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R. Pierri, G. Leone, F. Soldovieri(∗) and R. Persico
Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli
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Summary. — The problem of reconstructing dielectric permittivity of a buried ob-
ject from the knowledge of the scattered field is considered for a two-dimensional
rectangular geometry at a fixed frequency. The linearization of the mathematical re-
lationship between the dielectric permittivity function and the scattered field about
a constant reference profile function and the approximation of actual internal field
with the unperturbed field leads to the so-called Distorted Born Approximation. To
analyze the limitations and capabilities of the linear inversion algorithms, we investi-
gate the class of the retrievable profiles. This analysis makes it possible to point out
that a very reduced number of independent data is available, so requiring to employ
regularization techniques in order to perform in a reliable and stable way the linear
inversions. In this paper we present a general algorithm consisting in a regularized
Singular Value Decomposition of the matrix resulting from a discretization of the
problem. Finally, numerical results of linear inversions are given.

PACS 42.30.Wb – Image reconstruction; tomography.
PACS 41.20.Jb – Electromagnetic wave propagation; radiowave propagation.
PACS 42.25.Fx – Diffraction and scattering.

1. – Introduction

The problem of determining location and internal properties of buried objects from
scattered field data is of interest for many applications, ranging from archaeological
prospecting to the detection of utilities and civil engineering. The most common way of
operation of the appropriate radar system encompasses the interpretation of time domain
traces to locate discontinuities in the underground medium. However, this procedure is
mainly founded on the ability and the experience to interpret the raw data while it would
be more interesting to directly have at one’s disposal tomographic views of subsurface.
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This goal can be accomplished only by investigating in detail the mathematical relation-
ship connecting the electrical properties of both the buried objects and the embedding
medium to the electromagnetic scattered field. This is necessary for facing the inverse
problem of reconstructing the unknown dielectric profile function.

As is well known, this is a nonlinear and ill-posed problem [1]. A possible way for
solving it entails the linearization of the mathematical relationship about a chosen refer-
ence profile function and the approximation of actual internal field with the unperturbed
field, that is the field in the absence of the scattering objects, giving arise to the so-called
Distorted Born Approximation (DBA) [2].

In the following we stay within this approximation and refer to a geometry consisting
of two homogeneous half spaces, one of which is the free space. In addition, we consider
objects which are invariant along one coordinate parallel to the interface and with infi-
nite extent along this direction. When we assume filamentary sources of infinite length
parallel to the objects, the problem at hand has a full two-dimensional geometry. We
suppose to fix the working frequency, that the source can move in the free space along
a line orthogonal to the direction of invariance of the objects (multiview excitation) and
that the scattered field is probed along the same line in different locations (multistatic
configuration). As will be shown below, the geometry of the problem naturally lends
itself to discussions within the Fourier-transformed spectral domain.

The same observation geometry, although with plane-wave excitation, have been con-
sidered also in [3], where the observation of spectral coverage allows to sketch some
limitations about the profile functions to be retrieved. In particular it is recognized
that “reflection” mode configuration implies some “hole” in the lower part of the spec-
tral domain and suggestions for increasing the extent of the spectral coverage are given.
However, the inversion algorithm does not cope with the presence of a lossy half-space
and, above all, it does not account for ill-conditioning of the linear operator to be inverted.
The same limitations are also in [4] where the lack of data is illusively counteracted by
an extrapolation procedure requiring, however, a priori knowledge about the magnitude
of data to be reconstructed. Other works [5-7], relying on the monostatic measurement
configuration, require multifrequency data and provide inversion algorithms, but do not
discuss about the role of additional information with respect to the unknowns to be
searched for.

The aim of the paper is, rather than to establish a new inversion procedure, to discuss
some limitations of the inversion procedure based on the DBA linear model. This is
accomplished by analyzing the relevant linear operator in the DBA approximation thanks
to the Singular Value Decomposition (SVD) tool [8, 9].

A similar analysis has been already performed within the context of the Born approx-
imation for the so-called weak scatterers and has led to show that it entails limitations on
the spatial variability of dielectric profiles that can be reconstructed [10]. When dealing
with the DBA for a homogeneous cylinder [11] the role of the reference permittivity has
been put in evidence in determining the class of the retrievable functions.

