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Summary. — The forced, linear, Rossby wave solution for a barotropic fluid in a
square basin on a b plane containing a thin, continuous but pierced meridional
barrier is examined. The forcing is zonally localized and vorticity is removed through
bottom friction. The forcing is applied east of the barrier and is periodic in time. To
the north and south of the barrier there are small gaps of equal width d separating
the barrier from the basin walls. The value of the stream function on the walls of the
basin is zero while the value of the stream function on the barrier, CI , is a function of
time, the forcing structure and the forcing frequency. CI is determined by an
application of Kelvin’s theorem on a contour about the barrier and its value gives the
flux between the two sub-basins that are formed by the barrier. The variance of the
stream function is explored as a function of the forcing frequency for different
meridional structures of the forcing. We investigate symmetric, antisymmetric, and
asymmetric forcings about the mid-latitude of the basin. Peaks in the variance occur
at frequencies where the solution is dominated by a full basin or sub-basin mode. It
was found that modes which were antisymmetric about the mid-latitude could not
propagate past the barrier, while modes which were symmetric about the
mid-latitude always had some propagation past the barrier. For the case of eastern
sub-basin modes which are symmetric about the mid-latitude this propagation is
minute. The sensitivity of the solutions to bottom friction is also discussed. As friction
is increased, the peaks in the variance become broader and begin to merge. At
sufficiently high values of bottom friction a combination of modes, rather than one
single mode, dominates the solution at a peak frequency.

PACS 92.10 – Physics of the oceans.
PACS 92.10.Fj – Dynamics of the upper ocean.
PACS 92.10.Ei – Coriolis effects.

1. – Introduction

The focus of this paper is to investigate how Rossby waves are able to propagate
past a meridional barrier through narrow gaps which are much smaller than the
meridional extent of the wave. The idea to investigate a Rossby wave propagating
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Fig. 1. – Sketch of the square basin with the meridional island placed at xI and the forcing along
the dotted line at xF . There are two gaps of width d to the north and south of the barrier.

through such narrow gaps first occurred to Pedlosky and Spall (1999) when examining
a simple two-layer baroclinic numerical model, the steady-flow problem examined by
Pedlosky et al. (1997). They noticed that the boundary layer to the east of the barrier
became unstable and developed eddies, at the same time it was apparent in the lower
layer, which had a fairly weak mean flow, that, what seemed to be basin scale Rossby
normal modes had developed. The normal mode, while existing in both layers, was
masked by the mean flow and its instability in the upper layer. See the introduction and
figures 1 (a) and (b) to Pedlosky and Spall (1999) for further details.

Naturally this observation lead them to ask how could it be possible to excite basin
scale normal modes when the forcing was so isolated in the eastern sub-basin with only
very narrow gaps opening to the western sub-basin. Their first step was to determine
the nature of the Rossby normal modes by solving both analytically and numerically for
the normal modes in a rectangular basin with a meridional island. By including a
periodic forcing to the east of the barrier and bottom friction, this paper is an extension
of their analytical work. In this manner we investigate the excitation of the normal
modes, their amplitudes and the general issue of the propagation of wave energy
through barriers containing narrow gaps. The basin shape used in this paper is shown
in fig. 1. It is a square basin with a thin meridional barrier at xI . There are two gaps of
width d to the north and south of the barrier separating the barrier from the basin
walls. The forcing is periodic and occupies the dotted line in fig. 1.

Section 2 of this paper is a description of the theory for the model and presents the
analytical solution to the problem. Subsection 3.1 is a general discussion of the full
basin and sub-basin modes, subsect. 3.2 investigates some of the larger modes where
the meridional structure of the forcing is symmetric, antisymmetric and asymmetric
about the mid-latitude. Finally subsect. 3.3 considers the effects of friction.

The model pertains to the oceanic flow around topographic features such as islands
and ridges. Its most direct oceanographic application is in understanding the abyssal
circulation as it encounters the mid-ocean ridge system and its many fracture zones.
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The forcing can be thought of as that due to wind stress, Ekman pumping, or abyssal
upwelling, depending on the situation being considered.

Compared to the real ocean, this study contains many simplifying assumptions,
therefore our solutions will not directly mimic real oceanic circulations. However, the
physics contained in this study occur in nature, and this simplified model should shed
some light on the situation. It will also serve as a building block to the solutions of
situations of greater complexity which should more closely resemble the motions
observed in nature.

