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Summary. — Digital Elevation Models (DEMs) of the Earth surface are given by a
data set {λk, φk, hk}K

k=1, where hk denotes the terrain height on a point (λk, φk) of
an ellipsoidal Earth model E . Map projections have been widely used in mesoscale
modeling to get a DEM on a model domain D of a plane surface P. The procedure
consists in applying a map projection to each point (λk, φk) to get a point (Xp

k , Y p
k )

on D for which the correct terrain height Zp
k is taken as hk. This implies that P

coincides with the tangent plane T to E at a point (λc, φc) which can be located at
the centre of D. In this work a method is proposed to get a DEM {Xk, Yk, Zk}K

k=1

on T whose accuracy is similar to that of the original DEM {λk, φk, hk}K
k=1; the

method is extended to get a DEM on a spherical Earth model. The method is based
on the transformation T that yields the point (Xk, Yk) on T projected by a point
Pλφh in the tridimesional space defined by the data λk, φk, hk, T also yields the
correct height Zk of Pλφh with respect to the plane T . By construction (Xk, Yk) is
the unique point in T for which the correct terrain height can be computed with the
data λk, φk, hk alone. It is shown that the points (Xp

k , Y p
k ) from map projections

do not coincide with the corresponding one (Xk, Yk), hence the correct height Zp
k

on each (Xp
k , Y p

k ) cannot be computed with the data λk, φk, hk alone. The two
immediate approximations Zp

k ∼ Zk and Zp
k ∼ hk are studied. The uncertainty

∆hk = ±30 m reported for a DEM is used to show that the estimations Zp
k ∼ Zk

and Zp
k ∼ hk are valid on regions of 500 × 500 and 60 × 60 km2, respectively. It

is shown that if the point (Xp
k , Y p

k ) is near the boundary of a model domain of
1300 × 1300 km2 the estimation Zp

k ∼ hk has an error of approximately 30 km,
and for a domain of 3300 × 3300 km2 the corresponding error may be 200 km. It
is shown by means of analytic solutions of mesoscale meteorological equations that
the innacuracy of the DEM {Xp

k , Y p
k , hk}K

k=1 can yield a wrong wind field.
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PACS 92.60.Wc – Weather analysis and prediction.
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PACS 91.10.Jf – Topography; geometric observations.
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1. – Introduction

Among the most important aspects of mesoscale meteorological models is their ability
to resolve the influence of the Earth surface [1]. The standard way to describe the
Earth surface consists in estimating the terrain height hk on a point with longitude-
latitude coordinates (λk, φk) on an ellipsoidal Earth model E , the complete data set
{λk, φk, hk}K

k=1 is referred to as a Digital Elevation Model (DEM) [2]. DEMs play a basic
role in the numerical solution of mesoscale model equations because they determine i)
the minimun horizontal grid spacing to describe accurately the topography in a model
domain and ii) the σ-type vertical coordinates, which have shown to be an efficient way
to incorporate topographic irregularities into the model equations [1, 3-5]. Most present
day mesoscale models use conformal map projections to represent the Earth surface on
a plane surface and to generate a DEM on a Cartesian regularly-spaced computational
grid [1, 6-11]. The procedure described in ref. [11] is as follows. A Cartesian coordinate
system XpY p is chosen on the so-called projection plane P and the origin can be located
at the center of the model domain D in P, if r is the distance from the center of the Earth
and a denotes the mean radius of the Earth the vertical coordinate Zp on P is taken as
Zp = r− a. To obtain a DEM on P from a given DEM {λk, φk, hk}K

k=1 a conformal map
projection is applied to the data λk, φk to get a point (Xp

k , Y
p
k ) on D and it is assumed

that the correct terrain height Zp
k on (Xp

k , Y
p
k ) is the correspoding datum hk because

the distortion of the spherical Earth shape is small with map projections [4,6-11]. Thus
a DEM {Xp

k , Y
p
k , hk} is obtained on P. Since the points (Xp

k , Y
p
k ) do not coincide with

those (Xr
m, Y r

m) of a regularly-spaced computational grid on D the elevation data hk are
interpolated to get an average height 〈Zr

m〉 on each (Xr
m, Y r

m) by means of a weighted sum
〈Za

m〉 =
∑

k Wmkhk (see, e.g., [8,9]). Additionally some models include metric factors in
the horizontal derivatives of model equations to consider map projections [6, 11]. There
are two basic questions about this approach to get DEMs on P that, for the knowledge
of the author, have not been studied in the mesoscale literature: i) the region R in P
where is valid to take Zp

k as hk and ii) the error of such an approach. The main aim of
this article is i) to propose a method that yields a DEM on P whose accuracy is similar
to that of the original DEM {λk, φk, hk} and to apply this approach to generate a DEM
on a spherical Earth model, and ii) to carry out an uncertainty analysis of the DEMs
{Xp

k , Y
p
k , hk} obtained with map projections.

In subsect. 2.1 we introduce the primary Cartesian system xyz associated to an el-
lipsoidal Earth model E and the geodetic coordinates λ, φ, h of an arbitrary point P
in the tridimensional space. In subsect. 2.2 we consider the tangent plane T to E at
a point Pc = (λc, φc) and a Cartesian coordinate system XY Z on T with is origin at
Pc. The transformation T that yields the coordinates X, Y , Z of a point P with coor-
dinates λ, φ, h, is given. It is shown that the application of T to the data of a DEM
{λk, φk, hk} on E generates a DEM {Xk, Yk, Zk} on T whose accuracy is similar to that
of the DEM {λk, φk, hk}. In subsect. 2.3 we propose a spherical Earth model S and a
spherical coordinate system Λ, Φ, H to generate a reliable DEM on S.

In the theory of map projections the description of the projection plane P is ambiguous
because it may be a flat sheet of paper or the tangent plane T to the Earth model
E [12, 13]. In sect. 3 we adopt Pc as the center of a model domain D in P and it
is shown that P coincides with T when the geodetic height hc of the irregular Earth
surface on Pc is taken as the exact terrain height Zc on Pc. This identification of P and
the transformation T allows us to analyze the DEMs {Xp

k , Y
p
k , hk} from map projections.