Some important conclusions can be drawn in the lossless case and most discussion
applies also for a lossy half-space. The key point to be observed is that, when the
observation line is located sufficiently far (at more than a wavelength) from the interface,
the scattered field can be represented within a finite-dimensional space whose dimension
is not strictly dependent on the noise level. This entails that only a finite amount of
independent data can be obtained from measurements. Accordingly, it is hopeless to
search for a number of unknowns larger than the number of independent data. In other
words, the class of retrievable unknown functions is within a finite-dimensional space
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Fig. 1. – Geometry of the problem.

spanned by basis functions which, as will be inferred in the following, have some peculiar
spatial variability properties.

The very reduced number of available independent data makes it necessary to employ
regularization techniques in order to invert the linear relationship in a reliable and stable
way. Moreover, while in the lossless case fast-inversion algorithms based on the Fourier
transform [3] can be devised, in the lossy case this is not possible. So we propose a
reconstruction algorithm based on the regularized inversion of the linear integral equation
relevant to the DBA model where the unknown is searched within a prescribed finite-
dimensional space and a point matching technique enforces the equation in an arbitrary
set of points. This allows to account for the truncation of the observation domain and
to consider possible constraints on the positions of the receiver.

In the following section the formulation of the problem within the DBA is given and
the relevant linear operators are introduced. In sect. 3 the case of a lossless half-space
is dealt with so to provide the main limitations of the linear model by examining the
spectral domain; then the case of a lossy half-space is also dealt with. The solution
algorithm is presented in sect. 4 where also numerical examples are given. Conclusions
follow in sect. 5.

2. – The linear model of the scattered field

The geometry of the problem is depicted in fig. 1. The unknown of the problem
to be reconstructed is the relative, possibly complex, permittivity ε function within a
rectangular domain D of interest, which is embedded in a homogeneous half-space whose
relative dielectric permittivity and conductivity are εr and σb, respectively. The domain
D is assumed to be rectangular with |x| ≤ a and 0 ≤ z ≤ 2b; this means that a rough a
priori information about the position of the scattering object is available. The absolute
dielectric permittivity of the upper half-space equals that of the free space ε0, and the
magnetic permeability is everywhere equal that of to the free space µ0. The source of the
incident field is a filamentary y-oriented either electric (the TM polarization, the scalar
case) or magnetic (the TE polarization, the vector case) current distribution, at a fixed
pulsation ω (the time dependence exp[jωt] is assumed) and located at the abscissa xs.
The electric field scattered by the buried object is measured at the abscissa x, where xs
and x vary along the straight line Σ, at quote z = h ≤ 0.
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In the following let us denote by Einc the unperturbed incident field in the lower
half-space, (i.e. the electrical field for z > 0 when the scattering object is absent) and
by Es the electrical field scattered by the buried object. Moreover, k0 = ω

√
ε0µ0 and

ks = k0
√
εr − jσb/(ωε0) are the wave numbers in the free space (i.e., in the upper half-

space) and in the lower half-space, respectively. The problem is recast in terms of the
adimensional contrast function, defined as

χ =
ε0ε(x, z) − εb

εb
,(1)

where εb is the background permittivity function, defined as ε0 for z < 0 and εrε0 +
σb/jω for z > 0. By definition of εb, the contrast function is equal to zero outside the
investigation domain D (see fig. 1).

Within the DBA, the contrast and the scattered field on Σ are linked by the following
linear relationship:

Es(x, xs, h) = k2s

∫∫
D

Ge(x, h, x
′, z′)Einc(x′, z′, xs, h)χ(x′, z′) dz′ dx′, (x, xs) ∈ Σ,(2)

where Ge(x, z, x
′, z′) is the external dyadic Green’s function (i.e.evaluated when z < 0

and z′ > 0) of the inhomogeneous background permittivity which, for the 2D geometry
of our concern, is known in closed form expressed by a spectral integral [12,13]. Also the
incident field can be straightforwardly computed under a plane-wave (spectral) expan-
sion. It is now convenient to introduce the two-dimensional Fourier transform (TDFT)
of the scattered field with respect to the source position xs and the receiver location x

ˆ̂
Esi(u, u′, h) =

∫ +∞

−∞

∫ +∞

−∞
Esi(xs, x, h) exp[juxs] exp[ju′x] dxs dx,(3)

where the subscript i refers to one of the x, y or z Cartesian components.
If we define the following integral transform of the contrast function with respect to

the horizontal abscissa x and the depth quota z

˜̂χ(η, ζ) =
∫ +∞

−∞
dz

∫ +∞

−∞
dxχ(x, z) exp[jηx] exp[−jζz],(4)

where η is a real variable and ζ is a complex one, a simple proportional relationship
connects it to the TDFT of each component of the scattered field for both polarisations.

