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Abstract

The Double Traveling Salesman Problem with Multiple Stacks is a
vehicle routing problem in which pickups and deliveries must be performed
in two independent networks. The items are stored in stacks and repacking
is not allowed. Given a pickup and a delivery tour, the problem of checking
if there exists a valid distribution of items into s stacks of size h that is
consistent with the given tours, is known as Pickup and Delivery Tour
Combination (PDTC) problem.

In the paper, we show that the PDTC problem can be solved in poly-
nomial time when the number s of stacks is fixed but the size of each
stack is not. We build upon the equivalence between the PDTC problem
and the bounded coloring (BC) problem on permutation graphs: for the
latter problem, s is the number of colors and h is the number of vertices
that can get a same color. We show that the BC problem can be solved
in polynomial time when s is a fixed constant on co-comparability graphs,
a superclass of permutation graphs. To the contrary, the BC problem is
known to be hard on permutation graphs when h ≥ 6 is a fixed constant,
but s is unbounded [25].
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1 Introduction

The growing complexity of planning strategies in transportation and logistic
companies has recently induced the appearance of new vehicle routing prob-
lems. One of these problems is the Double Traveling Salesman Problem with
Multiple Stacks (DTSPMS), introduced by Petersen and Madsen [31]. It is a
routing problem in which some pickups and deliveries must be performed in
two independent networks, verifying some precedence and loading constraints
imposed on the vehicle. Two independent regions that are supposed to be very
far apart are considered, and n items must be picked up in different locations
of the first region and delivered to the corresponding locations of the second
region. A single vehicle is used and repacking is not allowed. The load can be
packed in several compartments that must obey the Last-In-First-Out (LIFO)
principle, while there are no mutual constraints between two different compart-
ments. From now on the compartments of the container will be referred to as
stacks. We will denote by s the number of stacks and by h the maximum num-
ber of items that can be placed into each stack. In the real-life application that
originally motivated the problem, the items to be delivered were standardized
Euro Pallets, that could be used to load different kinds of goods. The vehicles
used to carry the goods had a 40-foot pallet container in which standardized
Euro Pallets fit 3 by 11, suggesting the use of 3 available stacks with a maxi-
mum capacity of 11 items. The driver was not allowed to touch the goods due
to security and insurance reasons and, as a consequence, repacking was not per-
mitted during the whole process. Hence, a feasible solution for an instance of
the DTSPMS consists of a pickup tour, a delivery tour and a stack assignment,
that is, which stack is assigned to each item. The goal is to minimize the sum of
the lengths of the pickup and delivery tours. Some heuristics and exact methods
have been presented to solve the DTSPMS [2, 13, 14, 26].

One of the strategies that has been proposed [26] consists in considering the
k best solutions to the TSP problem on each network (for some value of k),
thus generating k possible pickup (resp. delivery) tours, and then checking for
which pairs of tours there exists a feasible stack assignment. The subproblem of
checking whether, for a given pickup tour and a given delivery tour, there exists a
feasible stack assignment is known as the pickup and delivery tour combination
(PDTC) problem. Lusby et al. [26] solve the PDTC problem by an integer
programming model. Casazza et al. [9] observe that the problem can be solved
in polynomial time if the capacity constraints on each stack are relaxed, since,
in this case, the problem reduces to the graph coloring problem on permutation
graphs, that is known to be poly-time solvable [32].

In the paper we concentrate on the PDTC problem, and show that it can
be solved in polynomial time, when the number of stacks is a fixed constant.
As we mentioned before, in the real case that originally motivated the problem,
s = 3 and h = 11. So, from the practical point of view, it is reasonable to treat
s as a constant and h as a parameter.

In order to achieve this result, we follow the graph coloring approach in [9],
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but take into account the capacity constraints. We therefore show that the
PDTC problem is equivalent to a capacitated coloring problem, the bounded
coloring (BC) problem, on permutation graphs. We then show that the ca-
pacitated coloring (CC) problem, a problem that generalizes the BC problem –
as well as another coloring problem, the equitable coloring problem –, can be
solved in polynomial time on co-comparability graphs, a superclass of permuta-
tion graphs, when the maximum number of colors s is fixed.