2. – Theory

The linear, quasi-geostrophic potential vorticity equation on the b plane for a
barotropic fluid with forcing and bottom friction is (Pedlosky (1987))

˜2 Ct (x , y , t)1bCx (x , y , t)4F(x , y , t)2r˜2 C(x , y , t) .(1)

There is no vortex stretching term since the Rossby radius of deformation is assumed
to be large in comparison to the horizontal length scale of the flow. This is equivalent to
a rigid lid boundary condition.

The stream function is related to the pressure, P , by C41/( f0 r 0 ) P , where f0 is the
reference value of the Coriolis parameter which is given by f4 f01by in the b plane
approximation, and r 0 is the constant density.

As previously mentioned, the forcing can be either a wind stress curl, Ekman
pumping, or an upwelling from the abyss into the thermocline as in Stommel and Arons
(1960). If the forcing is a wind stress curl the full Sverdrup transport is considered. If
the forcing is an Ekman pumping only the geostrophic component of the transport is
present. The model really can account for both situations since the quasi-geostrophic
theory to first order ignores the mass flux in the Ekman layer.

The variables are non-dimensionalized as follows:

t4 (bL)21 t 8 ,(2)

(x , y)4L(x 8 , y 8 ) ,(3)

F(x , y , t)4F0 T(x 8 , y 8 , t 8 ) ,(4)

C(x , y , t)4
F0 LF(x 8 , y 8 , t 8 )

b
(5)

and the non-dimensionalized form of (1) is

˜2 Ft (x 8 , y 8 , t 8 )1Fx (x 8 , y 8 , t 8 )4T(x 8 , y 8 , t 8 )2g˜2 F(x 8 , y 8 , t 8 ) ,(6)

where g4r/bL is the dimensionless friction parameter. All of the dimensionless
variables (x 8 , y 8 , t 8 ) are of order one. From this point on, for clarity, the primes will be
dropped.

A force that oscillates in time is used and the following substitutions are made:

F(x , y , t)4e 2i(vt1k(x2xI ) ) f(x , y) ,(7)

T(x , y , t)4e 2ivt T(x , y) ,(8)
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where k41/(2(v1 ig) ) and xI is the zonal position of the thin meridional barrier. This
results in the inhomogeneous Helmholtz equation for f(x , y)

˜2 f(x , y)1k 2 f(x , y)4
i

V
e ik(x2xI ) T(x , y) ,(9)

where V4v1 ig .
The forcing is assumed to be a delta-function in the zonal direction at x4xF . The

meridional structure of T(x , y) and the complete structure of f(x , y) are represented
by a Fourier sine series in y as follows:

f(x , y)4 !
n41

Q

f n (x) sin (npy) ,(10)

T(x , y)4d(x2xF ) !
n41

Q

Tn sin (npy) .(11)

The Fourier coefficients, f n (x), are functions of x to be determined. The boundary
condition of no normal flow at y40 and y41 is now satisfied since f(x , y) has been
expressed as a Fourier sine series, and hence vanishes at y40 and y41.

The above substitutions for f(x , y) and T(x , y) lead to the following second-order
ordinary differential equation in x for each Fourier coefficient f n (x):

d2 f n (x)

dx 2
2a 2

n f n (x)4
i

V
e ik(x2xI ) Tn d(x2xF ) ,(12)

where a 2
n4n 2 p 22k 2 . The solution to this equation in the basin interior involves

solving the second-order homogeneous equation

d2 f n (x)

dx 2
2a 2

n f n (x)40(13)

in the three regions

0

xI

xF

ExE

ExE

ExE

xI ,

xF ,

1 ,

leading to a total of six unknown constants. Therefore six boundary conditions are
required to determine these constants. The condition of no normal flow at x40 and
x41 requires the total stream function to be zero at the basin walls. Another two
boundary conditions arise from matching the solution at the zonal position of the delta
function of the forcing x4xF . The stream function is continuous at this point and so
provides the first of these, and integrating (12) from xF2e to xF1e and taking the
limit as e goes to zero yields the second matching condition for the first derivative of
f n (x). The last two unknown coefficients are determined by assuming that the total
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stream function has the form

F(xI , y , t)4e 2ivt

.
`
/
`
´

y

d
f I

f I

12y

d
f I

for

for

for

0

d

12d

EyE

EyE

EyE

d ,

12d ,

1 ,

(14)

at x4xI , where f I is a constant such that the full stream function on the barrier is
F(xI , t)4e 2ivt f I . A no normal flow condition at the barrier dictates that f I must be
independent of y . It should be noted that f I is a function of the meridional structure of
the forcing, the forcing frequency, and the friction parameter and must be determined
as part of the solution. The form (14) holds for d b 1 and assumes the flow is zonal,
independent of y and time periodic in the region of the narrow gaps. See Pedlosky and
Spall (1999) for a comparison of this linear assumption to numerical results, without the
presence of friction. The linear assumption is valid as long as the Stommel boundary
layer is small compared to the gap width.

