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Summary. — We investigate the dynamic stability of electrodynamic tethers of the
type envisaged for future applications like deorbiting spacecraft and/or propulsion.
In such tethers, electrodynamic forces couple the tether natural oscillations in the
orbital plane with those out of the orbital plane. The investigation is done with
reference to a model where the time variation of the tether current is assumed
to be given. In addition, we address both the case of a bare tether and that of an
insulated conducting tether collecting current through a terminating balloon. In the
linear approximation, we find possible instabilities of the tether libration modes, at
moderate current values, for both the case of a bare tether and that of an insulated
conducting tether. Instabilities are also found for the lateral oscillations (string
modes) and the case of a bare tether. The equations obtained allow a discussion of
the instability mechanisms.

PACS 94.20.-y – Physics of the ionosphere.

1. – Introduction

Electrodynamic tethered systems are functioning on the basis of the electrodynamic
potential (e.m.f.) which arises as a consequence of the motion of the conducting tether
through the Earth’s magnetic field. A tether deployed upwards, and moving eastwards,
charges positively with respect to the ionosphere towards the top and, in a passive case,
negatively towards the bottom. This causes current circulation in the tether.

Future applications of electrodynamic tethers go essentially in two directions (both
using the current circulating in the conducting tether). The first, which is significant
especially in connection with the International Space Station, is that of using this current
to obtain propulsion. For that purpose, one needs to reverse the natural direction of
current in the tether through the use of a power supply which overcomes the motional
e.m.f.

The second application, which is important with respect to the problem of accumula-
tion of debris in Near Earth’s orbits [1], is that of using electrodynamic tethers to deorbit
LEO objects (either satellites or rocket upper stages). In this case, one uses the fact that,
associated with the natural current in the tether, there is an electrodynamic drag force
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which, indeed, lower its orbit. Several investigations on such electrodynamic deorbiting
have been performed recently [2, 3], for different system configurations (both bare and
insulated tethers with and without a conducting balloon at the upper end), with very
promising results concerning the deorbiting times.

A NASA test mission on electrodynamic deorbiting, called ProSEDS [4], is under
preparation and will fly in the year 2001. There an electrodynamic tether system will be
used to deorbit the upper stage of a Delta rocket from an initial (circular) orbit at 400
km of altitude.

For both the applications mentioned above (i.e. propulsion and electrodynamic de-
orbiting), one obviously needs to have significant currents in the tether to enhance the
electrodynamic forces. Because of this, the electrodynamic forces may become significant
with respect to gravity gradient forces and a crucial problem to investigate is that of the
stability of the system.

Notice that, already in the years of preparation of the TSS missions [5], several investi-
gations were performed with the goal of devising means of controlling tether oscillations
(see, for example, ref. [6]). However, these analyses were not taking into account the
electrodynamic forces. More recent simulations [7], including electrodynamic forces and
referred to the ProSEDS mission, do show the onset of instability of tether transverse
oscillations during the orbital motion of the system.

If there are instabilities, as these simulations indicate, it is imperative to try to un-
derstand the corresponding physical mechanisms in such a way as to be able to exercise
some control law. On the other hand, it would be certainly difficult to obtain such an
understanding out of complex numerical simulations (like those of ref. [7]), involving re-
alistic ionospheric and atmospheric models as well as thermal models of the tether, and
referring to a specific mission (and, therefore, to a specific tether system).

For this reason, we will approach in this paper the problem of tether stability in a dif-
ferent way by imposing, rather than calculating self-consistently, a reasonable model for
the time variation of the electrical current in the tether and then studying the equations
for in-plane and out-of-plane oscillations of the tether in a mostly analytical way.

A similar approach has indeed been followed in two recent papers [8, 9] in which,
however, the current in the tether was assumed to be constant in time (and along the
tether length). Furthermore, ref. [8] deals with the case of a rigid tether, while ref. [9]
simulates tether flexibility by using a two-bar model for the tether. In both cases the
dynamics is described by ordinary differential equations in time.

The analysis that we present in this paper is more realistic. First of all, we refer from
the beginning to a truly flexible tether, analyzing therefore a system of partial differential
equations (the independent variables being time and the coordinate along the vertical).
Secondly, we allow for a variation of current with time simulating the tether response to
the time variations of the ionospheric electron density. Finally, we do the analysis for
two different tether configurations. The first is an insulated conducting tether collecting
current through a conducting balloon at one of its terminations and the second is a bare
tether collecting current from the ionosphere all along its length. In the second case,
the current, besides varying in time, is allowed to vary, as in fact does, along the tether
length.

The analysis is however limited to the linear approximation in the amplitude of tether
oscillations, so that the effect of non-linearities (which might be important on account
of the results in ref. [8]) cannot be predicted.

The paper is organized as follows. In sect. 2 we write and discuss the basic equations
of the lateral oscillations of a flexible tether in the presence of electrodynamic forces. It
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is seen that electrodynamic forces couple in-plane and out-of-plane oscillations (which
are uncoupled in the absence of current) and it is this coupling which eventually induces
instability of various modes.

In sect. 3 we present the models that we are using for the tether current, appropriate
to the two configurations mentioned above, and the corresponding dynamical equations.
In sect. 4 we address the problem of librations and derive, out of the original system
of partial differential equations, a problem differential in time only (for both the bare
and the insulated tether). In sect. 5 we address the problem of higher-frequency lateral
oscillations (i.e. the string modes) and, as in the case of librations, derive a system
of ordinary differential equations in time. Section 6 is a discussion of the mechanisms
driving instabilities, for both librations and lateral modes. Sections 7 and 8 contain
numerical results for the libration and for the lateral modes, respectively. Finally, sect. 9
summarizes and discusses the results that we have found.

2. – Basic equations for tether oscillations

The system we refer to is made up of a satellite (mass ms) with attached a conducting
tether (mass mt) deployed upwards and terminated with a ballast mass mb. Supposing
ms � (mb,mt), the center-of-mass of the tether system will be located at the spacecraft.
We refer, in all the treatment, to a circular orbit and choose a coordinate system with
origin in the center of mass of the tether system, the x-axis pointing in the direction of
orbital motion, the z-axis along the vertical (directed away from the Earth’s center) and
the y-axis out of the orbital plane and directed in such a way as to obtain a right-handed
coordinate system.