First, it is shown that the DEM {Xk, Yk, Zk} obtained with the transformation T has the
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unique points (Xk, Yk) on T for which the correct terrain height (Zk) can be computed,
we then show that the points (Xp

k , Y
p
k ) from map projections do not coincide with the

corresponding one (Xk, Yk), a result that poses the problem of estimating the correct
height Zp

k on (Xp
k , Y

p
k ). The two immediate approximations Zp

k ∼ Zk and Zp
k ∼ hk are

studied in subsects. 3.1 and 3.2. The uncertainty reported for data of the DEM called
GTOPO30 [14] and the DEM {Xk, Yk, Zk} from T are used to estimate the region R of T
where each approximation is valid. The results show that R can be significantly smaller
than the computational model region D used in some mesoscale studies [15-17]. In sect. 4
we compare model equations provided by the correct representation of topography with
those obtained via map projections. Analytic and stationary solutions of these equations
show that the innacuracy of a map-projection topography can generate a wrong wind
field. Section 5 contains some concluding remarks.

2. – Geodetic, Cartesian and spherical coordinate systems

2.1. Ellipsoidal Earth model E, coordinates x, y, z and λ, φ, h, and the DEM
{λk, φk, hk}. – The standard mathematical model of the Earth is an ellipsoid of rev-
olution (which we denote by E) whose axis of revolution is taken as the z-axis of a
primary Cartesian coordinate system xyz with its origin at the center of E . Thus E is
described by the equation (x2 + y2)/a2 + z2/b2 = 1, where a and b are the major and
minor axes, respectively. The location of each point on E is defined by the geodetic
latitude φ and longitude λ which yield the Cartesian coordinates of the point,

x = fx(λ, φ) ≡ N(φ) cosφ cosλ ,(2.1a)
y = fy(λ, φ) ≡ N(φ) cosφ sinλ ,(2.1b)
z = fz(λ, φ) ≡ N(φ)(1 − ε2) sinφ ,(2.1c)

with N(φ) = a(1 − ε2 sin2 φ)−1/2, ε2 = 1 − (a/b)2, λ ∈ (−π, π] and φ ∈ [−π/2, π/2] [13].
If x̂, ŷ, ẑ denote the unitary vectors along the positive x, y, z axes, respectively, E has
the vectorial equation

(2.2) r̃E(λ, φ) = x̂fx(λ, φ) + ŷfy(λ, φ) + ẑfz(λ, φ).

The latitude φ is the angle between the equatorial xy plane and the vector N̂(λ, φ) normal
to E at (λ, φ) [12],

(2.3) N̂(λ, φ) = (x̂ cosλ + ŷ sinλ) cosφ + ẑ sinφ.

Throughout the paper we take φ positive on the North hemisphere and the reference
meridian to measure λ is on the xz plane and intersects the positive x-axis, λ is positive
Eastward (negative Westward), see fig. 1.

Every point P in the tridimensional space projects on E a unique point (λP , φP ) and
if hP denotes the distance from (λP , φP ) to P with hP > 0 (hP < 0) for P out of
(into) E , then P can be represented with the Cartesian coordinates (xP , yP , zP ) or the
geodetic ones (λP , φP , hP ). Thus if �rP denotes the vector from the origin to P we have
�rP = x̂xP + ŷyP + ẑzP = �rE(λP , φP ) + hP N̂(λP , φP ) (see fig. 2). This together with
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Fig. 1. – Primary Cartesian coordinate system xyz with its origin at the center of E , Cartesian
system XY Z and geodetic coordinates λ, φ.

(2.1)-(2.3) leads to the transformation equations

xP = fx(λP , φP ) + hP cosφP cosλP ,(2.4a)
yP = fy(λP , φP ) + hP cosφP sinλP ,(2.4b)
zP = fz(λP , φP ) + hP sinφP ,(2.4c)

which will be denoted by

(2.5) (xP , yP , zP ) = E(λP , φP , hP ).

The inverse transformation E−1(xP , yP , zP ) = (λP , φP , hP ) can be computed as follows.

Fig. 2. – Sketch of the plane T tangent to E at Pc = (λc, φc) and the Geoid. The point P on
the geoid has Cartesian coordinates x, y, z and geodetic ones λ, φ, h with respect to the system
xyz, and X, Y , Z are their coordinates with respect to the system XY Z.
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Using (2.1) and (2.4) we get

(2.6) λP = tan−1(yP /xP ).

In general φP and hP must be computed numerically, we found that the numerical
calculation is easier with the parameterization of E given by

x = gx(λ, φ′) ≡ a cosφ′ cosλ , z = gz(λ, φ′) ≡ b sinφ′ ,(2.7a)
y = gy(λ, φ′) ≡ a cosφ′ sinλ ;(2.7b)

from (2.1) and (2.7) there follows the relationship tanφ′ = (1 − ε2)1/2 tanφ. Let
(λP , φ

′
P , hP ) be the new representation of P . Since the point (λP , φ

′
P ) is the unique

one that minimizes the Euclidean distance between P = (xP , yP , zP ) and E and the
minimun distance is |hP |, the distance function

(2.8) d(λ, φ′) = {[gx(λ, φ′) − xP ]2 + [gy(λ, φ′) − yP ]2 + [gz(λ, φ′) − zP ]2}1/2

satisfies the equation

(2.9)
∂d(λP , φ

′
P )

∂φ′ = 0 ,

whose numerical solution yields φ′
P , hence we get

(2.10) φP = tan−1[(1 − ε2)−1/2 tanφ′
P ], |hP | = d(λP , φ

′
P ).

Since ε2 is small we set ε = 0 in (2.9) to get the accurate approximation [φ′
P ](0) =

tan−1[zP /(xP cosλP + yP sinλP )], which can be improved with the Newton-Raphson
method to get φ′

P with the desired accuracy.
Remark 1. In the literature of geodesy the irregular Earth surface is called Geoid [2],
see fig. 2. The geodetic position of a point P on the Geoid is defined by the coordinates
λP , φP , hP , where hP is, in principle, given by a function top(λP , φP ) ([2], p. 56). In
practice the function top(λP , φP ) is known on a finite set {λk, φk}K

k=1 of E , in this case
we set hk ≡top(λk, φk) and the complete DEM of the Geoid is denoted by {λk, φk, hk}.
When the accuracy is not critical the terrain elevation above or below the mean sea level
can or has been used as an estimation of the geodetic height h, as occurs with the data
of the DEM called GTOPO30 in which the elevation data are referenced to the mean sea
level [14].

