (Stuttgart).  

A systematic study on cities fractal dimension would be needed to fully confirm that 

cities street networks develop as predicted by the Constructal Law. However, the 

few results available all point to 2 as the limit of the fractal dimension of a city that  

would ideally developed in time under the purpose of better and better internal flow 

access. 
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City organization has changed in time according to social organization and also to 

external constraints (wars, trade, etc.), and its marks have been preserved in the 

remains, especially in the architecture, of the ancient cities. We will discuss two 

different schemes of planning city space as a flow structure.  

The fist case is that of organization of Roman cities (Fig. 5.5). In general, 

these cities were built on open spaces and spread over relatively large areas. Cities 

were not much constrained by city walls that came later when the Roman Empire 

was under attack by the barbarians. The plan of the city usually followed a design in 

which two principal streets (via) cross at the middle of the city. These broad via 

received “flow” from tributaries on both sides (Fig. 5.4). This “drainage network” 

with multiple mouths performed very well and, surely was efficient. 

With river basins, the rule of quadrupling the number of streams from one 

scale to the next lower scale proved to promote the best performance (Reis, 2006a; 

Bejan, 2007).  We can detect in the ruins of some cities (see Fig. 5.6) that Roman city  

 

 
Fig. 5.5 Plan of a Roman city. The two main streets (via decumanus and cardo) cross at the 
center providing excellent drainage smaller street flows and flow distribution onto inside 
quarters. The external wall was present at the end of the Roman Empire due to the barbarian 
invasions. 
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Fig. 5.6 Ruins of the Roman city of Timgade in now Algeria (photo by A. Crosnier). Note 
the street network designed for near optimal flow access, very close to optimized constructal 
design. 
 

planners had the intuition of the designs that promoted better efficiency with respect 

to city flows. Many of these designs approach the optimized constructal design of 

Fig. 5.4. Actually, cities in the vast territory of the Roman Empire relied on the 

military power of the mobile legions for defense against invasions and, usually were 

not much constrained by external walls. Hence, city planners had to deal mainly 

with the efficiency of the city network regarding flows of goods and people 

(merchants, horses and carriages, military personnel, etc.).  
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   Differently from the Roman cities, the medieval ones had to face constant 

wars under the feudal regime and later. Defense was a major concern and therefore, 

almost all medieval cities developed over a small area surrounded by towering walls. 

Movements to the outside were usually restricted to few gates that gave controlled 

access to and from the outside, hence people movement was restricted to a small 

inside area with the market at the centre. This point to area flow and vice-versa 

developed special flow structures, accordingly. Fig. 5.7(a) represents the plan of a 

medieval city, while Fig. 5.7(b) represents the medieval city of Bologna. The flow 

structure developed radially, and we may speculate if such a network is a result of 

structure optimization in time?   

Actually, the flow problem is that of optimizing point to area flow access, 

especially for those that lived in the periphery (circumference). Lorente et al (2002) 

[16] have addressed the similar problem of supplying water to users located along the 

edge of a circular area. The optimal flow structure, i.e. that network that supplies 

water without minimum resistance under the circumstances of scarcity of conduits 

is represented in Fig. 5.7(b). As said before, this problem is analogous to that of 

people that have to move between the centre and the periphery (and back) of a 

medieval city (usually circular in shape), facing the constraint of scarcity of free 

space for the movement. The flow designs of Fig. 5.7 represent almost the same flow 

pattern, with a so amazing similarity, that we are led to the conclusion that also 

medieval cities have optimized their internal street network in time. 

These two examples picked from History illustrate of how in the field of 

social organization, namely in city organization, the “fossil” flow structures as the 

ancient street networks are may be understood based on principle. These examples 

add to many other is various fields in which the constructal law proved to be a 

universal principle (see Reis [17] [18]).  
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Fig. 5.7 (a) Plan of a medieval city; (b) Medieval Bologna (Italy).; (c) Constructal design for 
optimal flow access between the centre of the circle and points on the periphery (Lorente et 
al, [16]). 
 

(a) 

(b) 

(c) 
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5.5 Conclusions  

Despite few examples have been considered we believe that city networks evolve in 

time as the result of the continuous search for better flow configuration, therefore 

being a manifestation of the Constructal Law.  

Analogy has been established between the scaling laws of river basins and city street 

networks. It was shown that city flows are governed by a law that is similar to that 

of channel flow.  This fact provided the basis for applying the constructal relations 

derived for river basins to city street configuration. It was found that self-similarity 

appears at the various scales while the fractal dimension must be 2, ideally. 

The results seem to corroborate that well developed cities tend to approach fractal 

dimension 2 as anticipated by the Constructal law. More, as cities develop in time 

and become more and more complex the fractal dimension tends to increase. 

These results add to many others that confirm that wherever something flows, flow 

architectures emerge, which can be understood in the light of Constructal Law. 