The assumed form for the stream function at x4xI , see (14), is expanded in a
Fourier sine series and its Fourier coefficient functions, f n (xI ), are matched to the
solutions of (12) in the regions 0ExExI and xIExExF on the line x4xI .

At this point the Fourier coefficients f n (x) are determined in terms of the forcing
and f I . The solutions are
In the region 0ExExI

f n (x)4En sinh a n (x) ,(15)

In the region xIExExF

f n (x)4Cn sinh a n (x2xI )1Dn cosh a n (x2xI ) ,(16)

In the region xFExE1

f n (x)4An sinh a n (x21)(17)

with

Dn4
4f I sin (npd) M(n)

n 2 p 2 d
,(18)

M(n)4
.
/
´

0 ,

1 ,

if n4even ,

if n4odd ,
(19)

Cn4
1

a n sinh a n (12xI )
(Tn sinh a n (xF21)2Dn a n cosh a n (12xI ) ) ,(20)

An4
1

sinh a n (xF21)
(Cn sinh a n (xF2xI )1Dn cosh a n (xF2xI ) ) ,(21)

En4
Dn

sinh a n xI

.(22)
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Finally, to determine the value of f I , the tangential component of the horizontal
momentum equation

¯ u
K

¯t
1 (z1 f ) k×3 u

K
42˜ g p

r
1

NuN2

2
h2r u

K
(23)

is integrated around the barrier.
The integral of the second term on the left side is equal to zero due to the boundary

condition of no normal flow. The integral of the first term on the right side is also zero
since it is the integral of a perfect differential. The two remaining terms lead to the
following ordinary differential equation with respect to time for the circulation
integral, which is Kelvin’s theorem applied on a contour encircling the barrier:

g ¯

¯t
1rh � u

K
Q d s

K
40 .(24)

The transient solutions decay exponentially in time leaving a periodic solution.
Therefore, after the transients have decayed away, the “island” boundary condition is

� u
K
Q d s

K
40 .(25)

Considering the geometry of the barrier the above integral becomes

�
d

12d

v1 (xI ) dy4 �
d

12d

v2 (xI ) dy ,(26)

where v1 (xI )4 !
n41

Q
¯F1

¯x N
x4xI

sin (npy) and v2 (xI )4 !
n41

Q
¯F2

¯x N
x4xI

sin (npy). The

negative subscript refers to the solution just west of the barrier, likewise the positive
subscript refers to the solution just east of the barrier. After making the substitutions
for the meridional velocities, a solution for the time-independent part of the stream
function on the barrier is obtained:

f I4

!
n4odd

Q 2Fn sinh a n (xF21) cos (npd)

pn sinh a n (12xI )

!
n4odd

Q a n sin (npd) cos (npd) sinh (a n )

n 3 p 3 d sinh a n (12xI ) sinh a n (xI )

.(27)

For the even components the equation is trivially satisfied and provides no
information about f I . Considering the solution in the western basin (15), we see that
the Fourier coefficient functions are zero when n is even implying that there is no
transport between the basin and the barrier for these modes. The conclusion is that
even components, corresponding to motions which are antisymmetric about the
mid-latitude y40.5, make no contribution to the value f I .

If the odd Fourier components of the forcing, Tn , are zero, it follows that f I40.
Therefore a forcing which is antisymmetric about y40.5 will yield no flow through the
gaps, and from (15) it follows that there would then be no response in the western
basin.
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The variance of the response was calculated by integrating the absolute value of the
stream function over the area of the basin

variance 4�
0

1

�
0

1

FF* dx dy(28)

recalling that F(x , y , t)4e 2i(vt1k(x2xI ) ) !
n41

Q

f n (x) sin (npy). The final expression for

the variance along with an expression for the integral of the meridional velocity v1 on
the eastern side of the barrier alone

EC4 �
d

12d

v1 (xI ) dy(29)

is shown in the appendix.

3. – Results and discussion

3.1. General discussion of full-basin and sub-basin modes. – Before proceeding
with a description of the parameters, forcing, and subsequent results for this study, we
would like to discuss some general features of the full basin and sub-basin modes
appearing in the solution.

A full basin mode appears on both sides of the barrier, whereas a sub-basin mode
only appears on one side of the barrier. We call them sub-basin modes because they are
normal modes for the eastern and western sub-basins formed by the barrier which
nearly divides the basin in two.