2.2. Tangent plane, coordinates X, Y , Z and the DEM {Xk, Yk, Zk}. – Let T denote
the plane tangent to E at the point Pc = (λc, φc) on the zero meridian λc = 0. The
following Cartesian coordinate XY Z system is adopted on T : the origin X = Y = Z = 0
is at Pc, the X-axis is tangent to the parallel circle at Pc and positive Eastward, the Y -axis
is tangent to the zero meridian and positive Northward, the positive Z-axis is taken out
of E , see fig. 1. If X̂, Ŷ, Ẑ denote the unitary vectors along the positive X, Y and Z
axes, respectively, they are given by

(2.11) X̂ = ŷ, Ŷ = −x̂ sinφc + ẑ cosφc, Ẑ = x̂ cosφc + ẑ sinφc,
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where Ẑ = N̂(λc, φc). Let P be a point with coordinates λP , φP , hP and let XP , YP ,
ZP be their coordinates with respect to the XY Z system. If �rP is the vector from the
origin x = y = z = 0 to P the equation (see fig. 2)

(2.12) �rP = x̂xP + ŷyP + ẑzP = �rE(λc, φc) + X̂XP + ŶYP + ẐZP

holds with (xP , yP , zP ) = E(λP , φP , hP ) (eqs. (2.4a-c)). This together with (2.11) yields
the transformation equations

XP = TX(λP , φP , hP ) = fy(λP , φP ) + hP cosφP sinλP ,(2.13a)
YP = TY (λP , φP , hP ) = C2 cosφc − C1 sinφc ,(2.13b)
ZP = TZ(λP , φP , hP ) = C2 sinφc + C1 cosφc ,(2.13c)

where

C1 = fx(λP , φP ) − fx(λc, φc) + hP cosφP cosλP ,(2.13d)
C2 = fz(λP , φP ) − fz(λc, φc) + hP sinφP .(2.13e)

These equations will be denoted by

(2.14) (XP , YP , ZP ) = T (λP , φP , hP ).

The inverse transformation (λP , φP , hP ) = T−1(XP , YP , ZP ) is obtained with (2.11)-
(2.13) to compute the coordinates xP , yP , zP , which in turn yield E−1(xP , yP , zP ) =
(λP , φP , hP ) (eqs. (2.6)-(2.10)).

If a point on the Geoid has coordinates λk, φk, hk their coordinates with respect to
the system XY Z are (Xk, Yk, Zk) = T (λk, φk, hk) and if the uncertainty ∆λk, ∆φk, ∆hk

is known the uncertainty ∆Xk can be estimated with the formula

(2.15) ∆Xk = ∆λk∂TX/∂λ + ∆φk∂TX/∂φ + ∆hk∂TX/∂h

and similar expressions are used for ∆Yk and ∆Zk. For example, data from GTOPO30
for México and E.U.A. are reported with ∆λk = ∆φk = 0 [14], in this case we have

(2.16) |∆Xk| ≤ |∆hk|, |∆Yk| ≤ 2|∆hk|, |∆Zk| ≤ 2|∆hk|.

Thus we get a DEM {Xk, Yk, Zk} on T whose accuracy is similar to that of the original
DEM {λk, φk, hk} on E .

2.3. Tangent sphere, coordinates Λ, Φ, H and the DEM {Λk,Φk,Hk}. – The math-
ematical modeling of some synoptic and mesoscale flows should consider the curvature
of the Earth, this can be done with a suitable spherical Earth model denoted by S.
The sphere considered in this work is tangent to E at a point Pc = (λc, φc) on the zero
meridian λc = 0. The radius Rs of S is not unique but following Driencourt we may
propose

(2.17) Rs = a(1 − ε2)1/2(1 − ε2 sin2 φc)−1



MAP PROJECTIONS AND TOPOGRAPHY IN ATMOSPHERIC MESOSCALE MODELING 19

Fig. 3. – Primary system xyz and system XsYsZs with its origin at the center (xs, ys, zs) of the
tangent sphere S.

because it yields a certain minimun distortion from E to S ([13], p. 24).
With a given Rs and the vector N̂(λc, φc) normal to E at Pc (eq. (2.3)) we get the

coordinates of the center of S with respect to the primary system xyz,

(2.18) xs = [N(φc) −Rs] cosφc, ys = 0, zs = [(1 − ε2)N(φc) −Rs] sinφc.

We now adopt the Cartesian coordinate system XsYsZs for which the origin Xs = Ys =
Zs = 0 is at the center of S, the XsZs-plane coincides with that of the system xyz and
the positive Xs, Ys, Zs axes have the orientation of the corresponding axes of the xyz
system, see fig. 3. Thus the transformation equations between the coordinate systems
XsYsZs and xyz are

(2.19) Xs = x− xs, Ys = y, Zs = z − zs.

If a point P has coordinates XsP , YsP , ZsP their spherical coordinates ΛP , ΦP , HP are
defined by the equations

XsP = (Rs + HP ) cos ΦP cos ΛP ,(2.20a)
YsP = (Rs + HP ) cos ΦP sinΛP ,(2.20b)
ZsP = (Rs + HP ) sin ΦP ,(2.20c)

with ΛP ∈ (−π, π], ΦP ∈ [−π/2, π/2], HP ∈ [−Rs,∞); positive values of ΛP and ΦP are
taken Eastward and Northward, respectively, and HP is positive for P out of S . Since
the latitude φc of Pc is the angle between the vector N̂(λc, φc) and the x-axis and this
axis is parallel to the Xs-axis, Pc is the unique point for which the coordinates λP , φP ,
hP coincide with ΛP , ΦP , HP , respectively.
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The transformation equations from the coordinates λP , φP , hP to ΛP , ΦP , HP for a
point P are represented by

(2.21) (ΛP ,ΦP ,HP ) = S(λP , φP , hP )

and are obtained as follows. First we apply E(λP , φP , hP ) = (xP , yP , zP ) (eqs. (2.4a-c)),
then we compute XsP = xP − xS , YsP = yP , ZsP = zP − zS and using (2.20a-c) we get

ΦP = tan−1[ZsP /(X2
sP + Y 2

sP )1/2],ΛP = tan−1[YsP /XsP ],(2.22a)

HP = (X2
sP + Y 2

sP + Z2
sP )1/2 −Rs.(2.22b)

The inverse transformation S−1(ΛP ,ΦP ,HP ) = (λP , φP , hP ) is obtained from (2.20a-c),
(2.19) and the application of E−1 (eqs. (2.6)-(2.10)).

The application of S to the data λk, φk, hk of a DEM {λk, φk, hk} on E generates a
DEM {Λk,Φk,Hk} on S whose uncertainty can be estimated with equations similar to
(2.16).