Our proof builds upon some tools developed in [27]. In that paper, a graph
invariant, the thinness of a graph, is introduced. Graphs with bounded thinness
are a generalization of interval graphs, that are exactly the graphs with thinness
1. In [27] it is shown that the maximum weighted stable set problem can be
solved in polynomial time on graphs with bounded thinness, when a suitable
representation R of the graph is given. We show in this paper that, in the
same hypotheses, also the CC problem can be solved in polynomial time, if the
number of colors s is fixed. We then make use of the following crucial fact: given
an instance of the CC problem on a co-comparability graph G, if the number of
colors s fixed, then, in polynomial time, we may either show that the instance
is unfeasible, or show that G has thinness at most s, and in this case provide
the representation R for G.

We point out the following interesting fact. The bounded coloring problem
is known to be hard on permutation graphs [25] and interval graphs [7], if
the (maximum) number of h of vertices that can get the same color is a fixed
constant, but the (maximum) number s of colors is unbounded. Our results show
that, to the contrary, the problem is poly-time solvable, on the same classes of
graphs, if s is a fixed constant, while h is unbounded. Given the equivalence
between the BC problem on permutation graphs and the PDTC problem, the
same fact holds for the latter problem.

In Section 2 we formally define the pickup and delivery tour combination
problem, as well as the coloring problems we are interested in. In Section 3
we recall the definition of co-comparability graphs and graphs with bounded
thinness, and show that the thinness of a co-comparability graph is bounded
by its chromatic number. In Section 4 we deal with the capacitated coloring
problem on graphs with bounded thinness.

Unless otherwise specified, in the paper we deal with simple and undirected
graphs. Let G(V,E) be such a graph. The complement of G is denoted as G,
while G[S] denotes the subgraph induced by a set S ⊆ V . We denote by N(v)
the neighborhood of a vertex v ∈ V , i.e. the set of vertices that are adjacent to
v.

2 The Pickup and Delivery Tour Combination
Problem

Suppose that we are given a pickup and a delivery tour for some instance of the
DTSPMS problem, with s stacks of size (height) h. In particular, let 1, . . . , n be
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the list of items in the reverse order in which they should be picked up, i.e., the
item 1 is the last item picked up while the item n is the first one. Also let the
permutation π of {1, . . . , n} give the order in which items should be delivered,
namely, if π(i) < π(j), then item j has to be delivered after item i. Thus, two
items i, j, with 1 ≤ i < j ≤ n, can be placed in the same stack if and only if
π(i) < π(j).

Pickup and Delivery Tour Combination (PDTC) problem is then the
following problem: Given the delivery permutation π, the maximum number of
items per stack h, the number of stacks s. Find an assignment ϕ : {1, . . . , n} 7→
{1, . . . , s} of item to stacks such that:

(coloring constraint) for each pair of items {i, j} assigned to the same stack,
i.e. ϕ(i) = ϕ(j), if i < j, then π(i) < π(j);

(capacity constraint) no more than h items are assigned to each stack.

In the following, we specify an instance of the PDTC problem by a triple
(π, h, s), where π is a permutation of {1, . . . , n} and h, s are positive integers.

Recall that we may associate to each permutation of {1, . . . , n} a graph
G(π) with vertices {v1, . . . , vn} and such that vi and vj , with 1 ≤ i < j ≤ n, are
adjacent if and only if π(i) > π(j). Such a graph is called a permutation graph,
and more in general we have the following definition.

Definition 1 A graph G(V,E) is a permutation graph if there is an order
1, . . . , n of V and a permutation π such that, for 1 ≤ i < j ≤ n, ij ∈ E if and
only if π(i) > π(j).

Permutation graphs were introduced in [15, 32], and different techniques for
solving algorithmic problems on a permutation graph are given in [8].

Going back to the PDTC problem, in [9] Casazza et al. show that, if for
some instance (π, h, s) of the problem we relax the capacity constraints, then
the problem reduces to finding an s-coloring on G(π).

Definition 2 An s-coloring of a graph G(V,E) is a mapping ϕ : V → {1, . . . , s}
such that if uv ∈ E then ϕ(u) 6= ϕ(v).