In particular in the TM polarization, where the only field component is along the
y-axis, we obtain (see appendix)

ˆ̂
Esy(u, u′) = fTM(u, u′) exp

[
j
[
w0(u) + w0(u′)

]
h
]˜̂χ(

u+ u′, ws(u) + ws(u′)
)
,(5)

where

fTM(u, u′) =
jk2sµ0ω

[w0(u) + ws(u)][w0(u′) + ws(u′)]
(6)

wi(ν) =
√
k2i − ν2, i = 0, s.(7)
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If the source is a magnetic current filamentary distribution (TE polarization), the
scattered field has two components Esx and Esz, along the x- and the z-axis, respectively.
Also in this case, within the Distorted Born Approximation, it is possible to work out
two linear spectral relationships between the components of the TDFT of scattered field
and the contrast (the calculations are detailed in appendix) as

ˆ̂
Esx(u, u′) = fTE(u, u′) exp

[
j
[
w0(u) + w0(u′)

]
h
]˜̂χ(

u+ u′, ws(u) + ws(u′)
)
,(8)

ˆ̂
Esz(u, u′) =

u′

w0(u′)
fTE(u, u′) exp

[
j
[
w0(u) + w0(u′)

]
h
]˜̂χ(

u+ u′, ws(u) + ws(u′)
)
,(9)

where

fTE(u, u′) =
jεr

[εrw0(u) + ws(u)][εrw0(u′) + ws(u′)]
w0(u′)[ws(u)ws(u′) + uu′].(10)

From eqs. (5), (8) and (9) it follows that, apart a common exponential factor ac-
counting for the propagation of plane waves in the free space up to the height h, the field
components are related to each other by a linear relationship and the only difference
between them relies in factors (6) and (10). In spite of the fact that, strictly speaking,
their presence affects the operational relationship between the unknown profile and the
data, it can be expected that, since both of them are not rapidly varying functions, the
fundamental properties of the two linear operators (as far as the number and kind of
retrievable profile functions is concerned) are very similar since related to the properties
of the common integral transform, that is to the term ˜̂χ(u+u′, ws(u)+ws(u′)). In fact, in
this circumstance, the transformed components of the contrast, for the same arguments,
are weighted in a similar way for the two kinds of polarization as long as the factors fTM
and fTE do not contain singularities or different complex exponential terms. Therefore,
within the DBA, the spectra of such scattered field components, and consequently also
the scattered fields themselves, are not too much different since they share a common
behavior with respect to the object contrast function. So, it is to be expected that the
relationships between the unknown profile and the scattered field are not linearly inde-
pendent in the two polarizations. Conversely, results provided by inversion algorithms
within the framework of the DBA are expected to be very similar, which means that
probing the scattered field under both measurement configurations cannot provide fur-
ther independent information with respect to the one available by a single component of
the scattered field.

Of course when actual scattered field data (that is computed without any model
approximation) are considered, the linear inversion can give different results for the
two kinds of polarization, because the range of validity of each approximations can be
different. The question of determining the polarization for which the linear model has
the widest range of validity should be then addressed, but is beyond the purposes of this
work.

We will refer our analysis to the scalar case because, for the discussion to follow, the
choice of the polarization makes no meaningful difference.

3. – The essential dimension of the scattered field

Let us first rely on the case when both a lossless half-space (σb = 0) and a lossless
object (σ = 0) are considered, since this makes it possible to provide some general
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Fig. 2. – Spectral domain covered by the linear model. The horizontal axis refers to the x-spatial
variability, the vertical one refers to z-spatial variability. Regions Ω and Ωe correspond to h ≥ λ
and h = 0, respectively.

considerations on the “number” and the features of contrast profiles retrievable.
Then, as long as |u|, |u′| ≤ ks = ω

√
ε0εrµ0, i.e. ws is a real function, on the right-hand

side of (4) the TDFT of the contrast function appears, since both independent variables
η and ζ are real.