3. – Analysis of map projections

The main aim of map projections is to transfer points on an ellipsoidal Earth model
E to corresponding points on “a flat sheet of paper” which is usually referred to as the
projection plane and we denote it by P. Let (λ, φ) be a point on E , the map projections
are defined by a pair of equations

(3.1) Xp = PX(λ, φ), Y p = PY (λ, φ),

where Xp and Y p are the coordinates of the point corresponding to (λ, φ) with respect to a
rectangular Cartesian coordinate system defined on P. The common rectangular system
adopted has positive Y p- and Xp-axes pointing to the North and East, respectively, and
if the origin of the XpY p system has coordinates (λ0, φ0) eq. (3.1) becomes

(3.2) PX(λ0, φ0) = 0, PY (λ0, φ0) = 0.

The description of P is ambiguous because as a rule (conformal) map projections cannot
be represented geometrically ([13], p. 72), except the stereographic projection of a sphere,
and the map-making process may use a fictitious geometric surface which is developed by
flattening into a plane surface (P). To analyze the use of map projections to get a DEM
it is necessary a precise definition of P with respect to the primary coordinate system
used to define the original DEM {λk, φk, hk}. Without loss of generality we assume that
{λk, φk, hk} is referenced to the xyz system of subsect. 2.1, the problem is then to define
mathematically P in such a primary system. As is known this can be done with i) the
coordinates of one point in P and ii) any vector normal to P. Consider a map projection
for which the point on the zero meridian Pc = (λc = 0, φc) corresponds to the center of
the model domain D and is located at the origin of the XpY p system on P,

(3.3) PX(0, φc) = PY (0, φc) = 0,

thus we have a point Pc on P whose coordinates x, y, z are known (eqs. (2.1a-c)). To
give one vector normal to P and to clarify what is the correct terrain height on the points
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(Xp, Y p) from map projections it is convenient to consider the generally accepted notion
of terrain height which we adopt as Definition 1: The terrain height on a point P of a
surface S is the distance between P and the Geoid along a (predetermined) vector n̂P

normal to S at P whose orientation determines the sign of the height. This is congruent
with the definition of geodetic height hc on Pc for which the normal vector is N̂(λc, φc)
(see Remark 1). In the case of the projection plane P there is only one normal vector n̂P

(module a scalar factor) which can be determined as follows. If we assume that the exact
terrain height Zc on Pc (which is seen as an element of P) is the height hc of the Geoid
on Pc, then the vector normal to P at Pc is N̂(λc, φc) (fig. 2). Thus, Pc and N̂(λc, φc)
define uniquely P with respect to the primary system xyz, but this is one way to define
the plane T tangent to E at Pc (subsect. 2.2), therefore P = T .
Remark 2: The definition Zc ≡ hc is consistent with the approximation Zk ∼ hk used in
mesoscale modeling to define DEMs via map projections (sect. 1) but it is clear that for
another point (Xp

k , Y
p
k ) on P the correct height Zp

k cannot be the corresponding geodetic
height hk because of the curvature of E (fig. 2).

To end the identification of P we consider that the unit of length in the axes of
the systems xyz and XpY p is the same, thus the axes Xp and Y p coincide with those
of the XY Z system defined on T (subsect. 2.2). In particular every point (Xp, Y p)
obtained from a point (λ, φ, h) on the Geoid with a map projection that satisfies (3.3),
has coordinates

X = Xp , Y = Y p , Z = 0 ,

with respect to the system XY Z and the terrain height on (Xp, Y p) is exactly the vertical
coordinate Zp of (λ, φ, h) in the system XY Z (fig. 2).

Let us now consider the definition and estimation of a DEM on T when we have a
DEM {λk, φk, hk} on E . Suppose that {λk, φk, hk} has null uncertainty, let (Xp

k , Y
p
k )

denote the point obtained from (λk, φk) with a map projection (3.1) that satisfies (3.3)
and let Zp

k denote the true terrain elevation on (Xp
k , Y

p
k ) with respect to the XY Z system.

The common practice for estimating Zp
k is to take

(3.4) Zp
k ∼ hk ,

because map projections generate a minimun distortion of the Earth surface [4,6-11]. To
analyse this approximation in mesoscale modeling we have to bear in mind the following
features of the transformation T (2.14). First, T has no relationship with conformal map
projections, it gives the coordinates XP , YP , ZP of a point P in the system XY Z when
it has coordinates λP , φP , hP with respect to the primary system xyz. In particular
every point (λk, φk, hk) has a unique representation with respect to the system XY Z
given by (Xk, Yk, Zk) = T (λk, φk, hk). The geometric interpretation is easy: fig. 2 shows
that the point (λk, φk, hk) on the Geoid projects a unique point (Xk, Yk) on T that is
Zk units of length away from (λk, φk, hk), along the vector Ẑ normal to T , hence Zk

is also the exact terrain height on (Xk, Yk) (Definition 1). Thus, T yields the unique
points (Xk, Yk) on T for which we can compute the correct terrain height Zk by using
the data λk, φk, hk alone. It is clear that the transformation T is not conformal but this
“deficiency” is apparent because T considers the datum hk to yield the correct height
Zk on (Xk, Yk) whereas no conformal projection considers such a piece of information.
Thus, it is expected that the point (Xk, Yk) does not coincide with that (Xp

k , Y
p
k ) from

a map projection, except on some few places. This expectation is confirmed below and
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poses the problem of estimating the correct height Zp
k on each point (Xp

k , Y
p
k ). The two

immediate approximations Zp
k ∼ Zk and Zp

k ∼ hk are studied below.
By simplicity we consider the WGS84 ellipsoid E [2] with a = 6378.1 km, ε2 =

6.7×10−3 (which is approximated by ε2 = 0 to simplify projection formulae), and a zero
terrain elevation on E ,

h = top(λ, φ) ≡ 0.

According to our assumptions, T is tangent to E at Pc = (λc, φc) which is the origin of
the XY Z system of subsect. 2.2 and the center of a rectangular domain D denoted by

(3.5) [−Xmax,Xmax] × [−Ymax, Ymax].

We have λc = 0 and the value φc = 24◦ was chosen. There are three domains D of interest
in T . An operational application of the Mesoscale Model 5 (MM5) [7, 8] in Mexico [15]
uses a Lambert projection to define a model domain with its center at φ = 24◦ and 101◦

of longitude from the Greenwich meridian, the horizontal mesh consists of 75×75 points
separated by 45 km, this yields the domain Da given by (3.5) with

Xmax = Ymax = 1665 km.

