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Summary. — The forecast verification problem of precipitations is a complex task.
Within the European project “INTERREG II C” a method designed to discrimi-
nate statistically significant differences between skill scores has been applied. This
methodology uses a resampling technique (bootstrap) as hypothesis test. Three dif-
ferent operational Limited Area Models (LAMs) are evaluated over the Piedmont
and Liguria Regions as a test of the statistical method.

PACS 92.60.Jq – Water in the atmosphere (humidity, clouds, evaporation, precip-
itation).
PACS 93.85.+q – Instrumentation and techniques for geophysical research.

1. – Introduction

Flood forecasting has been under focus in the recent past as a fundamental task for
meteorological services, and particularly in the Mediterranean area. Numerical meteoro-
logical Limited Area Models (LAMs) are operating with this purpose in many forecasting
centers in the area. In this context, verification of precipitation forecast is a key issue

(∗) The authors of this paper have agreed to not receive the proofs for correction.
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for the forecasting community since affects both research and development issues and
operational forecast verification activities. Research on techniques to evaluate numerical
model skill in predicting floods is one of the tasks of the EU program “INTERREG
II C”—Gestione del territorio e prevenzione dalle inondazioni (land management and
floods prevention).
A flood alarm procedure can require use of a selected alert threshold generally de-

fined on a local basis. This can be done using categorical dichotomous forecasts [1]. A
categorical dichotomous forecast (also called non-probabilistic dichotomous forecasts) is
simply a yes/no statement, i.e. whether the precipitation forecast is below or above a
defined threshold. The same kind of statement is also true for the observations. The
combination of the occurrence possibilities of observation and forecast gives origin to a
contingency table.
The elements of the contingency table are used to compute discrete measures for model

evaluation. Use of non-probabilistic scores is widely acknowledged by the forecasting
community. Used scores include the bias score, or BIA [1], the equitable threat score
(ETS) [2], the Hanssen-Kuipers score (HK) [3], also known as the true skill statistics
(TSS) [4] or Peirce skill score (PSS) [5,6], and the odds ratio skill score (ORSS) [6], also
called Yule’s Q [7]. The BIA is a measure of the relative “dryness” or “wetness” of the
model forecast with respect to observed precipitation; the other indexes are skill scores,
i.e. measures of the forecast accuracy, as seen better later.
For purpose of model comparison a measure of the uncertainty on the score should

be requested. Performing a hypothesis test provides a confidence interval for the score
difference between the two competing models. This is rarely done due to several problems.
First of all, if the BIA of the two models differ sensibly the comparison of the relative
skill scores can be ambiguous. In fact a “wet” BIA may result in a comparatively larger
skill score than for the corresponding case with a “dry” BIA [8].
Moreover, commonly used hypothesis tests require conditions which are rarely satis-

fied for this kind of problems [9]. It is difficult to make assumptions about the probability
distribution of the score differences, so there is no warranty that it is a known parametric
distribution as required by commonly used hypothesis tests [10].
Caution is also required in applying hypothesis tests if the data sets are spatially or

temporally correlated. Spatial correlations of forecast errors among single grid points
may be significantly high. Hence single grid points cannot be treated individually.
Time correlation of forecasting errors can be non-negligible when performing a hy-

pothesis test. All kinds of tests, including the bootstrap technique used in this study,
require the assumption of temporal statistical independence of the sample. This assump-
tion may be relaxed if the hypothesis test can take into account the time correlation of
the sample. Ordinary hypothesis tests (e.g., Wilcoxon signed-rank test, paired t test,
etc.) are commonly applied to time series of scores, each one calculated from a daily
contingency table. A drawback associated of the use of daily contingency tables is their
sensitivity to small changes in the population of the elements of the contingency tables.
Since we are mostly interested in verification of extreme events forecasts, a special

concern should be paid to the problem of instability of the histogram estimator (i.e. any
non-probabilistic skill score) with respect to the tails of the distribution.
The hypothesis test design proposed by Hamill [9], as better seen later, overcomes

the problem of space correlation of forecast errors, and reduces the sensitivity of the
contingency tables to the threshold selection. More in detail, the method is a particular
application of a resampling technique called bootstrap [1, 11]. This is a computer-based
non-parametric test. The basic idea is to build an artificial data set from a given sample
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Fig. 1. – Verification area (shaded box) and domains of the selected models in cylindrical projec-
tion. Solid line: MM5 domain; dashed line: LAMBO domain; dotted line: QBOLAM domain.

of real data, by resampling the available collected data, in a way consistent with the null
hypothesis.