We identify the position of a tether element ds, at a given time t, by coordinates (ξ,
η, ζ = z+ u), where (0, 0, z) would be the position of that element with the tether along
the vertical (the equilibrium position in the presence of gravity gradient forces only).

The tether transverse oscillations (i.e. oscillations in a plane perpendicular to z) will
be characterized by certain functions ξ(z, t), η(z, t). Alternatively, we can describe such
oscillations in terms of two angles αin(z, t) and αout(z, t). Of these, αin is the angle with
respect to the vertical of the projection on the orbital plane of the local tangent to the
tether element ds and αout is the inclination of the same local tangent with respect to
the orbital plane.

In a linear approximation in the amplitudes of the angles αin and αout, which will be
used all along this paper, we have

dz
ds

∼ 1, αin ∼ ξz, αout ∼ ηz,(1)

while it is seen that the longitudinal oscillations u are second order in the angles. Here,
and in the following, the suffix z denotes partial derivative with respect to z, i.e. for
example ξz = ∂ξ/∂z, etc.

In such a linear approximation, the equations for the in-plane and out-of-plane dis-
placements ξ and η are uncoupled from the equation for the longitudinal displacements
u and can be written as

¨̃
ξ = pξ̃zz + αfex, ¨̃η + η̃ = pη̃zz + αfey.(2)
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Here the dot represents derivative with respect to a normalized time

τ = ω0t,

ω0 being the orbital frequency (ω0 = 1.16× 10−3 rad/s for a circular orbit at 400 km of
altitude) and all lengths are normalized to the tether length L (i.e. ξ̃ = ξ/L, etc.). It is,
furthermore,

p =
3 + µ

µ
, µ =

mt

mb
.(3)

The terms proportional to α are the x and y components of the electrodynamic force.
Equations (2), with α = 0, can be found in several places in the literature on tether
dynamics [10,11]. In particular, in ref. [11], a derivation is given which takes into account
also high-frequency longitudinal oscillations of the tether.

From the analysis of ref. [2], which refers to the case of a dipole model for the Earth’s
magnetic field, we obtain, for the electrodynamic terms,

α =
B0I

mtω2
0

(4)

with B0 the Earth’s magnetic field (depending on altitude), and

fex = −[
cosλ+ 2ηz sinλ sin θ

]
, fey = sinλ

[
cos θ + 2ξz sin θ

]
.(5)

Here λ is the inclination of the orbit with respect to the magnetic equator and θ the
orbital anomaly measured from the intersection of the plane of the orbit with the plane
of the magnetic equator (θ = ω0t = τ).

The current I depends on time because it follows the variations in the ionospheric
density and (in the case of a bare tether), also because it depends on the local angles
αin, αout which, in turn, depend on time. Further time dependences (in α) would be
obtained with a more refined model of the Earth’s magnetic field including harmonics
higher than the dipole. However, the amplitudes of even the first-harmonic components
are smaller (by a factor ∼ 10) than the amplitude of the dipole [12], so that we believe
that their effect will be smaller than that obtained from the day-night variation of the
ionospheric density.

From eqs. (5), we see that the electrodynamic forces act on the dynamics of transverse
oscillations in two different ways. First of all, they provide source terms (not depending
on ξ, η) in the equations. Secondly, they couple the in-plane and the out-of-plane oscilla-
tions (for λ �= 0). It is important to notice that this coupling involves the first derivatives
(with respect to z̃) of the displacements, i.e. ξ is coupled to ηz and η is coupled to ξz.
This implies that the parity, with respect to z̃, of the dynamical terms in eqs. (2), is
opposite with respect to the parity of the terms giving the electrodynamic coupling.

Let us now discuss the boundary conditions at the two tether terminations z̃ = 0 and
z̃ = 1 to be associated with eqs. (2). In both cases we have to impose that the tether
tension equals the total force on the corresponding mass plus its acceleration. The tether
tension can be written [11] as

F t = Lmtω
2
t îs,
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with

îs =
[
ξz îx + ηz îy + (1 + uz )̂iz

]dz
ds

the unit vector along the tether direction and

ω2
t = pω2

0 .

As we will see, ωt is a frequency characterizing the tether lateral oscillations, while the
tether librations have frequencies of order ω0. At the ballast mass (z̃ = 1), the balance
between tension force and total force plus acceleration can therefore be written (for the
x and y directions) as

Lmtω
2
t

[
ξz îx + ηz îy

]
1
=

[−mbLω
2
0
¨̃
ξ + Fex

]
1
îx +

[−mbLω
2
0(¨̃η + η̃) + Fey

]
1
îy,

where the index 1 denotes that all quantities have to be evaluated at z̃ = 1 and Fex(1)
and Fey(1) are the x and y components of a possible electrodynamic force at the ballast
mass. For this electrodynamic force, we can write

F e(1) = IB0

(̂
is × b

)
∆lb,

where we have assumed the ballast mass to be equivalent to a tether element of length
∆lb and the vector b is given by [2]

b ≡ (
3 sinλ sin θ cos θ, 3 sinλ sin2 θ cosλ, 3 sin2 θ sin2 λ− 1

)
.