A recent study of mesoscale flows in Mexico [16] employed the Regional Atmospheric
Modeling System (RAMS) with a Stereographic projection [6] on a domain of 1764 ×
1764 km2, this defines the domain Db given by (3.5) with

Xmax = Ymax = 882 km.

A mercator projection was used in [17] to define a domain of approximately 1600 ×
1300 km2; we consider the domain Dc given by (3.5) with

Xmax = Ymax = 650 km.

The projections considered below are the Oblique Stereographic Projection (OSP), the
Universal Transverse Mercator Projection (UTM), the Lambert Projection with one stan-
dard parallel at φc (LP1) and two standard parallels at φ1 = 14◦ and φ2 = 34◦ (LP2);
the formulae from [12,13] were modified to satisfy (3.3) and are given in the appendix.

3.1. Approximation Zp
k ∼ Zk. – Figure 4 shows some points (Xk, Yk) and (Xp

k , Y
p
k ) on

the domain Da of T , we see that the point (Xp
k , Y

p
k ) from one projection is near to that

of another projection and each set {Xp
k , Y

p
k } is almost rectangular in a region with its

center at X = 0, Y = 0 as expected by the use of conformal projections. The apparent
closeness between (Xk, Yk) and the point (Xp

k , Y
p
k ) from a map projection is reflected by

fig. 5 which shows the relative difference (Y p
k − Yk)/Yk vs. Yk, where Yk and Y p

k were
obtained with points (0, φk) on the zero meridian with φk ≥ 0; as is observed such a
difference is bounded by ±2.5% as Yp goes from 0 to 1650 km. Nevertheless, the distance
between (Xk, Yk) and (Xp

k , Y
p
k ) can be significant for the terrain height estimation as is

seen below.
Figure 6 shows the difference Y p

k − Yk vs. Yk for the points (0, φk) of fig. 5 and we
see that the difference increases monotonically from zero to several kilometers as Yk goes
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Fig. 4. – Points (Xk, Yk) and (Xp
k , Y p

k ) on the region Da of T corresponding to a data set
{λk, φk, hk} on the ellipsoid E WGS84 with height hk ≡ 0. The tangency point Pc between T
and E is at λc = 0 and φc = 24◦. The points (Xk, Yk) obtained with the transformation T are
denoted by •, and the points (Xp

k , Y p
k ) obtained with the projections OSP, UTM, LP1 and LP2

are denoted by ✸, ✷, © and +, respectively.

from 0 to 1650 km (except for the LP2-projection). This implies that the true terrain
elevation Zp

k on (Xp
k , Y

p
k ) cannot be computed on almost all points using the data λk,

φk, hk alone and, therefore, Zp
k has to be estimated. A first approximation consists in

estimating Zp
k with the correct height Zk on (Xk, Yk),

(3.6) Zp
k ∼ Zk ,

when (Xp
k , Y

p
k ) is near (Xk, Yk), of course. We can say that (Xp

k , Y
p
k ) is near (Xk, Yk) if

it satifies the inequalities

(3.7) |Xp
k −Xk| ≤ |∆Xk| , |Y p

k − Yk| ≤ |∆Yk| ,

where ∆Xk, ∆Yk denote the uncertainty of Xk, Yk. Consider, for instance, the uncer-
tainty ∆λk = ∆φk = 0, ∆hk = ±30 m of some data from GTOPO30 [14], according to
(2.16) we have ∆Xk ∼ ±30m and ∆Yk ∼ ±60 m. For the points (0, φk) corresponding to
figs. 5 and 6 we have Xp

k = Xk = 0 and (3.7) becomes |Y p
k −Yk| ≤ 60 m. Figure 7 shows

the graph of |Y p
k − Yk| vs. Yk corresponding to the points (0, φk) of fig. 5, we observe

that |Y p
k − Yk| ≤ 60 m holds with Y p

k ≤ Y p
M where Y p

M ∼ 5, 195, 210, 245 km for the
points (Xp

k , Y
p
k ) from projections LP2, LP1, OSP and UTM, respectively. This means

that (3.7) holds approximately for (Xp
k , Y

p
k ) on the region

Ra = [−250, 250] × [−250, 250] km2 ,
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Fig. 5. – Graphs of (Y p
k /Yk − 1)100 vs. Yk where Y p

k and Yk were obtained from points (0, φk)
on the reference meridian of WGS84 E with φk ≥ 0. Yk was computed with the transformation
T and the Y p

k ’s with the projection formulae given in the appendix.

Fig. 6. – Graphs of Y p
k − Yk vs. Yk corresponding to the points (0, φk) of fig. 5.
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Fig. 7. – Graphs of |Y p
k − Yk| vs. Yk corresponding to the points (0, φk) of fig. 5.

when (Xp
k , Y

p
k ) is obtained from projections LP1, OSP and UTM, while for (Xp

k , Y
p
k )

from LP2, (3.7) is valid at most on the region

Rb = [−10, 10] × [−10, 10] km2.

Therefore, the approximation Zp
k ∼ Zk is valid if the points (Xp

k , Y
p
k ) from projections

OSP , UTM and LP1 (LP2) belong to Ra (Rb). Of course, we have the approximation
Zp

k ∼ hk but it is valid on a smaller region Rc as is shown below (eq. (3.10)). This
points out a weakeness of map projections and, therefore, an error source in mesoscale
modelation: If (Xp

k , Y
p
k ) is far away from the boundary of Ra (as occurs with points

on or near the boundary of Da, Db, Dc) the true terrain elevation cannot be estimated
reasonably with the sole data λk, φk, hk and the estimations Zp

k ∼ hk and Zp
k ∼ Zk

can yield a DEM on T with large terrain-height errors that deteriore the results of an
atmospheric modelation. Furthermore, according to (2.16) if the data λk, φk, hk were
more accurate the regions Ra and Rb are smaller and, therefore, the application of
map projections is less convenient to get a reliable DEM on domains such as Da, Db, Dc.
Finally, the relative smallness of regions Ra and Rb shows that the use of approximations
Zp

k ∼ hk and Zp
k ∼ Zk cannot be justified by the sole visual appreciation of figs. 4 and 5.

3.2. Approximation Zp
k ∼ hk. – Since the correct height Zp

k cannot be computed for
almost all points (Xp

k , Y
p
k ) we deal with the points (Xk, Yk) for which the correct height

Zk can be estimated and used to study the correctness of the approximation

(3.8) Zk ∼ hk.
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Fig. 8. – Graphs of Zk, Zk ± ∆Zk, hk vs. Yk corresponding to the points (0, φk) of fig. 5.