In fact, an s-coloring ϕ of G(π) is also an assignment of items to stacks
that satisfies the coloring constraint, and, vice versa, an assignment ϕ of item
to stacks, that satisfies the coloring constraint, is also an s-coloring of G(π).
Trivially, if we do not relax the capacity constraint, we may then associate to
each instance of the PDTC problem an instance of the:

Bounded Coloring (BC) problem. Given a graph G(V,E) and integers
s, h ≥ 1. Find a capacitated s-coloring, i.e. an s-coloring ϕ of G such that the
number of vertices taking color i is bounded by h, i.e. |ϕ−1(i)| ≤ h, for each
i = 1..s.
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An instance of the bounded coloring problem is described by a triple (G, h, s).
Then we may solve an instance (π, h, s) of the PDTC problem, by finding a
capacitated s-coloring on the instance (G(π), h, s) of the BC problem. However,
one should observe that also one may solve an instance (G(π), h, s) of the BC
problem by solving the instance (π, h, s) of the PDTC problem. Therefore, the
two problems are equivalent.

We recall that while the coloring problem - i.e. the problem of finding an
s-coloring of a given graph with minimum s - can be solved in O(n log n) on
permutation graphs [32], Jansen showed that the bounded coloring problem is
NP-hard on permutation graphs for any fixed h ≥ 6 [20]. We may therefore
state the following corollary of Jansen’s result:

Corollary 3 The PDTC problem is NP-hard, even if the size h of each stack
is a fixed constant (greater than 5).

In the following we focus on what happens to the BC (and therefore to
the PDTC) problem when we instead fix the number s of colors, while leaving
unbounded h. We indeed deal with a slight generalization of the BC problem;
namely we consider the following:

Capacitated Coloring (CC) problem. Given a graph G(V,E), an inte-
ger s ≥ 1 and capacities (α∗1, . . . , α

∗
s) ∈ Zs+. Find a capacitated s-coloring, i.e.

an s-coloring ϕ of G such that the number of vertices taking color i is bounded
by α∗i , i.e. |ϕ−1(i)| ≤ α∗i , for each i = 1..s.

An instance of the capacitated coloring problem is described by a triple
(G,α∗, s). Note that the CC problem generalizes the BC problem, arising when
α∗1 = . . . = α∗s = h. The CC problem also generalizes another known coloring
problem:

Equitable Coloring problem. [29, 17] Given a graph G(V,E) and an
integer s ≥ 1. Find an equitable s-coloring, i.e. an s-coloring ϕ of G such that,
for each i, j ∈ {1, . . . , s}, ||ϕ−1(i)| − |ϕ−1(j)|| ≤ 1.

Let r = |V | mod s. By setting α∗1, . . . , α
∗
r = d |V |s e and α∗r+1, . . . , α

∗
s = b |V |s c,

equitable coloring can be reduced to capacitated coloring.

2.1 Related literature on the bounded coloring problem

The BC problem has a number of applications. It is also known in the literature
as mutual exclusion scheduling (MES) [3], which is the problem of scheduling
unit-time tasks non-preemptively on h processors subject to constraints, repre-
sented by a graph G. The scheduling must be such that tasks corresponding
to adjacent vertices must run in disjoint time intervals. A schedule of length s
corresponds to a bounded coloring of G. This problem arises in load balancing
for the parallel solution of partial differential equations by domain decompo-
sition [3, 33]. Problems of this form have been studied in [4, 24]. Other ap-
plications are in scheduling of communication systems [19] and in constructing
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school timetables [23]. Bodlaender and Jansen [6] studied the decision problem
of a complementary scheduling problem. Their problem is similar to MES, but
if two tasks are adjacent in G then they cannot be executed on the same proces-
sor. Therefore, in MES an independent set is processed in a time unit, whereas
in compatibility scheduling an independent set is executed on one processor.