For a bare tether, it is I = 0 at the ballast mass termination. For an insulated tether
with a conducting balloon at z = 1, we will have ∆lb ∼ rb with rb the radius of the
balloon. As rb � L, excluding the case of enormous currents, Fex and Fey will be
negligible in comparison with the remaining terms in the balance conditions. Thus, for
both configurations, we derive for the boundary conditions at z̃ = 1

¨̃
ξ(1) + µpξz(1) = 0, ¨̃η(1) + η̃(1) + µpηz(1) = 0,

or, making use of eq. (2) written in z̃ = 1,
[
ξ̃zz + µξ̃z

]
1
= 0,

[
η̃zz + µη̃z

]
1
= 0.(6)

On the other hand, at the satellite end (z̃ = 0), because of the high satellite mass, it is
reasonable to suppose that the termination of the tether anchored to the satellite does
not move (except for following the satellite motion). The boundary conditions at z̃ = 0
will therefore be

ξ̃(0) = η̃(0) = 0.(7)

Before proceeding to an analysis of the effects of the electrodynamic forces, it is useful
to recall what we obtain from eqs. (2) when α = 0 (i.e. I = 0). Seeking the solutions in
the form

ξ̃(z̃, t) = sin (kz̃)x(t), η̃(z̃, t) = sin (kz̃)y(t)(8)
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which satisfy the boundary conditions (7), we obtain a differential problem (in t only)
for x(t) and y(t) given by

ẍ+ k2px = 0, ÿ +
(
1 + k2p

)
y = 0,(9)

where k will have to be determined through the boundary conditions (6) at z̃ = 1.
Introducing there the ansatz (8) leads to the following dispersion equation for k (excluding
the solution k = 0):

−k sin (k) + µ cos (k) = 0.

This has a solution

k20 ∼ µ(10)

corresponding to k � 1, and also an infinite number of other solutions with

k ≡ kn ∼ nπ +
µ

nπ
, n = 1, 2, ... .(11)

Using (10), eqs. (9) become

ẍ+ (3 + µ)x = 0, ÿ + (4 + µ)y = 0,

so that we recognize (if we neglect µ), the typical frequencies
√
3ω0 and 2ω0 of the rigid

pendulum. There is a correction to these frequencies (due to µ) and, in addition, the
wire is not rigid but bended according to the law sin (

√
µz̃).

On the other hand, the solutions (11) for k represent the true lateral oscillations of
the string with both ends fixed at frequencies (normalized to ω0) which are multiples
of π

√
p (with, again, a correction proportional to µ). From the definition (3) of p, we

see that, for mt � mb (as will be usually the case), it is p � 1 and, hence, the lateral
frequencies (starting from the fundamental mode n = 1) will be higher than the libration
frequencies.

If we now turn to the complete problem (2) including electrodynamic forces, we see
however that an ansatz like (8) for ξ and η does not work because ξz and ηz on the
right-hand sides of the equations would give terms proportional to cos kz̃ which cannot
be matched with the remaining terms in the equations. This has obviously to do with
the fact, already remarked, that the parity of the terms giving electrodynamic coupling
is opposite to that of the dynamical terms.

3. – Models for the tether current and corresponding dynamical equations

In general, the current has to be computed self-consistently, while the tether is orbiting
(and oscillating) through the Earth’s ionosphere. For the purpose of this paper, which is
addressed to fundamentals of tether dynamics in the presence of electrodynamic forces,
the time dependence of the current will however be given. More precisely, we will use
two models which are appropriate for the two cases of an insulated conducting tether
which is collecting current through a conducting balloon at one of its terminations and
the case of a bare metallic tether.
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3.1. Insulated conducting tether . – For an insulated conducting tether, the current
is constant along the tether length and depends only on time, its time variation being
induced by the ionospheric density variation. The real ionosphere will of course exhibit
a spectrum of frequencies with different amplitudes. Among them, however, a basic
frequency will be that associated to the day-night variation which will be equal to the
orbital frequency ω0. Consequently, we will take, as our model for the current relevant
to the case of an insulated tether

I = I0
[
1 + δ sin (ω0t+ φ)

]
.(12)

The phase φ in eq. (12) is a phase with respect to the orbital motion θ = ω0t. As
the current in the tether, once it is switched on, follows obviously the day-night iono-
spheric variation, the phase φ will be determined only by the orbit of the system under
consideration (and will vary while the orbit rotates around the Sun).

Notice also that, in the electrodynamic terms of eqs. (2), also the orbital inclination
λ varies with time and can be expressed as

λ = j + φb sin (ωmt),(13)

where j is the inclination of the orbit over the Earth’s equator and φb = 11.5◦. This
variation is on a period T = 2π/ωm = 1 day, which is much longer than the orbital
period, and, in most cases, will be neglected in the following treatment.

Corresponding to (12), we will write in eqs. (2)

α = εs(t)

with

ε =
B0I0
mtω2

0

, s(t) = 1 + δ sin (ω0t+ φ).(14)

With that, only two dimensionless parameters (ε and µ) appear in eqs. (2) governing the
tether dynamics.

Like in the case I = 0, the tether modes of oscillation will be a superposition of
libration modes (low frequency) and of lateral modes at higher frequencies. We will
therefore write in general

ξ(z̃, t) = ξ0(z̃, t) + ξ1(z̃, t), η(z̃, t) = η0(z̃, t) + η1(z̃, t),(15)

where we simply refer with an index “0” to the libration modes and with an index “1” to
the lateral modes. These lateral modes will in turn be an infinity of modes at frequencies
which are integer multiples of π

√
p.

If we substitute (15) in eqs. (2) and then average over times of the order of the period
of the high-frequency oscillations, we remain with

¨̃
ξ0 = pξ̃0zz − εs(t)

[
cosλ+ 2η0z sinλ sin θ

]
,(16)

¨̃η0 + η̃0 = pη̃0zz + εs(t)
[
sinλ cos θ + 2ξ0z sinλ sin θ

]
.
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Notice that the source terms in eqs. (2) survive the average, while the parts proportional
to η1z and ξ1z of the coupling terms average out to zero. The resulting equations (16)
contain therefore libration modes only.

On the other hand, subtracting (16) from (2), we remain with the problem of lateral
modes given by

¨̃
ξ1 = pξ̃1zz − 2εs(t)η1z sinλ sin θ,(17)
¨̃η1 + η̃1 = pη̃1zz + 2εs(t)ξ1z sinλ sin θ.

Thus the lateral mode problem, in our linear approximation, will be a homogeneous
problem.