We can say that (3.8) is valid if the approximating value hk satisfies

(3.9) |Zk − hk| ≤ |∆Zk| ,

where the uncertainty ∆Zk of Zk can be estimated with ∆λk, ∆φk, ∆hk (eq. (2.16)).
Consider again ∆λk = ∆φk = 0 and ∆hk = ±30 m, with hk ≡ 0 and ∆Zk ∼60 m
(eq. (2.16)) the inequality (3.9) becomes |Zk − hk| = |Zk| ≤ 60 m. Figure 8 shows the
graph of Zk, Zk ±∆Zk and hk = 0 vs. Yk corresponding to the points (0, φk) of fig. 5, we
see that |Zk| ≤ 60 m holds for Yk in the interval [0, 28 km] hence (3.8) is approximately
valid on the region

(3.10) Rc = [−30, 30] × [−30, 30] km2.

This region is quite small with respect to Da, Db, Dc and Ra as well. Hence if Zp
k is

approximated by the corresponding datum hk on E , it is expected that such an approxi-
mating value has a large error when the approximation is applied on a whole domain such
as Da, Db, Dc. To get an idea of the error we plotted in fig. 9 the correct Zk values vs.
Yk corresponding to the points (0, φk) of fig. 5. We see that the zero topography hk ≡ 0
on E yields the correct height Z(Ymax) = −217,−61,−33 and −5 km on the boundary
point (X = 0, Ymax) of regions Da, Db, Dc and Ra, respectively. It is clear that there is
no real height hk on the Earth for which the approximation Z(Ymax) ∼ hk is valid at the
boundary of Da, Db and Dc. If we consider that the usual height Lz of a tridimensional
mesoscale domain is 20 km, the absolute error of the approximating value hk(≡ 0) of Zk

is |Zk| or, equivalently, 1000%, 300% and 150% larger than 20 km on boundary of Da, Db,
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Fig. 9. – Graph of Zk vs. Yk corresponding to the points (0, φk) of fig. 5. The functions

Zh(X, Yk) =
√

a2 − Y 2
k − a and Zhp(X, Yk) = 0 are plotted.

Dc, respectively. This also shows that the procedure of taking a large horizontal model
domain D to reduce the undesirable effects of lateral boundaries [1,3-5], can yield incor-
rect results if the DEM on D is obtained with map projections and the approximation
Zp

k ∼ hk.

4. – Mesoscale flow equations

In order to pose some meteorological problems generated by a topography defined
via map projections in this section we carry out a comparison between mesoscale flow
equations obtained from such a topography and those from a correct representation
of topography. By simplicity the earth rotation is ignored and the flow is isothermic,
incompressible and inviscid so that the model equations with respect to the XY Z system
are

∇ · �V = 0,
d�V
dt

+
1
ρ0

∇P + gẐ = 0 ,

where Ṽ = UX̂+ V Ŷ + W Ẑ is the velocity vector, t is time, ρ0 is the density, P is the
air pressure and g the acceleration due to gravity, see, e.g., [2, 4, 18].

To realistically represent topography mesoscale meteorological systems [1, 6-10] use
a terrain-following coordinate system determined by the representation of topography
in the XY Z system. The equations generated by the correct description of topography
are obtained with the results of subsect. 2.2 as follows. If the topography equation
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h =top(λ, φ) is known, eqs. (2.13a-e) yield the parametric equations of topography in
the XY Z system

X = TX [λ, φ, top(λ, φ)], Y = TY [λ, φ, top(λ, φ)], Z = TZ [λ, φ, top(λ, φ)].

From the first two equations one obtains λ, φ in terms of X,Y and replacing these ex-
pressions in the third equation we get the topography equation

(4.1) Z = Zh(X,Y ) ,

which leads to the terrain-following coordinate system

(4.2) y1 = X, y2 = Y, y3 = H[Z − Zh(X,Y )]/[H − Zh(X,Y )],

where H = maxZ is the height of the model domain. Model equations in the yi system
are written with the notation X1 = X, X2 = Y , X3 = Z, V 1 = U , V 2 = V , V 3 = W ,
repeated indices in one term indicate summation, the transformation (4.2) and its inverse
are denoted by yi(�X) and Xj(�y), respectively. Thus the pressure and the (contravariant)
components of velocity vector �v(�y) in the yi system are

(4.3) p(�y) = P [Xj(�y)], vi(�y) = V j(�X)∂yi/∂Xj .

The continuity and momentum equations are

(4.4)
1√
G

∂

∂yi

√
Gvi = 0,

∂vk

∂t
+ vmvk,m +Gkm ∂p

∂ym
+ δ3k

∂yk

∂X3
g = 0 ,

where

vk,m = Γk
mlv

l +
∂vk

∂ym
, Γk

ml =
∂2Xn

∂ym∂yl

∂yk

∂Xn
,

√
G is the Jacobian of transformation yi(�X) and Gki is the inverse matrix of the metric

tensor Gij = (∂Xk/∂yi)(∂Xk/∂yj).
Let us consider model equations from map projections. Map projection equations (3.1)

together with h =top(λ, φ) and the approximation Zp
k ∼ hk yields the parametric equa-

tions of an approximate topography

X = PX(λ, φ), Y = PY (λ, φ), Z = top(λ, φ).

From the first two equations one gets expressions of λ, φ in terms of X, Y , which are
replaced in top(λ, φ) to obtain a topographic equation

Z = Zhp(X,Y )

which is an approximation of the correct equation Zh(X,Y ). This leads to the terrain-
following coordinate system:

(4.5) y1p = X, y2p = Y, y3p = H[Z − Zhp(X,Y )]/[H − Zhp(X,Y )].
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Let yi
p(�X) and Xj(�yp) denote the transformation (4.5) and its inverse. Thus the pressure

and components of the velocity vector �vp(�yp) in the yi
p system are

pp(�yp) = P [Xj(�yp)], vi
p(�yp) = V j(�X)∂yi

p/∂X
j .

The continuity and momentum equations are

(4.6)
1

√
Gp

∂

∂yi
p

√
Gpv

i
p = 0,

∂vk
p

∂t
+ vm

p vk
p ,m +Gkm

p

∂pp

∂ym
p

+ δ3k

∂yk
p

∂X3
g = 0 ,

where the index p denotes quantities in the yi
p system.