Transportation networks where goods and people flow have been developed for the 

purpose of maximum access or best performance in economics and for facilitating all 

human activities. Similarly, internal flow structures where energy, matter and 

information flow are at the heart of engineered systems. Everything that flowed and 

lived to this day to ‘‘survive’’ is in an optimal balance with the flows that surround it 

and sustain it. This balancing act — the optimal distribution of imperfection — 

generates the very design of the process, power plant, city, geography and 

economics. 
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5. The constructal law and entropy generation 

minimization 

Engineered systems are designed with purpose. Each system must force its 

flows to follow the thermo-hydrodynamic paths that serve the global objective. To 

select the appropriate flow paths from the infinity of possible paths is the challenge. 

The rate of entropy generation is a measure of how internal flows deviate from the 

ideal limit of flow without resistances, or without irreversibility. The constructal 

law calls for optimal organization that maximizes internal flow access. Optimal flow 

organization minimizes entropy generation and therefore maximizes the system’s 

performance. The method of entropy generation minimization (EGM) has been 

recognized in engineering and is now well-established [1, 2]. Constructal theory 

argues that flow shapes and structures occur in nature in the same way and the 

principle is the constructal law. 

To see the relationship between EGM and the constructal law note that the 

flows occurring in nature and engineered systems are dissipative. These flows 

generate entropy, and most may be described simply by: 

I/VR =   (1) 

where V is the potential that drives the current I, and R is the resistance to flow. 

These flows generate entropy at the rate  

T/VISgen =&   (2) 

where T is the thermodynamic temperature. Equation (12) allows us to express the 

resistance as 

2
gen ISTR &=   (3) 

In view of Eqs. (1) and (3), minimizing the flow resistance for a specified 

current I corresponds to minimizing the entropy generation rate. This shows how 

the constructal law and the minimization of entropy generation are connected. The 

constructal law goes further and focuses on the generation of the flow configuration. 

It brings design (drawing, architecture) in the description of flow system physics. At 

the same time, the connection established by Eq. (3) is a reminder that, like the 

constructal law, the minimization of entropy generation rate in flow systems is a 

principle distinct from the second law. This deserves emphasis: the generation of 
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entropy ( genS& ) is the second law, while the generation of flow configuration (e.g., 

the minimization of genS& ) is the constructal law.  

For illustration, consider a flow tree with N branching levels. The same 

current I flows in each level of branching, that is III m
1k k

n
1i i =∑=∑ == . If at a certain 

level of branching, the tree has n ducts, the flow resistance at this level is 

)nI(IRR n
1i ii∑= =   (4) 

The flow resistance at the same branching level may alternatively be expressed as a 

quadratic average, cf. Eq. (3), 

2n
1i

2
ii IIRR ∑= =   (5) 

Equations (4) and (5) lead to different values of the resistance unless 

VIR ii = =const. Minimization of the tree resistance, as given by Eq. (4), at each level 

under the constraint of constant I, yields 

( ) 0
1

1 =∑ −
=

i
n

i
i dIλ)nI/(R   (6) 

while minimization of flow resistance, as given by Eq. (5) gives: 

( ) 02
1

2
2 =∑ −

=
i

n

i
i dIλI/R   (7) 

where 1λ and 2λ are constants. Eqs. (1)-(7) enable us to find the following 

relationships: 

Rn/Ri = ;    InIi = ;   ∑=
=

n

1i
iR/1R/1 ;     ii IRV =   (8) 

In these relationships derived from the minimization of the flow tree 

resistance (constructal law) we can identify the well-know relationships of electric 

currents flowing in branched circuits. However, they hold for any tree where a 

current obeying Eq. (1) flows. In Eqs. (8) we find the general form of the law of 

equipartition of the resistances. The rate of entropy generation is constant at any 

branching level and is given by 

TRITIRS
n

i
iigen

2

1

2 =∑=
=

&  (9) 

The minimal rate of entropy generation is given by Eq. (9) which, in view of Eq. 

(8), is achieved when the Eqs. (4) and (5) lead to the same resistance [3] 

The great physicist Feynman noted that “….minimum principles sprang in 

one way or another from the least action principle of mechanics and 
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electrodynamics. But there is also a class that dos not. As an example, if currents are 

made to go through a piece of material obeying Ohm’s law, the currents distribute 

themselves inside the piece so that the rate at which heat is generated is as little as 

possible. Also, we can say (if things are kept isothermal) that the rate at which heat 

is generated is as little as possible….” (Feynman [4]). Actually, the principle of least 

action accounts for point-to-point motion and cannot accommodate point-to-area 

and point-to-volume flows.  

In summary, the constructal law provides a unifying picture for point-to-area 

and point-to-volume flows. It also makes clear why living organisms in their 

struggle for lowering the rate of internal entropy generation have constructed flow 

trees for optimal flow access throughout their bodies, and throughout their societies. 
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6. How the constructal law fits among other fundamental 

principles 

System evolution in space and time is governed by fundamental principles. 