3.2. Bare tether . – For the case of a bare tether, the current does vary along the tether
length. Using the theory of OML current collection [13], we obtain for the tether current

I(z̃, t) = i0(t)
∫ 1

z̃

dz′
[
1 + Φ̃(z′)

]1/2

with

i0(t) =
π

2
n(t)evtheLrw, Φ̃ = eΦ/kTe

rw being the tether radius, vthe the electron thermal velocity and n(t) the electron density.
Disregarding the tether electrical resistance, it is [2]

Φ̃(z̃, τ) = Φ̃0

∫ z̃

0

dz′
[
cosλ cosαin cosαout + 2 sinλ sin τ sinαout

]

with Φ0 = V0B0L and V0 the orbital velocity. With that, in the linear approximation,
and for Φ̃� 1, we obtain for the current

I(z̃, τ) =
2
3
(
cosλ

)1/2
I0
n(t)
n0

[(
1− z3/2

)
+
3
2
I l
1 tanλ sin τ

]
,(18)

where n(t) is the electron density, n0 is its average value, and

I0 =
π

2
en0vtherwLΦ̃

1/2
0 .(19)

Furthermore, we have introduced

I l
1 =

∫ 1

z̃

dz′
η

(z′)1/2
.

Assuming now, in analogy with (12), a sinuisoidal variation for the ionospheric density,
i.e. writing

n(t) = n0
[
1 + δ sin (ω0t+ φ)

]



LINEAR STABILITY OF ELECTRODYNAMIC TETHERS 377

and using eq. (18) for the current in eqs. (2), we end up, in the linear approximation,

with

¨̃
ξ = pξ̃zz − ε0s(t)

[(
1− z̃3/2

)(
cotλ+ 2ηz sin θ

)
+
3
2
I l
1 sin θ

]
,(20)

¨̃η + η̃ = pη̃zz + ε0s(t)
[(
1− z̃3/2

)(
cos θ + 2ξz sin θ

)
+
3
4
I l
1 tanλ sin (2θ)

]
,

where

ε0 =
2
3
ε
(
cosλ

)1/2 sinλ.(21)

Introducing now the superposition (15) of librations and lateral modes in eqs. (20), and
then averaging the resulting equations over the shorter time scales of the lateral modes,
we obtain for librations

¨̃
ξ0 = pξ̃0zz − ε0s(t)

[(
1− z̃3/2

)(
cotλ+ 2η0z sin θ

)
+
3
2
I l
10 sin θ

]
,(22)

¨̃η0 + η̃0 = pη̃0zz + ε0s(t)
[(
1− z̃3/2

)(
cos θ + 2ξ0z sin θ

)
+
3
4
I l
10 tanλ sin (2θ)

]
,

where

I l
10 =

∫ 1

z̃

dz′
η0

(z′)1/2
.

As for the higher-frequency lateral modes, we obtain the equations

ξ̈1 = pξ1zz − 2ε0s(t) sin θ
[(
1− z̃3/2

)
η1z +

3
4
I l
11

]
,(23)

η̈1 + η1 = pη1zz + 2ε0s(t) sin θ
[(
1− z̃3/2

)
ξ1z +

3
4
I l
11 tanλ cos θ

]

with

I l
11 =

∫ 1

z̃

dz′
η1

(z′)1/2
.

Notice that there is no coupling between librations and lateral modes in our treatment
(due to their frequency separation). Both problems are linear and the only coupling we
will be talking about, in both problems, will be that between in-plane and out-of-plane
modes.

4. – Librations

In this section we will address the libration modes in the presence of electrodynamic
forces for the two models of the tether current illustrated in sect. 3. Starting from the
original problem (see eqs. (16) or (22)), which is a partial differential problem, we will
manage to obtain a system of ordinary differential equations in time only.
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4.1. Insulated tether . – For I = 0, the case of librations was derived from the ansatz (8)
seeking solutions for k � 1. Notice that, for k � 1, the ansatz (8) corresponds to a
polynomial in z̃ containing only odd powers of z̃ and that cannot be used for I �= 0,
because the odd powers of z̃ on the left-hand sides of eqs. (16) would give even powers
of z̃ in the electrodynamic coupling terms. We will therefore modify the ansatz (8) to

ξ̃0(z̃, t) =
∞∑

n=1

z̃nxn(t), η̃0(z̃, t) =
∞∑

n=1

z̃nyn(t),(24)

i.e. to that of an infinite series containing all powers of z̃. Inserting that into eqs. (16)
and then equating equal powers of z̃ in both equations, we obtain, from the terms which
are constant with respect to z̃,

0 = 2px2 − εs(t)
[
cosλ+ 2y1 sinλ sin θ

]
,(25)

0 = 2py2 + εs(t)
[
sinλ cos θ + 2x1 sinλ sin θ

]
,

while, for n ≥ 1,

ẍn = p(n+ 2)(n+ 1)xn+2 − 2εs(t) sinλ sin θyn+1,(26)
ÿn + yn = p(n+ 2)(n+ 1)yn+2 + 2εs(t) sinλ sin θxn+1.

Notice that eqs. (25) are equivalent to impose that the original equations (16) are verified
in z̃ = 0.

To the above set of (ordinary) differential equations for the x′ns and y
′
ns, we have to

add the boundary conditions (6) in z̃ = 1 which, using (24), can be rewritten as

µx1 +
∞∑

m=2

amxm = 0, µy1 +
∞∑

m=2

amym = 0(27)

with

am = m(m− 1 + µ).

The method we have sought to investigate the solution to this problem is the following.
Suppose we stop the infinite polynomials (24) to the power n0. Then the boundary
conditions (27), truncated at m = n0, can be solved with respect to xn0 , yn0 . Going then
to eqs. (26), written for n = n0 − 2, we can solve them with respect to xn0−1, yn0−1.
These can be used in eqs. (26) again, written now for n = n0 − 3, and so on, until we
arrive at the equations corresponding to n = 1, which are

ẍ1 = 6px3 − 4εs(t)y2 sinλ sin θ,(28)
ÿ1 + y1 = 6py3 + 4εs(t)x2 sinλ sin θ.

In these equations, through the previous procedure, we will have obtained x3 and y3
expressed in terms of x1, y1, x2, y2, so that, combining with eqs. (25), we will have a
closed problem.