Furthermore, when the ws functions become imaginary for (|u|, |u′| > ks) if the object
is buried at a depth greater than one wavelength, the corresponding evanescent plane
waves contribute in a negligible way to the field scattered by the object. Therefore,
TDFT of the contrast function turns to be proportional to the TDFT of the scattered
field according to the mapping defined as

η = u+ u′,(11)
ζ = ws(u) + ws(u′),

and it is possible to obtain information about the TDFT in a finite set Ωe [3] whose
extent depends on frequency and εr (fig. 2). The examination of the geometry of Ωe

allows to observe relevant “holes” in the spectral coverage at lower spatial harmonics of
the contrast function. Moreover, when the quota h of the observation line is larger than
some free space wavelength, the scattered field spectrum becomes meaningful only for
pairs (u, u′) such as |u|, |u′| ≤ k0 < ks. This is because the exponential factor in (5)
provides a strong attenuation of the field spectrum when |u| > k0 and/or |u′| > k0. As
a consequence, because of (11) the set of spatial frequencies where the TDFT transform
of the contrast is available shrinks from Ωe to a subset Ω depicted in fig. 2. In fact, the
evanescent part of the spectrum radiated in free space has decayed to negligible levels
with the result that the corresponding spectral information about the object is lost.

Note that the maximum extent of Ω with respect to the horizontal spatial harmonic
is 2k0, while with respect to the vertical harmonic variable ζ, this extent amounts to
2ks−2

√
k2s − k20 ≈ k0/

√
εr, a figure reducing as the relative dielectric permittivity of the

half-space increases.
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Let us remark that a very similar behavior has been already observed within the DBA
for a homogeneous circular cylinder when dealing with radial variations [9]. In fact, also
in that circumstance, the dimension of the subspace of the profile functions that can
be reconstructed by linear inversion reduces as εr increases and it comprises spatially
rapidly varying functions with a relevant harmonic content around the spatial pulsation
2ks.

The above observation means that the class of the retrievable contrast functions within
the DBA is essentially related to the geometrical characteristics of set Ω. Therefore, it
is to be expected that it comprises functions with a “low-pass” behavior with respect to
the horizontal variations (Ω is located in a low horizontal spatial frequency area) and
with a “band-pass” behavior with regard to the vertical variations (Ω is located close
to the vertical spatial pulsation 2ks) and in any case it is made of a reduced number of
independent functions.

Moreover, the fact that either Ω or Ωe is finite implies that, at any rate, only a finite
number of unknowns can be reconstructed. According to results in [14-16], concerning
the finite Fourier transform relationship operator, the number of the unknowns to be
searched for is related to the product between the measure A of the domain D of the
contrast function and the measure of the spectral area where the Fourier transform of
the contrast is available, when this product is much larger than one.

Accordingly, if m is the measure of the set where the spectrum of the contrast can be
reliably reconstructed, we expect that the number of unknowns that can be retrieved is
roughly

N =
Am

4π2
,(12)

which becomes, when h is larger than some wavelength and εr � 1,

N ∼= A

4λ2
√
εr
,(13)

where λ is the free space wavelength. Note that, due to the refraction, this figure reduces
as the relative permittivity of the lower half-space increases. For a comparison, it can
be noted that the same object embedded in a homogenous background equal to the
embedding medium would provide the higher bound πAεr/λ

2.
Moreover for the problem at hand in this paper, concerning a domain of some free

space wavelengths extent, the product of the area of domain D with the area of the
allowable spectral domain Ω is small. Therefore, some considerations can be inferred
by observing the numerically computed SVD of the relevant operator within the DBA
approximation. We accomplish this computation by expanding the contrast function
according to a finite Fourier series and using a point-matching procedure in the spectral
domain (u, u′). A reliable approximation of the SVD is obtained when the increase in
the discretization grid does not affect the behavior of the singular values.