Classical and relativistic dynamics, electromagnetism and non-relativistic quantum 

mechanics spring out of the principle of least action (Feynman [1]). Symmetry is 

another fundamental concept evinced by Noether’s theorem, which states, “Every 

continuous symmetry of the dynamical equations and potential of the system implies a 

conservation law for the system” (e.g. symmetry under time reversal implies 

conservation of energy, translational symmetry implies conservation of linear 

momentum, etc.) (see Callen [2]). Classical optics follows from the principle of 

minimum travel time taken by light between two points. The second law governs 

internal evolution of isolated systems by defining the sequence of equilibrium states 

that match successive relaxation of internal constraints. 

Symmetry and the principles of least action and minimum travel time 

account for motion from point to point. The second law predicts properties of systems 

at equilibrium. None of these principles rationalises the occurrence of shape and 

non-equilibrium internal (flow) structure of systems. In fact, these geometrical 

features are assumed in advance as constraints to the system dynamics. In spite of 

being ubiquitous in nature, they are considered to be the result of chance. 

Constructal theory accounts for the huge variety of natural structures and 

shapes and unifies them in the light of the constructal law. Chance leaves its mark 

in every natural system, but determinism plays here the fundamental role. The field 

of application of the constructal law is disjoint to those of other principles as is in 

the heart of non-equilibrium, flow systems, entropy generation, and evolution in 

time. Unlike minimum travel time and least action principles that account for 

motion from point to point, the reach of constructal theory is far broader. It 

addresses motion from volume (or area) to point and vice-versa. The principle of 

least action constraints motion from point to point to follow a special trajectory 

among an infinity of possible trajectories, while the constructal principle organizes 

motion from volume (or area) to point in a special flow architecture out of infinity 

possible architectures.  
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Natural systems are complex and change in many ways. In the past, 

scientists realized that for understanding nature they had to focus their attention on 

simple and homogenous systems. Motion, as the change of relative position with 

time, is the ubiquitous phenomenon that called for explanation, and the principle of 

least action is the principle that unified motions from point to point in a common 

picture. The constructal law is its counterpart, by allowing systems with complex 

internal flows to be described and understood under a unified view. 

Unlike the usual direction of scientific inquiry, which divides systems into 

smaller and simpler sub-systems (analysis), constructal theory proceeds from the 

elemental to the complex by successively assembling blocks (construction), which are 

elemental at the stage considered but are structured and complex when viewed from 

the previous stage.  

The parallelism between engineering and nature becomes evident (e.g., ref. 

[3, 4]). Engineers create systems with purpose and try to increase their performance 

in time. Systems have to evolve in time to approach this goal because reaching 

optimal performance takes time. Natural systems, animate and inanimate, also exist 

with purpose. The purpose of a stem is to hold and provide leaves with water and 

nutrients while that of river basins is to collect superficial water and deliver it into 

oceans. Unlike engineering, nature has been morphing its shapes and structures for 

billions of years. Nature uses not method, but time, evolution, tries, errors, and 

selecting every time the solutions that bring it closer to better flow access. 

Nevertheless, as parts of each of us (man + machine species), engineered systems 

evolve according to the same law as natural flow systems, which goes to show that 

to engineer is natural.  
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8. Conclusion 

There is no limit to this subject.  It is just a different point of view of things, 

which constructal theory proposes.  It is a point of view of the engineer about the 

forms of nature.  Constructal theory proposes to see the trees, the human bodies, like 

machines that are subjected to constraints, which are constructed with a goal, an 

objective, which is to obtain maximum efficiency. 

This constructal theory is about the method of constructing such machines, 

which attain optimally their objective.  It proposes a different look at corals, birds, 

atmospheric flow and, of course, at the machines built by engineers.  

In this paper we gave an overview of the applications of the constructal 

theory, which extends from engineering to natural systems, alive and inanimate and 

to human activities like organization of cities, transportation and economics. 

Wherever something flows, a flow architecture emerges, which can be understood in 

the light of constructal theory. The many examples presented here illustrate how the 

symbiosis between flow dynamics and geometry is the heart of constructal theory. 

This theory has proved to be useful in describing complex flow systems and the field 

of its potential applications is open to researchers from engineering and natural and 

social sciences. In my view, constructal theory is essential to those who strive to 

describe natural systems in a quantitative fashion.   

Constructal theory also provides a new way of thinking with epistemological 

and philosophical implications (Rosa [1], Patrício [2], T. M. Bejan [3]). From the 

epistemological point of view, its method proceeds from the simple to the complex, 

against the usual paradigm of science that calls for the deconstruction of the complex 

to reach the elemental. The philosophical consequences are also obvious and 

important: constructal theory gives chance a secondary role in the evolution of 

natural systems. Constructal theory assigns the major role to determinism, and 

contributes significantly to the debate on the origin of living systems. 
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