Mesoscale models that use map projections to define topography in the XY Z system
solve equations like (4.6) which are approximations of eqs. (4.4) generated by the correct
topography equation Zh(X,Y ). The results of sect. 3 show that the error of Zhp(X,Y )
can be larger than the height H used in some mesoscale studies, a result that can invali-
date the usefulness of model equations like (4.6). In principle we have to solve eqs. (4.4)
and (4.6) with pertinent boundary conditions to compare the meteorological fields and
determine the error generated by the innacuracy of Zhp(X,Y ), this is not an easy task
because there are no analytical solutions for problems with complex topography. To get
precise meteorological fields we consider the stationary flow around a two-dimensional
earth with radius a and topography top(λ, φ) = 0 as fig. 9 shows, so that the governing
equations are

(4.7) ∇ · �V = 0,
1
ρ0

∇P = −(�V · ∇)�V − gẐ.

The topography equation and the boundary condition for �V are

(4.8) Zh(X,Y ) = −a +
√
a2 − Y 2, �V · n̂|Z=Zh

= 0.

The velocity �V that satisfies the boundary condition and the continuity equation can be
obtained from the flow around a circular cylinder and is

(4.9) V = V0(1 + R−2 − 2ȳ2R−4), W = −2V0ȳ(1 + z̄)R−4 ,

where R = [ȳ2+(1+ z̄)2]1/2, ȳ = Y/a, z̄ = Z/a. The pressure P is obtained from the mo-
mentum equation. The pressure p(�y) and velocity �v(�y) in terrain-following coordinates
yi are obtained from (4.3) but to analyse the fields pp(�yp), �vp(�yp) from map projections
it is enough to work with P and �V. From (4.5) it follows that the equation top(λ, φ) = 0
yields Zhp(X,Y ) = 0 and the terrain-following coordinates

y1p = X, y2p = Y, y3p = Z

for any map projection, hence the governing equations are

∇ · �vp = 0,
1
ρ0

∇pp = −(�vp · ∇)�vp − gẐ ,
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Table I. – Terrain elevation Zh (eq. (4.8)), components V (Y, Z), W (Y, Z) (eq. (4.9)), vp(Y, Z),
wp(Y, Z) (eq. (4.10)), and percentage error δvp for some Y values with a = 6378 km and V0 =
5 ms−1.

Y Zh V (a) W (a) δv
(a)
p V (b) W (b) δv

(b)
p

0 0.0 10.0 .00 0.0 10.0 .00 0.0
250 −4.9 10.0 −.39 0.2 10.0 −.39 0.2
650 −19.6 9.8 −1.00 1.6 9.9 −1.01 1.1
882 −78.9 9.7 −1.33 2.9 9.8 −1.37 1.9
1665 −178.9 9.1 −2.29 10.1 9.3 −2.52 7.3

vp wp vp wp

10.0 0.0 10.0 0.0

(a) Calculations with Z = 0.

(b) Calculations with Z =
√

a2 − Y 2 − a.

with the boundary condition v3p(X,Y,Z = 0) = 0. The solution to this problem is a
uniform flow and if the condition �V = �vp is imposed on Y = Z = 0, eq. (4.9) yields

(4.10) �vp = vpŶ + wpẐ with vp = 2V0, wp = 0,

pp(�yp) is easily obtained. The pressure P (Y,Z) is usually calculated from the momentum
equation by solving ρ−1

0 ∇2P = −∇· [(�V ·∇)�V] but to simplify computations we compare
the isobars which are calculated as follows. Let Z∗(Y ;Y0, Z0) and Z∗

p (Y ;Y0, Z0) be the
isobars that pass by (Y0, Z0),

P [Y,Z∗(Y ;Y0, Z0)] = P [Y0, Z0], pp[Y,Z∗
p (Y ;Y0, Z0)] = pp[Y0, Z0].

If we impose the boundary condition

P (Y0 = 0, Z0) = pp(Y0 = 0, Z0)

P (Y,Z) and pp(Y,Z) have the same pressure value on the isobars Z∗(Y ; 0, Z0) and
Z∗

p (Y ; 0, Z0), respectively. We have Z∗
p (Y ; 0, Z0) = Z0 and Z∗ is obtained by solving

the ordinary differential equation

∂P

∂Y
+

∂P

∂Z

dZ∗

dY
= 0 with Z∗(0; 0, Z0) = Z0.

From eqs. (4.7) and (4.9) we get the equation

dZ∗

dY
= − Wa−1{V (1 + z̄)−1[−3 + 4ȳ2/R2] + Wȳ−1[1 + 4ȳ2/R2]}

Wa−1{V ȳ−1[−1 + 4ȳ2/R2] + W (1 + z̄)−1[1 + 4(1 + z̄)−2/R2]} − g

which is solved numerically by the Gear method.
Table I reports the correct terrain elevation Zh(X,Y ), velocity components V , W and

the percentage error δvp = |vp/V − 1| × 100 for Z = 0,
√
a2 − Y 2 − a, Y ∈[0,1665 km],

a = 6378 km and V0 = 5 ms−1, with vp = 2V0 and wp = 0 for all Y , Z. Table II reports
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Table II. – Points (Y, Z∗(Y ; 0, 0)) and (Y, Z∗
p (Y ; 0, 0)) on the isobars P (Y, Z∗) = P (0, 0) and

pp(Y, Z∗
p ) = pp(0, 0). Notation 1.6[−5] means 1.6 × 10−5.

Y 0 250 650 882 1665

Z∗ 0 1.6[−5] 1.0[−4] 1.9[−4] 6.3[−4]
Z∗

p 0 0 0 0 0

some points (Y,Z∗) and (Y,Z∗
p ) of the isobars that pass by Y0 = Z0 = 0. We observe that

δvp increases from 0 to 10% as Y goes from 0 to 1665 km while |Zh| and |W | increase up
to 179 km and 2.52 ms−1, respectively, although the isobars Z∗(Y ; 0, 0) and Z∗

p (Y ; 0, 0)
are essentially the same. The difference between �V and �vp is large for Y ∈[0,1665] and
it is clear that such a difference comes from the innacuracy of Zhp(X,Y ), which in turn
is generated by the “earth curvature” and the use of map projections. Of course, in
this example we have ignored important factors controling the fluid motion such as the
tridimensional nature of the problem, the earth rotation, the stratification, a complex
topography and the time evolution of atmospheric flows, but we may expect that these
factors will generate larger differences between the meteorological fields obtained from
the correct topography Zh(X,Y ) and those from Zhp(X,Y ). To this we have to add
the known fact that in a nonstationary flow the differences between velocities �V, �vp and
pressures P , pp reported in tables I, II can generate qualitatively different mesoscale flows
as the time t increases because of the nonlinearity of governing equations [19]. These
differences may be particularly important for some mesoscale meteorological applications
such as the study of diffusion and transport of pollutants which are phenomena that
depend of an accurate description of small-scale motions [20,21].