The BC problem can be solved in linear time on trees [3, 21] and in poly-
nomial time on split graphs, complements of interval graphs [7, 10, 25], com-
plements of bipartite graphs [7], and graphs with bounded treewidth [5]. More-
over, a linear time algorithm was proposed in [22] when restricted to graphs
with bounded treewidth and fixed h. For fixed h or s the problem is polynomial
time solvable on cographs [7, 25], for fixed h on bipartite graphs [7, 18] and
line graphs [1], and for fixed s on interval graphs [7]. For h = 2 the problem is
equivalent to the maximum matching problem on the complement graph and,
therefore, is polynomial. The problem remains NP-complete on cographs, bi-
partite and interval graphs [7], on co-comparability graphs and fixed h ≥ 3 [25],
on complements of line graphs and fixed h ≥ 3 [11]. For fixed s ≥ 3 the problem
is NP-complete on bipartite graphs [7].

Almost all complexity results for the BC problem on different graph classes
mentioned above can also be obtained for equitable s-coloring by making use
of the following observations: a graph G on n vertices is h-bounded k-colorable
if and only if the graph G′ obtained from G by adding an independent set of
size hs−n is equitably s-colorable; conversely, G is equitably s-colorable if and
only if the graph G′′ obtained from G by adding a clique of size dns es − n is
dns e-bounded s-colorable.

3 Comparability and k-thin graphs

Definition 4 A graph G(V,E) is a comparability graph if there exists an or-
dering v1, . . . , vn of V such that, for each triple (r, s, t) with r < s < t, if vrvs
and vsvt are edges of G, then so is vrvt. Such an ordering is a comparability
ordering.

Comparability graphs can be recognized in linear time [28]. Moreover, the
recognition algorithm outputs a comparability ordering for the graph. A co-
comparability graph is the complement of a comparability graph. Permutation
graphs are exactly the graphs which are comparability and co-comparability [12].
In fact, it is easy to see that the ordering 1, . . . , n in the Definition 1 is a
comparability ordering for both G and its complement.

While the coloring problem can be solved in O(n3) on co-comparability
graphs [16], the bounded coloring problem is NP-hard on co-comparability
graphs, for any fixed h ≥ 3 [25].

Definition 5 A graph G(V,E) is k-thin if there exist an ordering v1, . . . , vn
of V and a partition of V into k classes such that, for each triple (r, s, t) with
r < s < t, if vr, vs belong to the same class and vtvr ∈ E, then vtvs ∈ E.
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If so, the partition and the ordering are said to be consistent. The minimum k
such that G is k-thin is called the thinness of G and denoted by thin(G). Graphs
with bounded thinness were introduced in [27] as a generalization of interval
graphs, that are exactly the 1-thin graphs. We believe that the complexity of
the coloring problem on graphs with bounded thinness is not known. However,
since the bounded coloring problem is NP-complete for fixed h ≥ 4 on interval
graphs [7], it follows that the bounded coloring problem (and, therefore, the
capacitated coloring problem) in graphs with bounded thinness remains NP-
complete.

Theorem 6 Let G(V,E) be a co-comparability graph. Then, thin(G) ≤ χ(G).
Moreover, any vertex partition given by a coloring of G and any comparability
ordering for its complement are consistent.

Proof. Let v1, . . . , vn be a comparability order of V for G. Let ϕ be a k-
coloring of G and let V i = ϕ−1(i), for i = 1, . . . , k. We will show that the
ordering v1, . . . , vn and the partition V 1, . . . , V k are consistent. Let (r, s, t)
with 1 ≤ r < s < t ≤ n, such that vtvr ∈ E and vr, vs belong to the same
(color) class, so vrvs 6∈ E. If vsvt 6∈ E, since v1, . . . , vn is a comparability order
of V for G, then vtvr 6∈ E, a contradiction. This proves that any vertex partition
given by a coloring of G and any comparability ordering for G are consistent.
In particular, any partition given by an optimum coloring is consistent with
v1, . . . , vn, thus thin(G) ≤ χ(G). 2

The bound in Theorem 6 can be arbitrarily bad: for example, if G is a clique
of size n, then thin(G) = 1 and χ(G) = n. However, it holds with equality for the
graphs tK2, i.e. the complement of a matching of size t, that has thinness [27]
and chromatic number t.

4 Capacitated coloring on k-thin graphs

In this section, we show that the capacitated coloring problem with a fixed
number of colors s on a k-thin graph can be solved in polynomial time, when a
consistent partition and ordering are given and k is bounded by a constant. We
build upon some techniques developed in [27].