Unlike the normal modes for the basin in the absence of the barrier which
correspond to a single Fourier component in y , Pedlosky (1987), the normal-modes for
the basin containing the barrier are a combination of Fourier components. One way to
see that this is the case is to recall that any solution of the problem must have the form
(14) at the zonal position x4xI . At x4xI our solution is a Fourier sine series of (14)
which cannot be represented by a single Fourier component.

Considering this major difference between the two solutions it is surprising that
many of the normal modes closely resemble one another, both in their natural
frequencies and their spatial structure. It is this heuristic relationship that we wish to
illustrate at this point.

We begin by noting that the coefficient Cn (20) which appears in the solution of the
stream function to the east of the barrier contains the term sinh a n (12xI ), where a 2

n4

n 2 p 22k 2 and k4 1

2(v1 ig)
, in the denominator. Therefore the solution will become

very large as sinh a n (12xI ) becomes very small. As long as friction is present
sinh a n (12xI ) can never equal zero. If we allow ourselves for the purpose of
illustration to eliminate the friction by setting g40, we can solve for the values of v for
which sinh a n (12xI ) equals zero. The result is v4

1

2pogn 21
m 2

(12xI )2 h
, where m and n

are integers. These are the eigenfrequencies for the normal modes of a basin the size of
the eastern sub-basin.
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TABLE I. – Comparison of the nine basin modes in this paper to the normal modes for a barrier
free basin to which they resemble. The resemblance is observed both in the contour plots and in
the frequencies. For the case of the sub-basin modes the barrier free basin has the same size as the
sub-basin.

Mode for basin with barrier Mode for basin without barrier

1st Full Basin Mode
v40.1057

2nd Full Basin Mode
v40.0686

1st Eastern Sub-basin Mode
v40.0648

3rd Full Basin Mode
v40.0503

2nd Eastern Sub-basin Mode
v40.0479

3rd Eastern Sub-basin Mode
v40.0456

4th Full Basin Mode
v40.039

5th Full Basin Mode
v40.0381

1st Western Sub-basin Mode
v40.0356

m41, n41
v40.1125

m42, n41
v40.0712

m41, n42
v40.0648

m43, n41
v40.0503

m41, n43
v40.0479

m42, n42
v40.0456

m41, n43
v40.0356

Likewise the coefficient En (22) appearing in the solution to the west of the barrier
is seen to contain sinh a n (xI ) in its denominator. Again setting g40 and solving for v

when sinh a n (xI ) equals zero we find v4
1

2pogn 21
m 2

(xI )2 h
, where m and n are integers.

These are the eigenfrequencies for a basin the size of our western sub-basin.
From the observations above we expect that the natural frequencies for the

sub-basin modes should equal the eigenfrequencies for basins the size of the sub-basins
when the friction parameter is small. This is indeed the case as shown in table I.
Figures 7 (c), (e), (f ), and (i) are the contour plots of the absolute value of the
membrane functions, f , for the sub-basin modes in table I. There is a remarkable
resemblance between these contour plots and the contour plots of the normal modes
whose eigenfrequencies are equal to the natural frequencies of these sub-basin modes.

There is also an empirical relationship between the full basin modes for the basin
with a barrier and the normal modes of a basin without a barrier of the same size. The
dispersion relation for the full basin modes correspond to a resonance of FI and hence a
zero of the denominator of (26). Even when the friction is very small, the natural
frequencies of the basin containing the barrier are close but not equal to the
eigenfrequencies of the barrier free basin, see table I. Again there is also a strong
resemblance in their spatial structure, see figs. 7(a), (b), and (d). However there exist
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modes for the basin with a barrier that do not resemble any modes of the barrier free
basin. For example, see the 4th and 5th full basin modes in figs. 7(g), and (h).

These general observations between the normal modes for the basin containing a
barrier and the normal modes for barrier free basins were first noticed by Pedlosky
and Spall (1999).

3.2. Investigation of individual modes. – The non-dimensional value of the friction
parameter was taken to be very small, g41028 , so that individual modes could easily
dominate the solution when the forcing occurred at their natural frequency. The cases
of symmetric, antisymmetric, and asymmetric forcing about the mid-latitude, y40.5,
are considered. To avoid placing the barrier at a position where the two sub-basins and
the full basin could all have the same natural frequency, i.e. ensuring that the ratio of
zonal extents of the sub-basins is not a ratio of integers, we arbitrarily put the barrier
at xI40.3. The forcing is arbitrarily put at xF40.7.