Obviously, by varying n0, i.e. by varying the power at which we stop the polynomial
ansatz (24), we will end up with different expressions for x3, y3 (in terms of x1, y1, x2,
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y2) to use in eqs. (28) and the method will work only if, upon increasing n0, the results
for x3, y3 will differ less and less.

This is in fact what we find to occur. Without reporting calculations (see ref. [14]),
we find that, going beyond a cubic ansatz for ξ̃0, η̃0, introduces corrections which are
negligible except for unreasonably high currents (> 10 A for the typical tethers we can
consider for deorbiting). On the other hand, with a cubic ansatz for ξ̃0, η̃0, and using
the procedure outlined, we end up with the following system of equations coupling x1
and y1:

ẍ1 +
(
ω2

l − 4
p
ε2s(t)2 sin2 λ sin2 θ

)
x1 = −6a2

a3
εs(t)y1 sinλ sin θ + S(t),(29)

ÿ1 +
(
1 + ω2

l − 4
p
ε2s(t)2 sin2 λ sin2 θ

)
y1 =

6a2
a3

εs(t)x1 sinλ sin θ +R(t).

Here we have denoted with S(t) and R(t) the source terms (not containing x1 and y1) in
the two equations given by

S(t) = −3a2
a3

εs(t) cosλ+
1
p
ε2s(t)2 sin2 λ sin (2θ),

R(t) =
3a2
a3

εs(t) sinλ cos θ +
1
p
ε2s(t)2 sin (2λ) sin θ.

Furthermore, the frequency ωl (normalized to ω0) is defined by

ω2
l =

6pµ
a3

=
2(3 + µ)
2 + µ

,(30)

so that, for µ � 1, we obtain ωl ∼
√
3 which is the frequency of the in-plane oscillations

of the rigid pendulum.

4.2. Bare tether . – The relevant equations are now eqs. (22). Using the expansion (24)
for ξ0, η0, and then equating equal powers of z̃ is, however, not possible here because
the electrodynamic terms contain half integral powers of z̃. To proceed analytically, and
with the same method used in subect. 4.1, we approximate the term 1− z̃3/2 with 1− z̃
and substitute t1/2 with t in the integral I l

10. With that, we can again equate equal
powers of z̃ in eqs. (22). Limiting ourselves to the cubic approximation for ξ0 and η0, we
end up with the following equations for x1, y1:

ẍ1 +Ω2
1x1 = S(t) +

7
2
ε0s(t)y1 sin θ

[
1− 3a2

a3
+

3
7p
ε0s(t) tanλ sin (2θ)

]
,(31)

ÿ1 +Ω2
2y1 = R(t)− 2ε0s(t)

(
1− 3a2

a3

)
x1 sin θ,

where we have introduced

Ω2
1 = ω2

l − 4
p
ε20s(t)

2 sin2 θ,
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Ω2
2 = 1 + ω2

l +
3
4
ε0s(t)

(
1− 3a2

a3

)
tanλ sin (2θ)− 7

2p
ε20s(t)

2 sin2 θ,

S(t) = ε0s(t) cotλ
(
1− 3a2

a3

)
+
1
p
ε20s(t)

2 sin (2θ),

R(t) = −ε0s(t) cos θ
(
1− 3a2

a3

)
+
4
p
ε20s(t)

2 sin θ cotλ

and ω2
l is defined in eq. (30).

5. – Lateral oscillations

As in the case of librations, we will obtain, from the original partial differential prob-
lem (see eqs. (17) or (23)), an ordinary differential problem in time only. In the following
we do that separately for the two models of current presented in sect. 3.

5.1. Insulated tether . – In this case the relevant equations are eqs. (17). We now
introduce the expansions

ξ1(z̃, t) =
∞∑

n=1

xn(t)φn(z̃), η1(z̃, t) =
∞∑

n=1

yn(t)φn(z̃)(32)

in terms of the eigensolutions of the unperturbed system (i.e. the system with I = 0)

φn(z̃) =
√
2 sin (knz̃), kn = nπ, n = 1, 2, ... .

Multiplying all terms in eqs. (17) by φn(z̃), and integrating from z̃ = 0 to z̃ = 1, we
obtain

ẍn + k2npxn = −2εs(t) sinλ sin θ
∞∑

l=1

Inlyl,(33)

ÿn + (1 + k2np)xn = 2εs(t) sinλ sin θ
∞∑

l=1

Inlxl

with

Inl =
∫ 1

0

dzφn(z)
dφl

dz
.

It is easy to see that Inl �= 0 only when n and l have opposite parity. Therefore the n-th
order in-plane modes are coupled to all the out-of-plane modes with parity different from
n and vice versa. This excludes, in both equations, coupling terms almost resonating
with the proper frequency of the corresponding oscillator.
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5.2. Bare tether . – The relevant equations are eqs. (23). Expanding in series of the
orthonormal modes, as in the previous section, we arrive at

ẍn + k2npxn = −ε0s(t) sin θ
∞∑

l=1

(
2hnl +

3
2
gnl

)
yl,(34)

ÿn + (1 + k2np)yn = ε0s(t) sin θ
∞∑

l=1

(
2hnlxl +

3
2
tanλ cos θgnlyl

)
,

where

gnl =
∫ 1

0

dzφn(z)
∫ 1

z

dz′
φl(z′)
(z′)1/2

, hnl =
∫ 1

0

dz
(
1− z3/2

)
φn
dφl

dz
.

Equations (34) are, again, an infinite system of coupled equations for all the different
lateral modes. It is easy to realize, however, that, contrary to the case of the insulated
tether, in-plane modes of any given order n are now coupled to out-of-plane modes of
the same order. Due to the closeness of the proper frequencies of the two oscillators
xn and yn (and due to the fact that the other frequencies contained in the terms on
the right-hand sides of (34) are much smaller than the lateral frequencies), this implies
that some of the coupling terms are almost resonating with the proper frequency of the
corresponding oscillator. As we will see, this fact is of importance for stability.

