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Summary. — Most air quality dispersion models used for regulatory applications
are based on Gaussian and K-diffusion formulations. The reliability of such models
strongly depends on how dispersion parameters and eddy diffusivities are computed
on the basis of the update understanding of the Planetary Boundary Layer (PBL)
meteorology. In this paper, we compare the performances in simulating pollutants
released from continuous point source, by using some Gaussian and K-diffusion
models with different assumptions concerning the parameterisation of the disper-
sion processes. Results show that the Gaussian model, in which the dispersion
parameters are directly related to spectral peak of turbulence energy, gives the best
overall performances. This could be due to a more realistic description of spreading
processes occurring into the PBL. This suggests that, in the context of the regula-
tory applications, this model can give the best combination between ground level
concentration estimates and computer requirements.

PACS 92.60.Sz – Air quality and air pollution.

1. – Introduction

Atmospheric dispersion is a direct consequence of turbulence in the PBL. It is well
known that atmospheric turbulence is generated by two main driving mechanisms: me-
chanical and convective. The combination between these two forcings generates a con-
tinuous set of dispersion regimes. A traditional scheme used to classify these dispersion
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regimes is that one proposed by Holtslag and Nieuwstadt [1]. In that work they identify
a discrete number of stability regimes in the PBL. Such regimes are characterised by ap-
propriate velocity and length scales in relation with the structure of dominant dispersive
eddies. As a consequence, the dispersion parameters (eddy diffusivities and sigmas) must
be modelled in terms of these scales in the framework of similarity theories.

Actually, there are two basic ways of describing turbulent diffusion: the Eulerian
and the Lagrangian approaches. The first focuses on the conservation equation for the
mean concentration of a pollutant in a fixed reference system, whereas the Lagrangian
approach is based on considering the trajectory of marked fluid particles in the flow.

Although atmospheric dispersion is a Lagrangian process, in practical cases all the
scaling parameters are measured in a Eulerian framework. In this context, the main
approximate theories used for modelling the distribution of pollutants released from
continuous point source are based on the K-diffusion first-order closure.

A class of models largely used for regulatory applications are the Gaussian models
which assume that concentration distribution is Gaussian in all the directions. In spite
of their simple input requirements they produce results that match experimental data as
well as any other model, and also they are less expensive in computational time.

The crosswind integrated concentration in a Gaussian model can be written as

Cy(x, z) =
Q√

2πσzU

[
exp

[
(z −Hs)2

2σ2
z

]
+ exp

[
(z +Hs)2

2σ2
z

]]
,(1)

where σz is the vertical spread of the plume, Q is the rate emission, Hs is the effec-
tive stack height, U is the mean wind speed, and x, z are the longitudinal and vertical
coordinates, respectively.

The conditions under which the mean concentration of a pollutant species emitted
from a point source can be assumed to have a Gaussian distribution are highly idealized,
since they require stationary and homogeneous turbulence. In the PBL the flow may
be assumed quasi-stationary for suitable short periods of time (ca. 10 min to 1 h) but,
due to the presence of the surface, there are variations with height of both the mean
wind and the turbulence that cannot always be disregarded. So, the main difficulty in
applying a Gaussian model is to account for the vertical inhomogeneity of the turbulence
on the dispersion parameters. The reliability of the model, therefore, strongly depends
on the way the dispersion parameters are calculated and on their ability to reproduce
experimental diffusion data.

Improved dispersion algorithms in advanced Gaussian models calculate sigmas basi-
cally in two ways. In the first approach, dispersion parameters are directly related to
the basic physical parameters describing the turbulent state of the PBL on the basis of
diffusion experiments [2]. In the second approach dispersion parameters are evaluated
directly from the turbulence variances and related timescale [3, 4].

In the K-models it is assumed that turbulent flux is proportional to the gradient of
the mean concentration:

−u′
iC

′ = K
∂C

∂xi
,(2)

where C is the mean concentration and u′C ′ is the turbulent flux of concentration. The
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resulting steady-state advection-diffusion equation can be written as

U
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where Kx, Ky and Kz are the eddy diffusivities. The cross-wind integration of eq. (3)
(neglecting the longitudinal diffusion) leads to

U
∂Cy

∂x
=
∂

∂z

(
Kz
∂Cy

∂z

)
,(4)

subject to the boundary conditions of zero flux at the ground and PBL top.
Several eddy diffusivity profiles can be found in the literature, and for some approxi-

mate forms, analytical solutions of eq. (4) exist [5-7].
A new approach in estimating the eddy diffusivity K and dispersion parameters in

the unstable boundary layer has been recently proposed by [8-11]. Making use of Tay-
lor’s statistical theory and a model for turbulence spectra, this approach relates plume
dispersion in an unstable boundary layer directly to the energy containing eddies acting
in the layer. Furthermore, in calculating dispersion parameters such formulation does
not make use of any fitting of experimental data.