Figure 3 depicts the behavior of the singular values for different values of the relative
dielectric permittivity of the medium when the extent of the investigation domain is equal
to 3λ × 3λ and the height of the observation domain is h = λ. First, the decay of the
singular values is rather smooth, so preventing the definition of the number of degrees
of freedom as the parameters defining the scattered field which are weakly dependent
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Fig. 3. – Singular values of the relevant linear operator, normalized to the maximum, for 2a = 3λ
and 2b = 3λ and three values of εr (• εr = 5; +εr = 10; ∗ εr = 20).

on the noise level. Second, as expected according to (13), we observe a decrease in the
number of the significant singular values as the dielectric permittivity increases.

Figure 4 depicts the behavior of the singular values for a fixed value of the dielectric
permittivity corresponding to different extent of the source domain; as expected, the
number of significant values increases when the extent of the domain becomes larger.

The harmonic content of the singular functions expanding the contrast has also been
observed and the singular functions corresponding to the significant singular values have
a relevant harmonic content at low frequencies for spatial variations along the x-axis and
at the spatial frequency 2ks for the z-variations.

The general formulation introduced in sect. 2 copes also with the case of a lossy half-
space, with the only remark that now the ws(·) functions, and thus also ζ, are to be meant
as complex quantities. Therefore, (11), for real values of u, u′, provides a surface in the
three-dimensional space (η,Re(ζ), Im(ζ)), and so the square domain |u|, |u′| < Re(ks) is
now mapped into a finite not-planar surface in a three-dimensional space. This implies
that, again, the number of independent data is finite, and accordingly only a finite number
of unknowns can be reconstructed.

The SVD analysis can be seen as a first step towards the establishment of a proper
inversion procedure in order to define the correct (maximum) number of independent
parameters of the unknown permittivity function that can be extracted. Since this
figure, according to the above discussion, can be very low, the retrievable profile function
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Fig. 4. – Singular values of the relevant linear operator, normalized to the maximum, for εr = 10
and square source domains with three different values of side 2a (∗ 2a = λ; • 2a = 3λ; + 2a =
5λ).

should be well-approximated by a properly chosen set of functions and an exceedingly
high number of unknowns (as resulted e.g. from the discretization of the unknown into
pixellated rectangular pulse functions) should be avoided. Moreover, the presence of
unavoidable uncertainties in data requires a careful inversion scheme which would provide
a stable reconstructed image and achieve the best spatial resolution.

An increase in the amount of the spectral information (to cover Ωe) on the buried
object could be obtained by locating the sources and the receivers as close as possible to
the interface. However, some cautions, due to some practical limitations preventing the
coverage of the whole Ωe, have to be taken into account.

First, due to the non-linearity of the mapping (11), the available spectral information
is not “uniformly spread” within Ωe, but the lower spectral content of the scattered field
(corresponding to u2 + u′2 ≤ k2s ) maps closer to Ω. On the contrary, the contributions
around the origin of the spectral plane (ζ, η) are due to faster spatial harmonics of the
scattered field.

Second, if we consider a nonideal source, with a radiation pattern in free space dif-
ferent from the one of the isotropic source, we expect that its plane-wave spectrum,
that multiplies the plane-wave components of the scattered field, weighs the higher-order
spectral contributions of the scattered field at a decreasing extent.

A further limitation is due to the fact that the line Σ cannot be infinitely extended,
so that the exact TDFT of the scattered field cannot be evaluated but only a smoothed
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version is available due to the convolution of TDFT with the transform of a square pulse
function of side equal to the extent of the finite truncated probing domain Σ; this surely
restricts the spectral coverage in the plane (η, ζ).

In addition, to obtain data at higher spatial frequencies requires the scattered field
to be sampled at an increasing rate, but this can be impractical in many circumstances
for the finite physical extent of the sources and receivers. Furthermore, in multistatic
configurations, with different antennas for source and receiver, the monostatic datum
may not be available.

So, we can conclude that it is not possible, from the scattered field data, to obtain
reliably information about the TDFT of the contrast in a set much larger than Ω.

4. – The inversion algorithm and the numerical results

In this section some results of an extensive numerical analysis for TM polarization
are presented with the aim to show the effect of various parameters on the reliability
and precision of the inversions. We want also to take into account the fact that field
data, scattered under arbitrarily located excitation sources, might be collected only at
prescribed locations at quota h. Therefore, the solution algorithm should be properly
formulated within the spatial domain. On the other side, the considerations of the above
section confirm that only a finite number of unknowns can be reconstructed, and suggest
to introduce an appropriate finite-dimensional space wherein to search for the unknown
permittivity function. In this paper we adopt the choice of separating the vertical form
the horizontal variations in the unknown function, so that

χ(x, z) =
M∑

m=1

N∑
n=−N

χmnψm(z)ϕn(x),(14)

where the choice of basis functions expanding the unknown should be performed taking
into account any a priori information about the solution of problem.