6. – Instability mechanism

Before giving the results of a numerical analysis, let us note that eqs. (29) and (31),
that we have derived for librations, if we neglect terms non-linear in the current, are both
of the type

ẍ+ x = s(t)− fx(t)y, ÿ + ω̂2
2y = r(t) + fy(t)x,(35)

where ω̂2 = ω2/ω1, ω1 and ω2 being the unperturbed frequencies of the in-plane (x)
and the out-of-plane (y) oscillator, respectively. The right-hand sides, which reflect the
electrodynamic terms, contain both coupling terms (i.e. terms through which the in-
plane motions are coupled to the out-of-plane motions and vice versa), and source terms,
represented by s(t) and r(t). Let us first consider the effect of the coupling terms only.
The functions fx(t) and fy(t) in (35) are both proportional to sin (ω̂0t)I(t) and, therefore,
contain the beatings between the time variations due to the orbital motion and to the
current. With the current variation envisaged (see eq. (12)), these beatings will produce
frequencies 0, ω̂0 and 2ω̂0 with the frequency 0 (i.e. a term constant in time) being
produced only for φ �= π/2. In general, therefore, we can write

fx(t) = −β[
a1 + b1 sin (ω̂et)

]
, fy(t) = β

[
a2 + b2 sin (ω̂et)

]

with the frequency ω̂e being either ω̂0 or 2ω̂0 and where the constant β can be written
as

β =
B0I0
mtω̂2

1

sinλ,
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while the coefficients a1, a2, b1, b2 will be different for the two cases of the bare and the
insulated tether.

It can be seen that a system like (35), without source terms and with opposite signs in
front of the electrodynamic forces in the two equations, which is the case in our problem, is
unstable (see ref. [14] for detailed derivations). The instability is of a parametric type [15]
and is made easier when one of the beat frequencies that we get on the right-hand side
(through the products fxy and fyx) gets closer to the frequency of the unperturbed
oscillator on the left-hand side of the corresponding equation. Explicit results are given
in ref. [14].

Let us next consider the effect of the source terms only in eqs. (35). Clearly these
terms alone cannot cause any instability. However, upon increasing the current, the
response to these terms will of course be that of an increase in the oscillation amplitudes
both in plane and out of plane.

In addition, these source terms, in the equations for the in-plane and out-of-plane
oscillations, may contain frequencies which are close to the unperturbed frequencies of
the corresponding oscillators. This is the case for a source term in the second of eqs. (29)
and (31), referring to the out-of-plane librations, which exhibits a frequency 2ω0 almost
resonating with the frequency of the out-of-plane oscillator. This quasi-resonance induces
a long-term modulation over the basic oscillations so that the structure of the out-of-
plane solutions turns out to be that of a wave packet whose envelope has a period much
longer than the orbital period.

Consider now the complete case which, for librations, includes in the electrodynamic
forces both coupling and source terms. At small currents (or small values of β), the main
effect on the solutions will be that of the source terms, because the coupling terms in
eqs. (35) are proportional to x or y and, therefore, remain smaller than the source terms
until x and y are small. Upon increasing the current, however, the source terms will
induce larger oscillations (in particular this applies to the out-of-plane oscillations, with
reference to the quasi-resonance mentioned above). At some point, i.e. above some value
of the average current, the coupling terms in the two equations will become comparable
with the source terms and then will become greater. From that point on, we should
expect the instability phenomena due to coupling terms between in-plane and out-of-
plane modes.

Therefore, for the case of librations, before going eventually to an unstable regime, we
need to reach oscillations of a certain amplitude, so that the role of the coupling terms
in the electrodynamic forces becomes significant.

The problem of lateral modes ((33) or (34)) is more complicated because each mode,
of order n, is coupled to an infinity of other modes (in-plane and out-of-plane). However,
the basic structure represented by (35) is still represented in the problem as we see, for
example, by writing eqs. (34) only for mode n = 1. In addition, there are no source terms
in the lateral problem. Hence, we expect again instability above a certain threshold in
β. In addition, as the threshold gets smaller when one beat frequency on the right of
each equation approches the unperturbed frequency of the oscillator on the left side, we
expect that bare tethers (where coupling between in-plane and out-of-plane modes of
the same order and, therefore, almost of the same frequency, is possible) will show lower
thresholds than insulated tethers for which, as we have remarked, in-plane modes of a
given order are only coupled to out-of-plane modes of opposite parity and vice versa. In
this case, the mismatch between beat frequencies on the rigth-hand sides of the equations
and the unperturbed oscillator frequencies on the left sides will in fact be much higher.
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Fig. 1. – In-plane and out-of-plane libration angles for a bare tether as a function of time for
two values of ε. The solutions refer to µ = 0.25 and z̃ = 1.

7. – Numerical results for libration modes

7.1. Bare tether . – As we have noticed earlier on, the tether dynamics depends only on
two dimensionless parameters (ε and µ). Although we have obtained results for different
values of µ, all the solutions that will be shown graphically in the paper refer to µ = 0.25
(and several values of ε). This value, is obtained for a typical tether considered in previous
deboost studies [2, 3], i.e. an Al tether of length L = 5 km and radius rw = 0.4 mm,
weighting ∼ 7 kg and with a ballast mass mb ∼ 30 kg. In addition, in all the results
reproduced (and also for lateral modes), we used δ = 0.5 and φ = 0 for the parameters
characterizing the density modulation (and the corresponding modulation of the current).

For bare tether librations, fig. 1 gives a sequence of solutions of eqs. (31), correspond-
ing to µ = 0.25 and two values of ε. More specifically, what one finds plotted are the
angles αin ∼ ξ0z and αout ∼ η0z (in degrees) as a function of time for a 3 day period.
The angles refer to the termination z̃ = 1 of the tether.

Notice, first of all, the wave packet behaviour of the out-of-plane oscillations. This
is due, as was already anticipated, to a quasi-resonance between a frequency component
2ω0 in the source term in the out-of-plane equation and the basic frequency of the out-of-
plane oscillator. Indeed, for small values of ε, the period of the wave packet agrees with
the one we can predict on the basis of the source term alone, while this period is seen
in fig. 1 to decrease with increasing ε. We also point out that, if we look at the single
coefficients for the cubic expansions for the displacements, we find that the coefficients
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Fig. 2. – Transition to instability for the librations of a bare tether. The plots give libration
angles as a function of time for two values of ε close to the transition and µ = 0.25, z̃ = 1.

x3 and y3 are much smaller than the others so that the shape of the tether during the
oscillations is approximately parabolic.