For each case the variance for the full basin, western sub-basin, eastern sub-basin,
and Nf IN are plotted as a function of the forcing frequency. See figs. 2(a), (b), and (c),
4(a), and (b), and 6(a), (b), and (c). Since g is small, the peaks in the variance are well
defined and will correspond to forcing frequencies that are very close to the natural
frequencies of the basin.

As mentioned before, due to the assumption that the stream function is linear in y in
the gap, the gap width must remain small compared to the length scale of the problem.
Changing the gap width results only in very slight changes in the natural frequencies
of the full basin modes and hardly any changes in their contour plots. Therefore, the
gap width is set at d40.05 and is kept at that value.

As noted in sect. 2, the forcing has the form of a delta-function in x at xF times a
Fourier sine series in y (11). The symmetric, antisymmetric and asymmetric cases
about the mid-latitude, y40.5, that will be considered are constructed from
approximate delta-functions in y . The n-th Fourier coefficient in a sine series
representing a delta-function at y0 is given by

Tn42 sin (npy0 ) .(30)

In the following cases the Fourier coefficients used will be

Tn42 sin (npy0 ) e 2(1 /10)n 2
.(31)

The factor e 2(1 /10) n 2
gives more emphasis to the lower index terms, so this approximate

delta-function will be spread out in the meridional direction about y0 . Two advantages
result from defining the Fourier coefficients in this way. First, there is a smaller error
involved in using a finite sum for the Fourier series since the higher-order terms are
smaller leading to more rapid convergence (the first 50 terms are used in this paper).
Second, the meridional structure of the modes will always have a scale much greater
than the gap width where we have approximated our solution.

3.2.1. S y m m e t r i c f o r c i n g a b o u t t h e m i d - l a t i t u d e . The symmetric forcing
was represented by a delta-function in x at xF40.7 and an approximate delta-function
in y at y40.5. The Fourier coefficients of the forcing were defined as in (31) with
y040.5.

Figures 2(a), (b), and (c) are semilog plots of the variance for the full basin,
variance for the western sub-basin and variance for the eastern sub basin, respectively.
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Fig. 2. – Semilog plots of Nf I N (- - -) and (a) full basin variance, (b) eastern sub-basin variance
and (c) western sub-basin variance vs. forcing frequency v for the case where xI40.3, xF40.7,
d40.05, g41028 and the meridional structure of the forcing is symmetric about y40.5. Note
that the peak in Nf I N at v40.0449 is a minimum of f I .

Henceforth these will be referred to as the full variance, western variance, and eastern
variance. Figures 3(a) to (g) are contour plots of the absolute value of the envelope of
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Fig. 3. – Contour plots for the case where xI40.3, xF40.7, d40.05, g41028 , and the
meridional structure of the forcing is symmetric about y40.5. The forcing frequencies, shown on
the plots, correspond to the first 7 peaks in the full basin variance graph in fig. 2(a). The value EC
shown next to the forcing frequency is the circulation on the eastern side of the barrier (see
appendix).
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the stream function, i.e. NfN . The contour plots in fig. 3 were plotted with forcing
frequencies corresponding to the first seven peaks in the full variance plot in fig. 2(a).
The reason for stopping at the 7th peak is because this is the first western sub-basin
mode to appear, see table I. Therefore these 7 peaks allow us to examine 5 full basin
modes (fig. 3(a), (b), (c), (e), and (f )), one eastern sub-basin mode (fig. 3(d)) and one
western sub-basin mode (fig. 3(g)). Starting from the right in fig. 2(a) the full basin
modes occur at peaks 1, 2, 3, 5, and 6, the eastern sub-basin mode occurs at peak 4, and
the western sub-basin mode occurs at peak 7, that is the peaks are numbered in order
of decreasing frequency.

In this paper when we say that a mode occurs at a certain frequency, we mean that
the mode dominates the solution at that frequency. The mode will dominate the
solution because the forcing frequency is close to the mode’s natural frequency and the
friction, being relatively small, allows resonance to occur. This resonance allows us to
easily find the normal modes.

Inspection of the contour plots in fig. 3 shows that there are no modes appearing
that are antisymmetric about y40.5. One would not expect to see antisymmetric
modes about y40.5, which correspond to even Fourier components, since the forcing
used was symmetric about y40.5, and therefore only had odd nonzero Fourier
components.