So consider an instance (G(V,E), α∗, s) of the CC problem on a graph G
that is k-thin. W.l.o.g. we assume that

∑
i=1..s α

∗
i ≥ n. Let {v1, . . . , vn} and

(V 1, . . . , V k) be an ordering and a partition of V which are consistent. Assume
that V j = {vj1, . . . , v

j
pj}, with vj1 < vj2 < . . . < vjpj . Let:

N(vr, j)< the set of vertices of V j adjacent to and smaller than vr, i.e. N(vr, j)< =
V j ∩ {v1, . . . , vr−1} ∩N(vr), for each vertex vr and class V j ;

∆(j)< the maximum size of |N(vr, j)<| over all vertices vr, i.e. ∆(j)< =
maxr=1..n |N(vr, j)<|, for each class V j ;

We want to emphasize the following fact, that indeed gives an alternative
definition for k-thin graphs, that will be fundamental for the following:
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Fact 7 For each vertex vr ∈ {v1, . . . , vn} and each j ∈ {1, . . . , k}, the set
N(vr, j)< is made of the largest |N(vr, j)|< vertices in V j ∩ {v1, . . . , vr−1}.

We reduce the CC problem on G to a reachability problem on an auxiliary
acyclic digraph D. The digraph D will be layered, i.e. the node set of D is the
disjoint union of subsets (layers) N0, N1, . . . , Nn and all edges of D have the
form (u,w) with u ∈ Nr and w ∈ Nr+1, for some 0 ≤ r ≤ n− 1. Moreover, we
will associate to each arc (u, v) of D a set of colors c(u, v) ⊆ {1, . . . , s}.

We first describe the node set of D. The first layer will have only a dummy
node z, i.e. N0 = {z}. As for layers N1, . . . , Nn−1, there will be a one-
to-one correspondence between nodes at layer Nr and (s(k + 1) + 1)-tuples
(r, {αi}i=1..s, {aji}i=1..s,j=1..k), with 0 ≤ αi ≤ α∗i , for each i, and 0 ≤ aji ≤
∆(j)<, for each i, j. As for the last layer, it will have only one node t corre-
sponding to the tuple (n, {α∗i }i=1..s, 0, . . . , 0).

We associate with each node u 6= z a suitable capacitated coloring problem
with additional constraints, and, as we show in the following, u will be reachable
from z if and only if this problem has a solution. Namely, we will show that the
following property holds:

(∗) a node (r, {αi}i=1..s, {aji}i=1..s,j=1..k) is reachable from z if and only if
G[{v1, . . . , vr}] admits a capacitated s-coloring, with capacities α1, . . . , αs,
and with the additional constraint that, for each i = 1..s and j = 1..k,
color i is forbidden for the last aji vertices in V j ∩ {v1, . . . , vr}.

In this case, G admits a capacitated s-coloring with capacities α∗1, . . . , α
∗
s if

and only if the node t is reachable from z.

We now define the arcs of D. We start with the arcs from z to N1. Let j∗ be
such that v1 ∈ V j

∗
. There is an arc from z to a node u = (1, {αi}i=1..s, {aji}i=1..s,j=1..k)

if and only if, for some 1 ≤ i∗ ≤ s, it holds that αi∗ ≥ 1 and aj
∗

i∗ = 0; then, if the
arc (z, u) does indeed exist, we set c(z, u) = {i∗ : αi∗ ≥ 1 and aj

∗

i∗ = 0, i∗ = 1..s}.

We now deal with the arcs from Nr−1 to Nr, with 2 ≤ r ≤ n. Let u =
(r, {αi}i=1..s, {aji}i=1..s,j=1..k) be a node of Nr and assume that vr ∈ V j

∗
. For

each 1 ≤ i∗ ≤ s, such that αi∗ ≥ 1 and aj
∗

i∗ = 0, there will be an arc from a node
ui∗ to u, with c(ui∗ , u) = {i∗}. Namely, ui∗ = (r−1, {α̃i}i=1..s, {ãji}i=1..s,j=1..k),
where:

α̃i =

{
αi i 6= i∗

αi − 1 i = i∗
(1)

ãji =


max{|N(vr, j)<|, aji} i = i∗

max{0, aji − 1} i 6= i∗, j = j∗

aji i 6= i∗, j 6= j∗
(2)
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Note that ui∗ is indeed a node of Nr−1, as the (s(k + 1) + 1)-tuple (r −
1, {α̃i}i=1..s, {ãji}i=1..s,j=1..k) is such that 0 ≤ α̃i ≤ α∗i , for each i, and 0 ≤ ãji ≤
∆(j)<, for each i, j (in fact, aji ≤ ∆(j)<, since u is a node of Nr).