Increasing ε, the maximum amplitude of the oscillations increases and, for ε = 1.5,
reaches ∼ 43.5◦. Clearly, our linear approximation (implying ξ0z < 1 and η0z < 1) breaks
down around these angles. Nonetheless, if we follow the behaviour of the system (31)
for higher values of ε, we find a transition from oscillatory wave packet solutions to
exponentially unstable solutions to occur between ε = 5.22 and ε = 5.23 as shown
in fig. 2. For the tether parameters quoted above and an altitude of ∼ 400 km, this
corresponds to a threshold for the average current I0 ∼ 1.6 A. The transition occurs,
however, well outside the validity of our linear approximation so that, on the basis of the
present theory, we see that an instability can occur but we certainly cannot predict its
threshold. Non-linearities should be necessarily taken into account.

A numerical analysis as a function of µ shows that the stability of the system in-
creases upon decreasing µ, i.e. for given ε, lower values of µ give lower amplitude of the
oscillations until the system becomes absolutely stable for µ = 0.

As the solutions obtained vary on time scales much longer than the orbital period, it
is appropriate to introduce in the calculations also the effect of the magnetic tilt, i.e. the
variation of λ with time given in eq. (13). We have done that and found, however, that
the inclusion of the slow modulation of λ introduces only slight differences to the results
obtained previously.
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Fig. 3. – In-plane and out-of-plane libration angles for an insulated conducting tether and two
values of ε. The solutions refer to µ = 0.25 and z̃ = 1.

7.2. Insulated tether . – If we compare eqs. (29), for the librations of the insulated
tether, with eqs. (31) referring to a bare tether, we see that the main difference stands in
the coefficients multiplying the electrodynamic terms linear in ε, which are larger in the
first than in the second case. Because of this, we expect that, for the insulated tether, a
given maximum amplitude in the oscillations will be reached at lower values of ε (with
respect to the case of the bare tether).

This is confirmed by numerical solutions of eqs. (29). Figure 3 is a sequence of such
solutions, for the in-plane and out-of-plane angles, corresponding to µ = 0.25 and z̃ = 1,
and should be compared with the sequence of fig. 1 corresponding to the bare tether.
We see that, at ε = 0.2, we have reached amplitudes of the αout solution already higher
than those obtained for ε = 1 in the case of the bare tether. At ε = 0.2, we reach in fact
αoutmax ∼ 27◦ and, for higher values of ε, we start going out of the validity of our theory.

The transition from an oscillatory to an unstable behaviour (which we do not show)
is found to occur between ε = 2.6 and ε = 2.8 (the corresponding value for the case of
the bare tether was ε ∼ 5.22) with the oscillations being amply above the limits of the
linear approximation.

Although, as in the case of the bare tether, we cannot put any confidence in this
threshold, we seem nonetheless to have the indication that an insulated tether is more
easily unstable, with respect to librations, than a bare tether.

There is, finally, a further case which is worth to be studied and is that of a current
which is also constant in time, as it can be obtained with an electronic limitation. Notice
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Fig. 4. – In-plane and out-of-plane libration angles for an insulated conducting tether with the
current kept electronically constant in time. The plots refer to two values of ε, µ = 0.25 and
z̃ = 1.

that this case is appropriate only for the insulated conducting tether (hence eqs. (29)),
whereas, for a bare tether, with a current limitation, we would in general find the current
to be equal to the limiting value only at the satellite end, while, along the tether, the
current would vary both in time and along the tether length (staying always smaller than
the imposed value).

For the case of a current constant in time, the electrodynamic terms in eqs. (29) vary
in time only because of the orbital variations. The beatings between variations of the
current and orbital variations are absent. As these beatings can provide frequencies close
to the basic frequencies of the in-plane and out-of-plane oscillators, and these favors the
oscillation growth, we expect that the oscillations amplitude will grow with ε (for given µ)
at a much lower rate. In particular, the quasi-resonance in the out-of-plane motions that
we have encountered previously, would now be absent and, therefore, αout will oscillate
in a manner similar to αin without any wave packet behaviour.

Figure 4 shows the angles αin and αout which are obtained for ε = 0.1 and ε = 0.2 for
a current constant in time and should be compared with fig. 3 (both cases refer again to
µ = 0.25 and z̃ = 1). We see that, with respect to the case of an oscillating current, we
obtain now a lower amplitude of the oscillations (in particular those out of plane). Thus,
making I = const, renders the insulated tether more stable. A transition to instability
is found to occur at ε ∼ 5 but, again, outside the validity of the linear approximation.
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Fig. 5. – Transition to instability of the n = 1 lateral mode of a bare tether, with coupling to
mode n = 2 taken into account. The solutions refer to two values of ε, µ = 0.25 and z̃ = 0.4.

8. – Numerical results for lateral modes

8.1. Bare tether . – For the case of bare tethers (see eqs. (34)), in-plane modes of
order n are coupled to out-of-plane modes of the same order and vice versa so that there
are coupling terms on the rigth-hand sides of the dynamical equations which oscillate at
about the same frequency as the unperturbed oscillators on the left-hand sides.

Figure 5 gives the results obtained from numerical solutions of eqs. (34), including
modes n = 1 and n = 2. More precisely the 4 panels give the time variation of the
in-plane and out-of-plane oscillations (in degrees), due to the n = 1 mode for two values
of ε. The angles are calculated at z̃ = 0.4. It is clear that, in going from the value ε = 4.5
(upper two panels) to ε = 4.7 (lower two panels), the nature of the solutions changes (for
both αin and αout) from oscillatory to growing. We need in fact a rather long integration
time (4 days in the figure), to appreciate the transition. In a smaller period (for example
a 1 day integration), we would judge the oscillations growing also for ε = 4.5. Indeed,
due to the rather long integration time (in comparison with the period of the n = 1
mode), what we see is just the envelope of the oscillations which would be resolved only
by plotting much shorter periods.