By substitution of (14) into (4) and next into (5), we obtain

ˆ̂
Esy(u, u′) = fTM(u, u′) exp

[
j(w0(u) + w0(u′))h

] M∑
m=1

N∑
n=−N

χmnψ̃m

(
u, u′)ϕ̂n(u, u′

)
,

(15)

where

ψ̃m(u, u′) =
∫ ∞

0

ψm(z′) exp
[ − j

[
ws(u) + ws(u′)

]
z′

]
dz′,(16)

ϕ̂n(u, u′) =
∫ ∞

−∞
ϕn(x′) exp

[
j(u+ u′)x′

]
dx′.

By double inverse Fourier transforming (15) we come to the following linear relation-
ship between the unknown coefficients χnm and the scattered field data:

Esy(xs, x) =
M∑

m=1

N∑
n=−N

χmnpnm(xs, x),(17)
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where the functions pnm are provided by

pnm(xs, x) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
fTM(u, u′) exp

[
j
(
w0(u) + w0(u′)

)
h
] ×(18)

× ψ̃m(u, u′)ϕ̂n(u, u′) exp
[ − juxs

]
exp[−ju′x] du du′.

A system of linear equations is obtained by imposing that (17) is satisfied in a set
of points equal or larger than the number (2N + 1)M of the unknowns. In order to
provide a stable and reliable inversion of the resulting matrix we have employed the
numerical filtering method [17] based on the Singular Values Decomposition algorithm [8],
consisting in approximating the solution onto the finite-dimensional space spanned by
the left singular functions corresponding to the singular values greater than a prescribed
threshold (equal to 1/100 of the maximum singular value in the test-cases to follow),
which can be interpreted as a “signal-to-noise ratio”.

For the test-cases at hand, we search for the unknown in a finite-dimensional space
given by (14) with

ϕn(x) = exp
[−jnπx

a

]
ψm(z) = rect

[
(z − zm)

∆z

]
,(19)

where ∆z = 2b/M and zm = (m+ 1/2)∆z and rect(·) is a rectangular pulse function of
unitary width centered at z = 0. Therefore, we assume basis functions along the x-axis
defined over the entire domain and subsection basis functions along the z-coordinate.
The adopted choice of the basis function along the z-axis seems convenient when the
additional a priori information about the unknown function about the rectangular pulse
behavior of the unknown is available, as we will suppose.

In order to show the filtering features of the linear relationship between the scattered
field and the contrast function, we assume as data of the problem the DBA of the
scattered fields.

First results concern the observation domain at the height h = λ and we assume the
data in the spectral domain; this is equivalent to consider a spatial domain, wherein the
sources radiate and receive, sufficiently large to ensure the decay of the amplitude of scat-
tered field at negligible values. The first result concerns two objects of rectangular section
of extent 0.75m× 1m whose centers are located at (−0.625m, 1.5m) and (0.625m, 1m)
respectively, with ε = 10.1−j0.42. The domain D has extent 2a = 2.5 m along the x-axis
and a depth of 2b = 3 m, with the embedding medium having σb = 7 × 10−3 (Ωm)−1

and εr = 10. The working frequency is 300 Mhz. Eleven (N = 5) Fourier harmonics for
expanding the contrast along the x-coordinate and M = 6 step functions of equal width
are used for expanding the unknown along the z-axis (fig. 5).

Numerical results concerning the observation domain at height h = 0 are also given.
These results concern two objects of rectangular section of extent 0.75 m×1.5 m whose

centers are located at (−0.75 m, 1.5 m) and (0.75 m, 1.25 m), respectively, with ε =
10.1 − j0.6. The domain D has extent 2a = 2.5 m along the x-axis and a depth of
2b = 3 m, while the embedding medium has σb = 10−2 (Ωm)−1 and εr = 10. The
working frequency is 300 Mhz.