Lemma 8 G admits a capacitated s-coloring with capacities α∗1, . . . , α
∗
s if and

only if there is a directed path from z to t in D. If such a path exists, then
a capacitated s-coloring is that assigning each node vr, r = 1..n, a color from
c(ar), where ar is the arc of the path entering into layer Nr.

Proof. In order to prove the first part of the statement it is enough to show
that property (∗) holds, for each node u ∈ Nr, 1 ≤ r ≤ n. So let u =
(r, {αi}i=1..s, {aji}i=1..s,j=1..k) and consider the capacitated s-coloring problem
with additional constraints associated with u: in the following, we refer to this
problem as the constrained sub-problem associated with u.

Since D is layered, u is reachable from z if either r = 1 and there is an arc
from z to u, or r > 1 and there exists a node u′ in Nr−1, reachable from z
and such that (u′, u) is an arc of D. We will therefore prove the property by
induction on r. Let r = 1 and let j∗ be such that v1 ∈ V j

∗
. First suppose the

arc (z, u) exists. Then, by construction, there exists some 1 ≤ i∗ ≤ s, such that
αi∗ ≥ 1 and aj

∗

i∗ = 0. Therefore, if we give v1 color i∗, we obtain an s-coloring
of G[{v1}] that is a solution for the constrained sub-problem associated with
u. Vice versa, if there exists a coloring of G[{v1}] that is a solution to the
constrained sub-problem associated with u, then the color i∗ assigned to v1 is
such that αi∗ ≥ 1 and aj

∗

i∗ = 0, and so the arc (z, u) does exist.
Now, let r > 1 and let j∗ be such that vr ∈ V j

∗
. By inductive hypotheses,

suppose that property (∗) holds true for r−1. Suppose that u is reachable from
z. Let u′ = (r − 1, {α̃i}i=1..s, {ãji}i=1..s,j=1..k) a node in Nr−1, reachable from
z and such that u′u is an arc of D. By inductive hypotheses, G[{v1, . . . , vr−1}]
admits a capacitated s-coloring ϕ, with capacities α̃1, . . . , α̃s, and the additional
constraint that, for each i = 1..s and j = 1..k, color i is not given to the last ãji
vertices in V j ∩{v1, . . . , vr−1}. By definition of D, there exists some 1 ≤ i∗ ≤ s
such that αi∗ ≥ 1, aj

∗

i∗ = 0, and (1) and (2) hold true. We extend ϕ to vr by
giving color i∗ to vr. It is easy to see that we then obtain a coloring ϕ′ that is
a solution to the constrained sub-problem associated with u, in fact:

coloring constraints: for each class V j , no vertex in V j∩{v1, . . . , vr−1} adja-
cent to vr gets color i∗, as ϕ was not giving color i∗ to the last ãji∗ vertices
in V j ∩{v1, . . . , vr−1}, and v is only adjacent to the last |N(vr, j)|< ≤ ãji∗
vertices of V j ∩ {v1, . . . , vr−1} (see Fact 7);

capacity constraints: ϕ′ satisfies capacity constraint because of (1);

additional constraints: if we consider a class V j , j 6= j∗, and a color i 6= i∗,
ϕ′ is not giving color i to the last aji vertices in V j ∩ {v1, . . . , vr}, as ϕ
was not giving color i to the last aji = ãji vertices in V j ∩ {v1, . . . , vr−1};
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additional constraints: if we consider the class V j
∗
, and a color i 6= i∗ such

that aj
∗

i > 0, ϕ′ is not giving color i to the last aj
∗

i vertices in V j
∗ ∩

{v1, . . . , vr}, as ϕ was not giving color i to the last ãj
∗

i = aj
∗

i − 1 vertices
in V j

∗ ∩ {v1, . . . , vr−1} and vr gets color i∗ 6= i;

additional constraints: if we consider a class V j and the color i∗, ϕ′ is not
giving color i∗ to the last aji∗ vertices in V j ∩ {v1, . . . , vr}, as ϕ was not
giving color i∗ to the last ãji∗ ≥ aji∗ vertices in V j ∩ {v1, . . . , vr−1} (note
that the last fact is trivial for j∗, as aj