As for mode n = 2, which is also included in the same calculation, the next figure 6
shows what we obtain for the angular oscillations coming from n = 2, in the same time
interval and for ε = 4.7. Contrary to mode n = 1 (see the lower two panels of fig. 5), the
mode n = 2 seems to have a periodic behaviour in the time frame considered. However,
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on longer times, we would find that also mode n = 2 is growing due to the coupling with
mode n = 1 in the equations.

In conclusion, for a bare tether and in linear theory, we find an instability of lateral
modes occurring at ε ∼ 4.6 (for µ = 0.25), which would correspond, at 400 km, to an
average current I0 ∼ 1.5 A. Notice that, as we see from the lower two panels of fig. 5,
the instability starts at low values of the angles which are now (contrary to the libration
case), consistent with our linear approximation.

Finally, the inclusion of mode n = 3 in the calculation, of which we do not report the
results, does not change appreciably the results that we have shown.

8.2. Insulated tether . – As already noticed in subect. 5.1, eqs. (33) for the insulated
tether are such that, for example, the in-plane modes of order n are coupled, via the elec-
trodynamic forces, to all the out-of-plane modes of parity different from n and, likewise,
for the out-of-plane modes. This implies that the frequencies appearing in the coupling
terms on the right-hand sides of eqs. (33) are radically different from the frequency of
the n-th oscillator, appearing on the left-hand sides and no parametric resonance can
occur.

Therefore, on the basis also of the comments given in sect. 6, we do not expect the
lateral modes, for the insulated conducting tether, to be easily unstable (i.e. unstable for
moderate currents). This is confirmed by numerical solutions of eqs. (33), reported in
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Fig. 7. – In-plane and out-of-plane angles vs. time for the lateral modes of an insulated con-
ducting tether for two values of ε , µ = 0.25 and z̃ = 0.4 (modes 1 and 2 included).

fig. 7, and corresponding to the case where we have truncated the infinite system (33) to
n = 2 (i.e. we have included the modes n = 1 and n = 2). The first two panels of fig. 7
correspond to ε = 5 (a value which is above the instability threshold for the bare tether
lateral modes). The angles, both in plane and out of plane (in degrees and calculated
at z̃ = 0.4), stay quite small in the integration period which is shown (0.5 days) and
continue to do so on longer times. The lower two panels in fig. 7 refer to ε = 50 and, as
we see, the oscillation amplitude has only slightly increased with respect to the previous
case. Therefore, as expected, the insulated tether, at least in linear theory, is quite stable
with respect to lateral oscillations. We find that instability is eventually reached only
for ε ∼ 65 (for µ = 0.25).

Finally, it has also been checked that no significant modifications are obtained by
truncating the system (33) at orders higher than n = 2.

9. – Discussion

Let us summarize what we have done and what we have found. We have investigated
the dynamics of a flexible conducting tether, in the presence of electrodynamic forces,
in the linear approximation. For this reason, longitudinal oscillations, which are second
order, were not considered. Furthermore, because of their different frequencies, we were
able to separate the problem of tether librations from that of the lateral modes.

For the libration modes, and both for the case of the insulated conducting tether
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and the case of the bare tether, we have found instability above a certain threshold in
the parameter ε. What happens, starting from small current values, is that, initially, the
electrodynamic source terms in the equations dominate over the coupling terms and lead,
upon increasing the current, to an increase in the amplitude of the oscillations (starting
with the oscillations out of plane). At some point, the coupling terms become dominant.
It is these coupling terms, which may contain frequencies close to the natural frequencies
of the in-plane and out of plane unperturbed oscillators, which lead to instability.

In both the cases of the bare and the insulated tether, the transition to instability
occurs for amplitudes of the oscillations (∼ 40◦) which are outside the validity of the
linear approximation. As a consequence, we cannot put any confidence in the threshold
values obtained for ε (or the average current I0). We do have however the indication
that, in linear theory, insulated tethers are more easily unstable than bare tethers in that
oscillations of comparable amplitudes are reached at smaller current values.

Instability above a certain threshold in ε is also found for the lateral modes. There,
however, also at instability onset, the amplitude of the in-plane and out-of-plane oscilla-
tions is small and therefore consistent with the linear approximation. Insulated tethers,
where coupling occurs in the equations only between modes of opposite parity, are found
to be much more stable, with respect to lateral modes, than bare tethers, at least in the
framework of the linear approximation.

In conclusion, it is clear that, in particular for the case of librations, before drawing
any conclusion, we should go to a non-linear treatment. This necessity is also indicated
by the work of Pelaez et al. [8], concerning librations of a rigid tether, where they demon-
strate that the inclusion of non-linearities produces an inherent instability, i.e. the tether
oscillations necessarily grow however small is the current.

If, in spite of the limitations of linear theory, we refer to the average current thresholds
found for bare tethers and lateral modes, which are of the order of 1.4 A (for µ = 0.25),
we see that average currents of this order are obtained in the range of altitudes from
∼ 600 km downwards. Hence, it appears that, if we want to use electrodynamic tethers
to deorbit spacecraft, some current control will have to be exercized at these low altitudes.
This will lengthen the deorbiting time (with respect to the values obtained in [2,3]), but
not much because the longest part of deorbiting is that above those altitudes where the
ionospheric density, and, hence, the current, is smaller.

On the other hand, for the application of electrodynamic tethers to upboost space-
craft, and, in particular, the International Space Station (ISS), we in general need to
have currents much above 1 A (for example of the order of 10 A) to compensate for the
decay due to the atmospheric drag. This means that a light tether system, as the typical
one we have referred to in this paper, will not be suitable but we will need, on the one
hand, to increase the tether cross-section (for equal length), to obtain higher currents
and, on the other hand, to increase the ballast mass mb to remain stable. Adding mass,
which would certainly be a problem for the application of deboost, might, on the other
hand, not be a problem for upboost, in particular with reference to ISS.
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