Considering the contour plots of the full basin modes in fig. 3(a), (b), (c), (e), and (f)
and the semilog plots of the variances and Nf I N in fig. 2(a), (b), and (c), it is seen that
these full basin modes peak in the full variance, western variance, eastern variance,
and Nf I N . Since there is a strong flow over the total area of the basin associated with
each of these full basin modes, it is not surprising that these modes peak in all of the
plots and coincide. When considering the contour plot in fig. 3(d) which clearly has a
dominant flow in the eastern sub-basin and shows a strong resemblance to the normal
mode (m43, n41) for a basin with no barrier and of the size of the eastern sub-basin,
we were surprised to see that there was also a weak flow in the western sub-basin, and
that this flow had a corresponding peak in the western variance and Nf I N (fig. 2(b))
although with much smaller magnitude than the peaks in the full variance and the
eastern variance (fig. 2(a) and (c)). The explanation for this unexpected behavior lies in
the fact that the circulation on the eastern side of the barrier is not zero (see EC in the
caption of fig. 3(d)). The flow in the western sub-basin is necessary to satisfy the
“island” boundary condition that the total circulation about the barrier is zero.
Therefore it is the combined resonance in the eastern sub-basin and the need to satisfy
a no net circulation condition around the barrier that causes the peak in the western
variance and Nf I N .

Considering the expressions for f I , (27), f(x , y), (10), (15) and (22) in the western
sub-basin, and the circulation to the east of the barrier EC (35) (see appendix), one sees
that only the odd Fourier components contribute. Therefore one could predict that
whenever the forcing is symmetric or asymmetric and contains odd Fourier
components the above expressions will be nonzero. This follows as the linear
independence of the individual terms of the Fourier series implies that their
summation equals zero if and only if all of their Fourier coefficients are zero.

The same situation occurs when the western sub-basin mode in fig. 3(g) is
considered. Surprisingly, although small in magnitude, there is a corresponding peak
in the eastern variance at the frequency of this mode. Again, there is a significant
circulation to the eastern side of the barrier which must be necessary to compensate for
the fact that this western sub-basin mode cannot satisfy the “island” boundary
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condition on its own. In this case, the circulation to the east of the barrier is
transmitting very efficiently the forcing to the western sub-basin.

By consideration of the geometry of these modes which are symmetric about the
mid-latitude, y40.5, it is seen that they will never be able to completely satisfy the
circulation condition on one side of the barrier alone. Taking the mode n43 as an
example, the two end cells next to the barrier have the same circulation, and the middle
one has an opposite circulation. Therefore the circulation of the middle cell will never
be able to fully cancel the circulation of the outer cells, except possibly if the barrier
had the length 0.75. This situation cannot be treated with our approximation (14) which
requires d/L b 1 since the gap width would be far too big. Therefore, for modes which
are symmetric about the mid-latitude one should expect to see a small corresponding
peak in the western variance for a eastern sub-basin mode and a corresponding peak in
the eastern variance for a western sub-basin mode.

3.2.2. A n t i s y m m e t r i c f o r c i n g a b o u t t h e m i d - l a t i t u d e . Figures 4(a) and (b)
show the full and eastern variances for the case where the y structure of the forcing is
an approximate delta-function at y40.75 plus an approximate negative delta-function
at y40.25. The Fourier coefficients for these delta-functions are defined as in (30) with
y040.75 and y040.25. The western variance and f I are both zero for all forcing
frequencies. For the purpose of comparison with the case of the symmetric forcing
about the mid-latitude, only the first two peaks corresponding to frequencies greater
than v40.0356 are considered. The contour plots of the absolute value of the envelope
part of the stream function forced at these two peak frequencies are shown in fig. 4(c),
and (d).

As a result of the antisymmetric forcing about the mid-latitude, the only modes that
appear are also antisymmetric about the mid-latitude.

Since the full and eastern variances are identical and the western variance and f I

are equal to zero, it follows that the only modes occurring are eastern sub-basin modes.
The explanation for this lies in the “island” circulation condition. Unlike the modes

which are symmetric about the mid-latitude, these modes are able to completely satisfy
the condition (25) since they contribute nothing to the circulation on the eastern side of
the barrier. This is seen in fig. 4(c), and (d), where the EC is essentially zero (to within
the computational error of the computer). By looking at equation (35) in appendix A we
see that for antisymmetric modes which only have even Fourier components, EC is
exactly equal to zero.