∗

i∗ = 0).

Conversely, let ϕ′ a capacitated s-coloring of G[{v1, . . . , vr}] that is a solution
to the constrained sub-problem associated with u, and let i∗ = ϕ′(vr). So
αi∗ ≥ 1 and aj

∗

i∗ = 0. Let ui∗ = (r−1, {α̃i}i=1..s, {ãji}i=1..s,j=1..k), such that (1)
and (2) hold. By definition of D, there is an arc from ui∗ to u. It is easy to see
that, if we restrict ϕ′ to {v1, . . . , vr−1}, then we get a capacitated s-coloring ϕ
that is a solution to the constrained sub-problem associated with ui∗ . In fact,
ϕ is trivially an s-coloring of G[{v1, . . . , vr−1}]; it satisfies capacity constraints
by (1); finally it satisfies the additional constraints by construction (we skip the
details, as they go along the same lines as above). By inductive hypotheses,
therefore, ui∗ is reachable from z, and so is u.

Finally, if in D there exists a directed path from z to t, this path goes
through one node of each layer. By construction, the set c(u, v) associated with
an arc (u, v) of D has the following meaning: if the constrained sub-problem
associated with u has a solution ϕ, then we can extend ϕ into a solution to the
constrained sub-problem associated with v by giving a color i ∈ c(u, v) to v.
Therefore, if t is reachable form z via a path P , then a capacitated s-coloring
is that assigning each node vr, r = 1..n, a color from c(ar), where ar is the arc
of P entering into layer Nr. 2

Theorem 9 Suppose that for a (k-thin) graph G with n vertices we are given an
ordering and a partition of V (G) into k classes that are consistent. Then, an in-
stance (G,α∗, s) of the capacitated coloring problem can be solved in O(ns+1s2k

∏
j=1..k ∆(j)s<)-

time, that is O(nks+s+1s2k)-time.

Proof. By definition, for r = 1..n−1, |Nr| =
∏
i=1..s(α

∗
i +1)

∏
j=1..k(∆(j)<+1)s.

Note that each node of D has at most s incoming arcs, and each arc can be built
in O((s(k + 1))-time. Therefore, D can be built in
O(ns+1s2k

∏
j=1..k ∆(j)s<)-time. Finally, since D is acyclic, the reachability

problem on D can be solved in linear time in the number of arcs of D, that is
O(ns+1s

∏
j=1..k ∆(j)s<) time. So, the overall time complexity isO(ns+1s2k

∏
j=1..k ∆(j)s<),

that is O(nks+s+1s2k). 2

Theorem 10 On a co-comparability graph G with n vertices, an instance (G,α∗, s)
of the capacitated coloring problem can be solved in O(ns

2+s+1s3)-time, that is
polynomial when s is fixed.

10



Proof. We are given an instance (G,α∗, s) of the capacitated coloring on a co-
comparability graph. We evaluate χ(G) in O(n3)-time [16]: if it is greater than
s, the instance is infeasible. Else, by Theorem 6, G is a χ(G)-thin graph, and the
partition of V (G) given by an optimum coloring of G is consistent with respect
to a comparability ordering of its complement. It follows from Theorem 9 that
then the problem can be solved in time O(nχ(G)s+s+1s2χ(G)) = O(ns

2+s+1s3)-
time. Since s2 + s+ 1 ≥ 3, the statement follows. 2

Corollary 11 An instance (π, h, s) of the Pickup and Delivery Tour Combina-
tion Problem with n items can be solved in O(ns

2+s+1s3)-time, and therefore in
polynomial time when s is fixed.
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