5. – Conclusions

The atmospheric modelation is benefited by the international effort to develop accu-
rate Digital Elevation Models {λk, φk, hk} with respect to an ellipsoidal Earth model E
because, in principle, the effects of topography can be considered with some detail. The
transformation T provides a simple way to take advantage of such an effort because it
yields a DEM {Xk, Yk, Zk} on the tangent plane T of interest, as good as the original
one. In fact, we showed that i) T yields the unique points (Xk, Yk) on T (module a unit
of length) for which we can compute the correct terrain elevation Zk using the data λk,
φk, hk alone, and ii) the uncertainty in Xk, Yk, Zk is bounded linearly by the one of λk,
φk, hk.

Map projections were developed with the purpose of transfering places on an Earth
model E to points on a flat sheet of paper. This poses the nontrivial problem of esti-
mating the correct terrain elevation when map projections are used to get a DEM with
respect to a tangent plane T because map projections yield points (Xp

k , Y
p
k ) on T without

considering the terrain height information. In fact, since the distance between a point
(Xp

k , Y
p
k ) and the point (Xk, Yk) for which we know the correct height Zk increases from

zero to several kilometers as (Xp
k , Y

p
k ) moves away from the origin (0, 0) (see fig. 6), the

height Zp
k on (Xp

k , Y
p
k ) cannot be calculated correctly using the corresponding data λk,

φk, hk alone. The use of the uncertainty reported for data from GTOPO30, showed that
the approximations Zp

k ∼ hk and Zp
k ∼ Zk are valid or consistent with the accuracy of
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the data λk, φk, hk on a region R that may be small with respect to a model domain
such as Da, Db, Dc. Consequently the application of such approximations beyond R
can yield a terrain height whose absolute error is similar or larger than the height of
a tridimensional mesoscale domain (fig. 9). The estimation of R is possible only with
the knowledge of ∆λk, ∆φk, ∆hk, if it were unknown (as occurs with some data bases
including GTOPO30) the use of map projections to get a DEM on domains such as Da,
Db, Dc, may have no sense because of the uncertainty of the estimated DEM. Proba-
bly, map projections do not correspond with the international tendency to develop both
accurate DEMs and mesoscale models that consider with more detail the topography.
As the data become more accurate the region of correctness of approximations Zp

k ∼ hk

and Zp
k ∼ Zk becomes smaller and hence sophisticated methods have to be used in order

to get a DEM on the points (Xp
k , Y

p
k ) with an accuracy that is consistent with that of

the original DEM. Instead of this it may be more easy to use the DEM given by the
transformation T .

Throughout the manuscript we have considered how to get a reliable DEM on a
tangent plane T with a given DEM on a ellipsoidal Earth model E , but this does not solve
the problem of getting a DEM with the horizontal resolution of a given computational
grid. Several methods have been proposed in the literature (see, e.g., [8,9]) and it is clear
that we can use them with the DEM given by the transformation T instead of the DEM
obtained via map projections.

The fact that the Earth curvature generates a terrain height as Zk = −217,−60 or
−33 km for regions Da, Db, Dc suggests that such a horizontal domain may not be
the best choice to consider topographic effects on the atmosphere on a model domain
as large as them. For instance, to describe correctly the topography on Db we have
to use a tridimensional model region with a height of approximately 75 km instead of
17.8 km used in ref. [16] increasing the computational cost of the mesoscale modelation.
Probably, the effects of the Earth curvature become important or are better represented
in a tridimensional region that uses a spherical horizontal domain such as that described
in subsect. 2.3.

There has been an increasing need to assess the uncertainty in mesoscale meteoro-
logical models (MMMs) as input to air quality models; for instance, if the wind field is
wrong no level of sophistication in the atmospheric chemistry will remedy the error due
to this deficiency. It is known that MMMs have an uncertainty that arises from factors
such as the spatial resolution, the uncertainty in the initial meteorological fields or the
kind of turbulence models and the results of this work suggest that the innacuracy of
a topography obtained via map projections may be an important source of uncertainty.
Apparently there is no physical, mathematical or computational motivation to use this
kind of topographic models, instead of them one may employ the DEMs obtained with
the results of sect. 2. Up to date many studies have used MMMs with a map-projection
topography and the complexity of model equations makes too difficult the estimation of
the error generated by such topographic models. It seems that the best way to determine
this error is to carry out calculations with the DEMs obtained with the transformations
of sect. 2 and compare results.
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Appendix A.

Projection formulae

The formuale for E with ε = 0 and R = a were taken from [12, 13] and modified to
satisfy (3.2) with λ0 = λc = 0 and φ0 = φc = 24◦. Oblique stereographic projection
([13], p. 63)

Xp = 2Rζ−1 cosφ sinλ ,
Y p = 2Rζ−1(cosφc sinφ− sinφc cosφ cosλ) ,

with ζ = 1+sinφc sinφ+cosφc cosφ cosλ. Universal transverse mercator projection [12]

Xp = 2−1R log[(1 + cosφ sinλ)/(1 − cosφ sinλ)] ,
Y p = R tan−1[tanφ/ cosλ] −Rφc .

Lambert projection [12] with one standard parallel at φc: we set ρc = R cotφc and
ρ(φ) = [tan(π/4 − φ/2)/ tan(π/4 − φc/2)]sinφc to obtain [12]

Xp = ρcρ(φ) sin(λ sinφc), Y p = ρc[1 − ρ(φ) cos(λ sinφc)].

Lambert projection [12] with two standard parallels at φ1 and φ2 (φ1 < φ2): we define
ρ1 = R cosφ1/ sinφ0 with [12]

sinφ0 =
log[cosφ1/ cosφ2]

log[tan(π/4 − φ1/2)/ tan(π/4 − φ2/2)]

and ρ2(φ) = ρ1[tan(π/4 − φ/2)/ tan(π/4 − φ1/2)]sinφ0 to get

Xp = ρ2(φ) sin(λ sinφ0), Y p = ρ2(φc) − ρ2(φ) cos(λ sinφ0).
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