The aim of this paper is to make a comparison among two Gaussian and two K-
diffusion modelling for regulatory applications in the case of elevated source, valid only
for flat terrain, in an unstable PBL. The new approach will be utilised in both Gaussian
and K-models. For comparison purpose two other models have been considered and
tested on experimental data. The first one is a Gaussian model with sigmas consistent
with the short-range limit of Taylor’s statistical theory [12]. The second one is the
KappaG model [13] in which both wind and diffusivity follow a power law profile.

2. – Dispersion models

2.1. Gaussian model I . – The dispersion parameters utilised in this model follow a
recent approach developed by Demuth [7] and Degrazia et al. [8]. In the framework of
Taylor’s statistical theory and subsequent development by Pasquill and Smith [14], they
obtained an expression for dispersion coefficients as a function of spectral distribution of
turbulent kinetic energy.

The vertical dispersion parameter obtained is expressed as

σ2
z

h2
=

0.093
π

∞∫
0

sin2(2.96Ψ1/3
ε Xn′)

(1 + n′)5/3n′2
dn′ ,(5)

where X = xw∗/Uh, U is the horizontal mean wind speed at the source height (z =
115 m), w∗ is the convective velocity scale, h is the height of the convective boundary
layer, Ψε = εh/w3

∗ is the nondimensional dissipation rate function, ε is the buoyant rate
of TKE dissipation and n′ is the nondimensional frequency.

The integral form of the dispersion parameter (eq. (5)) is more complicated than the
algebraic one available in the literature. On the other hand it is more general since,
unlike the algebraic parameterizations, it does not utilize turbulent dispersion measure-
ments. Equation (5) relates plume dispersion in an unstable layer directly and explicitly
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to the effective turbulent eddy sizes acting in the layer. Integration of eq. (5) with
ordinary methods of numerical analysis is straightforward. Furthermore, the computa-
tional requirements are not excessive because the turbulent filter in the integrals allows
a reduction in the upper integration limit to a finite value which depends on travel time.

Gaussian model I is then obtained by inserting eq. (5) in eq. (1).

2.2. Gaussian model II . – The Gaussian model II uses the Weil and Brower [12] sigma-
scheme which is derived considering the short-range limits of Brigg’s curve, consistent
with Taylor’s statistical theory:

σz = σwt .(6)

The vertical wind variance is obtained by fitting data from the Minnesota boundary
layer experiment by Kaimal et al. [15]:

σw = 0.56w∗ ;(7)

such fitting is valid to the upper 90% of the mixed layer. The resulting vertical dispersion
parameter utilised in eq. (1) is

σz = 0.56w∗
x

U
,(8)

where U is the horizontal mean wind speed at the source height (z = 115 m).

2.3. K-model I . – The first K-model considered here is proposed by Vilhena et al. [16].
This is an analytical model based on a discretization of the PBL in N subintervals in
such a manner that inside each interval Kz(z) and U(z) assume the average values

Kn =
1

zn − zn−1

zn∫
zn−1

Kz(z)dz ,(9)

Un =
1

zn − zn−1

zn∫
zn−1

Un(z)dz .(10)

Therefore, the solution of eq. (4) is reduced to the solution of N problems of the type

Un
∂

∂x
Cn

y = Kz
∂2

∂z2
Cn

y with zn−1 � z � zn(11)

for n = 1, . . . , N , where Cn
y denotes the concentration at the n-th subinterval. To deter-

mine the 2N integration constants the additional (2N −2) conditions, namely continuity
of concentration and flux at the interface, are considered:

Cn
y = Cn+1

y , n = 1, 2, ..., (N − 1) ,(12)
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y

∂z
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∂Cn+1
y
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, n = 1, 2, ..., (N − 1) .(13)
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Applying the Laplace transform in eq. (11) gives
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Kn
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where Cn
y (s, z) = L

{
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y (x, z);x→ s
}

, which has the well-known solution

Cn
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−Rnz +Bne
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Q

2Ra
(e−Rn(z−Hs) − eRn(z−Hs)) ,(15)

where
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√
UnS

Kn
and Ra = ±

√
UnSKn .

Finally, applying the interface and boundary conditions we come out with a linear sys-
tem for the integration constants. Henceforth the concentration is obtained by inverting
numerically the transformed concentration Cn

y by the Gaussian quadrature scheme [17]
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The solution (16) is valid for each layer that does not contain the contaminant source,
while eq. (17) must be used to evaluate the concentration field in the layer that contains
the pollutant source. In such formulation the ground-level concentration is an average
value over the first layer and calculated from eqs. (16) or (17) as Cn=0

y .
Here Aj and Pj are the weights and roots of the Gaussian quadrature scheme. In this

study was considered N = 8 because this value provides the desired accuracy with small
computational effort. Obviously, the greater the number of layer (N), the more accurate
the calculated concentration pattern but with a much more expensive computation time.