Turning again to the expressions for f I , (27), f(x , y), (10), (15) and (22) in the
western sub-basin, and the circulation to the east of the barrier EC (35) (see appendix),
one sees that the even Fourier components never contribute to these parts of the
solution. Therefore, if there are no odd Fourier components present, these components
of the solution will always be zero. The circulation contribution of the eastern side of
the barrier being zero implies that there is no need for movement on the western side
of the barrier. The condition that the transport between the barrier and the basin,
which is equivalent to f I , is zero means that the western sub-basin never “feels” the
forcing and therefore will not have any circulation. Thus, with antisymmetric forcing
about the mid-latitude there is never any movement in the western sub-basin, and
hence full basin and western sub-basin modes do not appear.

An excellent comparison of a mode which is symmetric about the mid-latitude and
can propagate past the barrier and a mode which is antisymmetric about the
mid-latitude and cannot propagate past the barrier is shown in fig. 5(a) and (b). These
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Fig. 4. – Semilog plots of (a) full basin variance, (b) eastern sub-basin variance vs. forcing
frequency v . Plots (c) and (d) are contours of NfN at frequencies corresponding to the first two
peaks of the full variance. This case is where xI40.3, xF40.7, d40.05, g41028 and the
meridional structure of the forcing is antisymmetric about y40.5.

figures both have the forcing at xF40.7, the barrier at xI40.5, a gap width of d40.05
and a friction parameter of g41028 .
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Fig. 5. – Semilog plots of the full variance and the contour plots for the case where xI40.5,
xF40.7, d40.05, g41028 , and the meridional structure of the forcing is (a) and (c) symmetric
about y40.5 and (b) and (d) antisymmetric about y40.5. The forcing frequencies, shown on the
plots, correspond to (c) the natural frequencies of the western and eastern sub-basin modes
resembling the (m41, n41) normal mode for a basin of the same size and the full basin mode
resembling the normal mode (m42, n41) for a square basin the same size and no barrier and
(d) the natural frequencies of the western and eastern sub-basin modes resembling the (m41, n42)
normal mode for a basin of the same size and the full basin mode resembling the normal mode
(m42, n42) for a square basin the same size and no barrier. The value EC shown next to the
forcing frequency is the circulation on the eastern side of the barrier (see appendix).
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Figure 5(a) is forced using the approximate delta-function at y40.5 and a fre-
quency of v40.0712, which is the eigenfrequency for the normal mode (m41, n41)
for a basin the size of the eastern and western sub-basins, and for the normal mode
(m42, n41) for a basin the size of the full basin. For this full basin mode, the barrier
position at xI40.5 is exactly where the stream function is zero. Therefore, the barrier
does not seem to have much effect on the flow and the natural frequency is equal to the
eigenfrequency of the mode (m42, n41) for the basin in the absence of the barrier.
We now have a special situation where the forcing frequency is at the resonant
frequency of three different modes at the same time. For reasons already discussed, all
three modes appear due to the symmetric meridional structure of the modes.

Figure 5(b) is constructed in the same way. The forcing is the approximate delta-
function at y40.75 plus the negative approximate delta-function at y40.25. Also the
forcing frequency is v40.0563 which is equal to the natural frequencies of the western
and eastern sub-basins for the sub-basin modes resembling the normal mode (m41,
n42) for a basin the size of the sub-basins and is equal to the natural frequency of the
full basin mode resembling the normal mode (m42, n42) for a basin of
corresponding size and no barrier. However this time, even though the forcing is at a
natural frequency for three modes, the western sub-basin and full basin modes do not
appear due to the fact that these modes are antisymmetric about the mid-latitude.

3.2.3. A s y m m e t r i c f o r c i n g a b o u t t h e m i d - l a t i t u d e . Figures 6(a), (b), and (c)
show the full variance, western variance, and eastern variance for the case where the
forcing is an approximate delta-function at y40.75. The forcing Fourier coefficients
have been calculated as in (30) with y040.75.

For this asymmetric forcing about the mid-latitude, odd and even Fourier
components are present. The first 9 peaks in the full variance include the 7 peaks
considered in the case of symmetric forcing about y40.5, and the 2 peaks considered in
the case of antisymmetric forcing about y40.5.

The contour plots of the absolute value of f(x , y) (10), corresponding to forcing
frequencies equal to the frequencies of the peaks in the full variance, are shown in
fig. 7(a) to (i). The contour plots of the different modes dominating the solution are the
same as in the previous two forcing cases, except that a slight asymmetry due to the
forcing is apparent in some of them. Figures 7(f ) and (i) are examples where this
asymmetry is particularly noticeable.