The result concerns a more realistic measurement configuration (fig. 6). In particular,
a measurement domain with extent equal to 11 m and at h = 0 is considered and same
unknowns as above are searched for. Within this domain we assume 16 uniformly spaced
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Fig. 5. – Reconstruction by linear inversion of the modulus of the contrast function for two
buried objects at frequency of 300 Mhz and with the sources and the receivers at height h = λ.
The data are the samples of the spectrum of the electric scattered field.

locations for the transmitting antenna and 32 equally spaced locations for the receiving
antenna.

The numerical results above shown refer to scattered field data obtained thanks to the
linear (DBA) model, therefore the necessity of analyzing the stability of the inversion with
respect to the model error arises. To this end we now present some results of inversion
starting from data obtained by an exact model of the electromagnetic scattering. The
result refers to εr = 15 and same measurement configuration as the above test case is
considered. As one can expect this result is worse than the above one because the model
error is larger owing to the increased difference between the dielectric characteristics of
the object and the embedding medium (fig. 7).

5. – Conclusions

An analysis of the Distorted Born Approximation (DBA) for the two-dimensional
inverse scattering problem of retrieving a buried objects from the knowledge of the scat-
tered field received by filamentary sources located in the free space is given. This analysis
makes it possible to investigate the class of the retrievable contrast functions, which ex-
hibit peculiar features as far as their spatial variability is concerned. From the Singular
Value Decomposition of the relevant linear operator it has been recognised that the class
of the contrast functions which can be reconstructed is defined within a finite-dimensional
space, whose features and dimension depend on the reference profile function. In addi-
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Fig. 6. – Reconstruction by linear inversion of the modulus of the contrast function for two
buried objects at frequency of 300 Mhz and with the sources and the receivers at height h = 0.
The data are collected for 16 equally spaced of the transmitting antenna and at 32 positions of
receiving antenna in a domain of 11 m.

Fig. 7. – Reconstruction by linear inversion of the modulus of the contrast function for two
buried objects with εr = 15 at frequency of 300 Mhz and with the sources at height h = 0. The
scattered field is obtained by the exact model of the electromagnetic scattering.
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tion, we present an inversion algorithm based on a regularised SVD which makes it
possible to face the ill-conditioning problems. Numerical results depicting the effect of
the measurement configuration and of error model on the inversions are shown.

The above-performed analysis can be considered preliminary to the investigation of
the multifrequency approach, where data are collected at each receiver position at dif-
ferent frequencies, which is of relevant interest in actual set-ups; however, also for this
configuration the question of the amount of independent data for optimal frequency
sampling is of interest.

In addition, it is also necessary to take into account in the inversion procedure the
effect of the radiation pattern of the transmitting and receiving antennas.

The class of the retrievable functions can be enlarged by employing methods based
on the inversion of a quadratic operator as it occurred in the Born approximation [18].

Finally, we remark the importance of the analysis performed in this paper also for
the problem of determining the shape of buried perfectly conducting objects, where
a simplified linear model of the electromagnetic scattering is given under the Kirchoff
approximation [19].

∗ ∗ ∗
This work was supported by Agenzia Spaziale Italiana.

Appendix

The geometry of the problem is referred in fig. 1. In order to work out the spectral
relationship (3) we start with the relationship (2) rewritten with the integration extended
to the whole plane instead of the domain D. This is possible because the contrast is equal
to zero outside the domain D, as already stressed.

We evaluate the incident field due to a filamentary electrical current located at the
abscissa xs on the line Σ:

J = Jiy = I0δ(x− xs)δ(z − h)iy.(A.1)

The problem is solved by considering the invariance along the y-axis (∂/∂y = 0) and
by introducing the vector potential [20] A = Aiy, directed along the y-axis. The vector
potential satisfies the Helmholtz equation

∂2A

∂x2
+
∂2A

∂z2
+ k2iA = −µ0J, i = 0, s,(A.2)

where the subscript i accounts for the fact that the wave number is different in the
two half spaces. By substitution of eqs. (A.1) in (A.2) and by performing the Fourier
transform with respect to x-variable of both the right- and the left-hand side we obtain

−u2Â+
∂2Â

∂z2
+ k2i Â = −µ0I0δ(z − h) exp[juxs],(A.3)

where Â(u, z) denotes the Fourier transform of A(x, z) with respect to the x-variable.
Equation (A.3) admits harmonic solutions as a linear superposition of exp[−jwi(u)z] and
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exp[jwi(u)z] terms, where

wi(u) =
√
k2i − u2, i = 0, s.(A.4)

The coefficients that “weights” the two solutions are different in the three regions
z > 0, 0 > z > h, z < h, and must be determined by imposing:

1. The continuity of tangential components of the electrical and magnetic field at the
interface between the two half-spaces.