The eddy diffusivity profiles utilised in eqs. (16) and (17) are based on Degrazia et
al. [8]:

Kz

w∗h
= 0.22

( z
h

)1/3 (
1 − z

h

)1/3
[
1 − exp

[
−4z
h

]
− 0.0003 exp

[
8z
h

]]
.(18)

The wind speed profile has been parameterised following the OML model [2]:

U =
u∗
κ

[ln(z/z0 − Ψm(z/L) + Ψm(z0/L)] , if z � zb ,(19)

U = U(zb) , if z > zb ,(20)
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where u∗ is the friction velocity, κ = 0.4k is the Von Karman constant, z0 is the roughness
length, Ψm is a stability function given by [18]

Ψm = 2 ln
[

1 +A
2

]
+

[
1 +A2

2

]
− 2 tan−1A+

π

2
,(21)

A = (1 − 16z/L)1/4,(22)

L is the Monin Obukhov length and zb = min [|L|, 0.1h].

2.4. K-model II . – The other analytical model utilised here is the KappaG model
developed by Tirabassi et al. [13]. It is based on Demuth [7] solution of the advection-
diffusion K-equation (eq. (3)) in which both the wind and eddy diffusivity are described
in terms of power law profiles, that is

u(z) = u1

(
z

z1

)α

,(23)

K(z) = K1

(
z

z1

)β

,(24)

where z1 = 10 m, u1 = u(z1), see table I, K1 = κu∗z1
Φh(z1/L) , with Φh(z/L) =

(
1 − 16z

L

)−1/2.
The general solution for a confined PBL as obtained by Demuth [7] is

Cy =
2Qqzα

1

hα+1u1
×(25) {

γ +
(
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h
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q
)
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[
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J2

γ−1(ργ(i))
exp

[
−
ρ2γ(i)q

2K1x

hλzr
1u1

]}
,

where λ = α+β− 2, ν = (1−β)/λ, γ = (α+ 1)/λ, r = β−α, R = Hs/h, p = (1−β)/2,
q = λ/2, Jγ and I−ν represent the Bessel function and modified Bessel function of first
kind and order γ and −ν, respectively, while ργ(i) are roots of Jγ .

3. – Models evaluation

The model performances have been evaluated against experimental ground-level con-
centration using tracer SF6 data from the dispersion field campaign carried out in the
Copenhagen area during atmospheric conditions going from moderately unstable to fully
convective [19]. The tracer was released without buoyancy from a tower 115 m tall, and
collected at the ground-level positions in up to three crosswind arcs of tracer sampling
units. The sampling units were positioned at 2–6 km from the point of release. The
site was mainly residential with a roughness length of 0.6 m. The meteorological con-
ditions recorded during the dispersion experiments are summarised in table I where the
convective velocity scale (w∗) is calculated from

w∗ = u∗

(
h

−κL
)1/3

.
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Table I. – Summary of meteorological conditions during the experiments.

Exp. u∗ (ms−1) U (ms−1) L (m) w∗ (ms−1) h (m)

10 m 115 m

1 0.36 2.1 3.4 −37 1.8 1980

2 0.73 4.9 10.6 −292 1.8 1920

3 0.38 2.4 5.0 −71 1.3 1120

4 0.38 2.5 4.6 −133 0.7 390

5 0.45 3.1 6.7 −444 0.7 820

6 1.05 7.2 13.2 −432 2.0 1300

7 0.64 4.1 7.6 −104 2.2 1850

8 0.69 4.2 9.4 −56 2.2 810

9 0.75 5.1 10.5 −289 1.9 2090

Table II. – Observed and modelled cross-wind integrated concentrations (normalized with emis-
sion) using the Copenhagen data set.

Exp. Distance Data Model-GI Model-GII Model-KI Model-KII
No. (m) (10−4 sm−2) (10−4 sm−2) (10−4 sm−2) (10−4 sm−2) (10−4 sm−2)

1 1900 6.48 7.15 6.67 4.35 6.32
3700 2.31 4.12 3.70 2.20 4.10

2 2100 5.38 3.95 3.09 4.73 3.71
4200 2.95 2.82 2.24 2.06 2.58

3 1900 8.20 8.25 6.35 7.28 7.53
3700 6.22 5.62 4.41 3.45 5.40
5400 4.30 4.25 3.18 2.32 4.35

4 4000 11.66 8.02 5.54 5.47 8.65
5 2100 6.72 7.05 5.19 15.02 6.14

4200 5.84 5.77 4.46 5.41 5.63
6100 4.97 4.75 3.57 3.51 4.78

6 2000 3.96 2.75 2.59 4.80 3.19
4200 2.22 2.22 1.90 1.88 2.39
5900 1.83 1.82 1.48 1.30 1.97