For all the modes which are symmetric about the mid-latitude (see fig. 7(a), (b), (d),
(e), (g), (h), and (i)) EC is smaller in magnitude than it was when the forcing was
symmetric. The modes which are antisymmetric about the mid-latitude (see fig. 7(c)
and (f )) have a circulation to the east of the barrier greater than zero. Now that the
forcing is asymmetric, one of the circulation cells is stronger than the other and there
will not be exact cancellation as before. As mentioned above, the normal modes for the
basin containing a barrier are made up of a spectrum of Fourier components. Now that
the forcing is asymmetric there are both even and odd Fourier components present in
the antisymmetric modes. It is the presence of the odd Fourier components which
increases the circulation on the east side of the barrier. This can be seen in eq. (35) in
the appendix.

3.3. The effects of friction. – Figures 8(a)-(f ) show the variance for the case of
asymmetric forcing where g is increased. As g is increased, the peaks become wider
and eventually merge with their neighbors. Of course, the amplitude also decreases
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Fig. 6. – Semilog plots of Nf I N (- - -) and (a) full basin variance, (b) eastern sub-basin variance
and (c) western sub-basin variance vs. forcing frequency v for the case where xI40.3, xF40.7,
d40.05, g41028 , and the meridional structure of the forcing is asymmetric. Note that the peak
in Nf I N at v40.0449 is a minimum of f I .

significantly. Figure 8(f ) uses a friction parameter of g40.0167 which corresponds to a
Stommel boundary layer, d s4r/b , of 50 km and a basin length scale of 3000 km. Were
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Fig. 7. – Contour plots for the case where xI40.3, xF40.7, d40.05, g41028 , and the meridional
structure of the forcing is asymmetric. The forcing frequencies, shown on the plots, correspond to
the first nine peaks in the full basin variance graph in fig. 5(a). The value EC shown next to the
forcing frequency is the circulation on the east side of the barrier (see appendix).
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Fig. 8. – Semilog plots of Nf I N (- - -) and full basin variance vs. forcing frequency v for the
cases where xI40.3, xF40.7, d40.05, the meridional structure of the forcing is asymmetric,
and varying friction (a) g40.0001, (b) g40.001, (c) g40.0025, (d) g40.005, (e) g40.01,
(f ) g40.0167.
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the steady western boundary layer due to bottom friction, this would be the
appropriate value for r to use. This is probably an overestimate for r since the actual
western boundary current is inertial, so that r must be smaller than this derived value,
suggesting that the peaks evident in figs. 8(c) and (f ) are possibly plausible for real
ocean basins absent complicating effects of nonlinearity and rough bottom
topography.

4. – Summary and conclusions

The propagation of Rossby waves past a meridional barrier has been examined in
detail by considering the different modes that dominate the solution when the basin is
forced at or near their natural frequency with small bottom friction.

For a Rossby wave to propagate past the barrier, it is found that the forcing has to
be either symmetric or asymmetric about the mid-latitude of the basin. This is because
the only full basin and western sub-basin modes which occur are symmetric about the
mid-latitude, and these modes will never be forced by a forcing which is antisymmetric
about the mid-latitude. Even the eastern sub-basin modes which are symmetric about
the mid-latitude have some propagation into the western sub-basin. This movement in
the western sub-basin is caused by the requirement obtained from Kelvin’s theorem,
and it manifests itself as a peak in the western variance. Of course if the geometry is
not symmetric, e.g. if the gaps are not symmetrically placed or the barrier is inclined to
a longitude line, then these symmetry properties will be modified.

As friction is increased the modes merge together and, as seen in the previous
section, it becomes increasingly difficult to determine which modes are present.

* * *

Thanks are due to my advisor J. Pedlosky for introducing me to this problem and
for many helpful suggestions. This work was supported in part by National Science
Foundation Grant No. OCE 93-0184 (F).

AP P E N D I X

Variance for full basin, eastern sub-basin and western sub-basin

The following are the full expressions for the variance for the full basin, the
variance for the western sub-basin, and the variance for the eastern sub-basin, where a
is the real part of a n , b is the imaginary part of a n , and c4g/(v 21g 2 ).
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(33) Western variance4
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Circulation to the east of the barrier

The following expression is used to calculate the contribution to the circulation of
the meridional velocity on the eastern side of the barrier. These calculations are shown
on all the contour plots and denoted EC. Note that the time dependence has been
omitted since the main interest is how this circulation varies for each spatial mode:

EC 4 �
d

12d

v1 (xI ) dy4 !
n41

Q g2ikf n (xI )1
¯f n (xI )

¯x
h cos (npd) (12 (21)n )

np
.(35)

Due to the (12 (21)n ) term, it is obvious that the modes which are antisymmetric
about the mid-latitude and correspond to even Fourier components make a zero
contribution to EC.
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