2. The continuity of Â at quote z = h.

3. The result of integration of eq. (A.3) between the quotes z = h− and z = h+.

4. The Sommerfield radiation condition [20].

After calculating Â the vector potential is retrieved by inverse Fourier transform,
and then the incident field is worked out. This provides the following expression of the
incident field:

Einc(x, z) = −µ0ωI0
2π

∫ +∞

−∞

exp[jw0(u)h] exp[−jws(u)z]
[w0(u) + ws(u)]

exp[ju(x− xs)] du.(A.5)

Because of the reciprocity theorem, this provides also the external Green’s function
of the problem as

G(x, z, x′, z′) = − j

2π

∫ +∞

−∞

exp[jw0(u′)z] exp[−jws(u′)z′]
[w0(u′) + ws(u′)]

exp[−ju′(x− x′)] du′.(A.6)

By (A.5) and (A.6) it steams that the scattered field, as a function of the observation
abscissa x and the source abscissa xs, is seen to be equal to the inverse Fourier transform
of the second member of eq. (3).

Let us turn now to consider the TE polarization where the incident field is due to a
filamentary magnetic current located at the abscissa xs on the line Σ:

Jm = Jmiy = I0mδ(x− xs)δ(z − h)iy.(A.7)

The problem is solved by introducing the vector potential for the electrical field Am =
Amiy which is directed along the y-axis and satisfies the following Helmholtz equation:

∂2Am

∂x2
+
∂2Am

∂z2
+ k2iAm = −εiJm, i = 0, s.(A.8)

In a way similar to above from (A.8) the following relationship is obtained:

−u2Âm +
∂2Âm

∂z2
+ k2i Âm = −εiI0mδ(z − h) exp[−juxs],(A.9)

where Âm(u, z) denotes the Fourier transform of Am(x, z) with respect to the x-variable.
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Equation (A.9) is solved by accounting for the same four above boundary conditions.
After calculating Âm the incident field is obtained as

Eincx(x, z) = −I0m

2π

∫ +∞

−∞

ws(u) exp[jw0(u)h] exp[−jws(u)z]
[εbw0(u) + ws(u)]

exp[ju(x− xs)] du(A.10)

Eincz(x, z) = −I0m

2π

∫ +∞

−∞

u exp[jw0(u)h] exp[−jws(u)z]
[εbw0(u) + ws(u)]

exp
[
ju(x− xs)

]
du.(A.11)

In order to calculate the external dyadic Green’s function, we have evaluated:

– the x-component of the electrical field in r = (x, z) (with z < 0), due to an electrical
impulsive source located in r′ = (x′, z′) (with x′ > 0) and directed along the x-axis,

– the z-component of the electrical field in r = (x, z) (with z < 0), due to an electrical
impulsive source located in r′ = (x′, z′) (with x′ > 0) and directed along the x-axis,

– the x-component of the electrical field in r = (x, z) (with z < 0), due to an electrical
impulsive source located in r′ = (x′, z′) (with x′ > 0) and directed along the z-axis,

– the z-component of the electrical field in r = (x, z) (with z < 0), due to an electrical
impulsive source located in r′ = (x′, z′) (with x′ > 0) and directed along the z-axis.

By definition, these quantities are respectively the four components of the dyadic
Green’s function Ge(x, z, x

′, z′). The calculations are similar to those exposed for TM
polarization and we obtain

Ge(x, z, x
′, z′) =

1
2πωε0

∫ +∞

−∞

(−w1(u′)w2(u′) w1(u′)u′

w2(u′)u′ −(u′)2

)
×(A.12)

× exp[jw1(u′)z] exp[−jw2(u′)z′]
[εbw1(u′) + w2(u′)]

exp[ju′(x− x′)] du′.

Finally, the two components Esx and Esz of the scattered field, as a function of x and
xs, are equal, respectively, to the inverse Fourier transforms of the second members of
eqs. (8) and (9).
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