7 2000 6.70 4.75 4.04 3.61 4.10
4100 3.25 3.17 2.56 1.67 2.62
5300 2.23 2.60 2.03 1.29 2.22

8 1900 4.16 4.57 3.31 3.94 4.21
3600 2.02 3.20 2.44 1.92 3.20
5300 1.52 2.45 1.79 1.28 2.62

9 2100 4.58 3.65 3.08 4.31 3.60
4200 3.11 2.50 2.16 1.92 2.44
6000 2.59 1.90 1.60 1.31 1.93



812 U. RIZZA, G. A. DEGRAZIA, D. M. MOREIRA ETC.

0 2 4 6 8 10 12
0

2

4

6

8

10

12
 Gaussian model I
 Gaussian  model II
 K-model I
 K-model II

C
y_

p
re

d
ic

te
d

(1
0-4

sm
-2

)

Cy -measured (10
-4

s m
-2

)

Fig. 1. – Scatter diagrams between the predicted and measured crosswind-integrated concentra-
tions. Data between dashed lines are in factor of two.

Regarding the mean wind speed parameterisation, the KappaG model uses the power
law functions proposed by Irwin [4], while the Gaussian model employs a constant value
extrapolated from a log-law at source height.

In table II the observed and computed ground-level cross-wind concentrations for the
four models (Gaussian model I and II and the K-model I and II) are presented.

Figure 1 shows the scatter diagram between observed and predicted integrated cross-
wind concentrations of the four models. Analysis of results shows a good agreement
between measurements and simulations for all models.

Table III presents the model performance evaluation statistics on Copenhagen data
using the following statistical indices widely used in the model inter-comparison context
(Hanna [20]):

nmse (normalized mean square) = (Co − Cp)2/CoCp ,

cor (correlation)= (Co − Co)(Cp − Cp)/σoσp ,

fa2 = fraction of Co values within a factor two of corresponding Cp values,

fb (fractional bias)=
(
Co − Cp

)
/
(
0.5

(
Co + Cp

))
,

where the subscripts o and p refer to observed and predicted quantities, and an overbar
indicates an average.

The statistical evaluation highlights a quite satisfactory performance for all models:
all the values for the numerical indices are within ranges that are characteristics of those
found for other state-of-the-art models applied to other field datasets. In particular, the
Gaussian model I and the K-model I show the better performances, nmse is equal to 0.07
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Table III. – Statistical indices evaluating the models performances.

nmse fa2 cor fb fs

Gaussian model I 0.07 1 0.92 0.10 0.29
Gaussian model II 0.38 0.91 0.61 0.19 −0.19
K-model I 0.07 1 0.90 0.06 0.23
K-model II 0.21 0.96 0.84 0.29 0.48

and fa2 is 100%. This confirms that the approach for the dispersion parameterisations,
which is the same for Gaussian and K models I, contains a realistic description of the
eddies that contribute to the turbulent dispersion in the unstable boundary layer. For one
typical Copenhagen tracer experiment, the computational time required for the Gaussian
model I is about 1 s, while for the K-model I it is approximately 10 s.

An advantage of using the Gaussian model I is that the computer requirements are
some orders of magnitude less than the K-model I. This is something fundamental when
regulatory applications require climatological runs.

4. – Conclusions

Gaussian air pollution concentration is an exact solution of the advection-diffusion
equation under a very restrictive hypothesis for PBL turbulence. Besides these limita-
tions it has been widely used in regulatory air pollution applications because of their
fast execution time. The spreading processes are usually expressed by semi-empirical
sigmas obtained by fitting the asymptotic limits of Taylor’s theory with experimental
data. A recent approach proposed by [8-11] overcomes the necessity of such fitting by
using directly the Hay and Pasquill [21] dispersion formula. The resulting dispersion
parameterisations are just related to the scaling variables defining the turbulent state
of PBL. Furthermore, this procedure allows to relate explicitly the spreading processes
with the energy containing eddies and viscous dissipation.

A preliminary comparison study has been performed in this paper. Two Gaussian
and two K-models have been compared utilising the Copenhagen dataset. The result
of such comparison shows the good perfomances of the Gaussian model with sigmas
calculated from Degrazia et al. [8] compared to a Gaussian model with sigmas from
Weil and Brower [12]. On the other hand, the K-models comparison points out that
the K-model I presents better results compared to K-model II. We conclude that both
dispersion models that employ the turbulent parameterisation proposed by [8-11] provide
the more realistic ground-level concentration field.

In the context of regulatory applications, when climatological runs are required, the
Gaussian model I is preferable because it is the fastest despite the integral form of its
sigmas.
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