In this work we investigate the application of this numerically based statistical meth-
odology for intercomparison of LAMs operational in Italy, with respect to their ability
to predict extreme precipitation over the Regions of Piedmont and Liguria, which were
subject to dramatic flood events in the recent years. This study has been performed in
the “INTERREG II C” framework, involving a factive collaboration among some Italian
regional meteorological services, research and technical institutions.

These are: the Centro di ricerca Interuniversitario in Monitoraggio Ambientale
(CIMA) of Savona (Liguria Region), the Settore Meteoidrografico e Reti di Monitoraggio
(SMRM) of Turin (Piedmont Region), the Servizio Meteorologico ARPA of Emilia Ro-
magna Region (SMR-ARPA) of Bologna, the Parco Scientifico e Tecnologico d’Abruzzo
(PSTA) of L’Aquila, the Physics Department of L’Aquila University, the Atmospheric
Physics Institute of Italian National Research Council (IFA-CNR) of Rome and the Di-
partimento per i Servizi Tecnici Nazionali della Presidenza del Consiglio dei Ministri
(DSTN-PCM) of Rome.

The aim of the work is an exploration of the methodological issues in the perspective
of the development of a common procedure to be used by operational meteorological
services in Italy.

The paper is organized as follows. In sect. 2 we describe the LAMs participating
in the intercomparison and the observational and forecast data sets used in the study.
Section 3 presents the verification measures suitable to evaluate the forecast quality.
Section 4 examines in detail the bootstrap methodology used. In sect. 5, the results of
the application of the method to the data set are discussed. Section 6 summarizes the
findings of the work, including recommendations for future works.
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2. – Models and data sets

2.1. The selected models. – Numerical weather prediction is performed by several
Italian forecasting centers on regional or national basis, mostly by means of daily oper-
ating LAMs. Among these, three models were selected to provide forecast data for our
work [12]. These are:

– the NCAR-Penn-State Fifth Generation Mesoscale Model (MM5) [13] operating in
the Abruzzo Region by the PSTA;

– the ETA MODEL [14] operating at the SMR-ARPA (LAMBO) [15];

– the BOLAM [16] operating at DSTN-PCM (QBOLAM) [17] as a component of the
POSEIDON wave-height and tide forecasting system.

All selected models are finite-difference LAMs, with a rotated horizontal grid and a
sigma vertical coordinate. These models use operationally analysis and boundary condi-
tions provided by the European Centre for Medium-range Weather Forecast (ECMWF).
The domain extension of the different models in this study is depicted in fig. 1.
The MM5 model is running in a non-hydrostatic configuration. Model horizontal

domain is organized with an Arakawa “B” staggered grid [18]. The MRF parameteriza-
tion scheme [19] is used to represent turbulent fluxes, a “cloud-radiation scheme” [20,21]
calculates short- and long-wave radiation interactions with clouds, and the Kain-Fritsch
scheme [22] is used for cumulus convection. The model is initialized daily at 12 UTC
with the ECMWF analysis. After a 12 h spin-up time, a 24 h forecast is performed for
the following day.
The model is run operationally over three nested domains, with grid step of 27 km

(over the Central Mediterranean), 9 km (over the Central Italy) and 3 km (over the
Abruzzo Region), respectively. Since these domains do not include the verification area
(Piedmont and Liguria Regions, see below), we considered a different configuration, pre-
viously used by some of the authors in studies within the Mesoscale Alpine Program
(MAP). It includes two nested (27 km and 9 km) domains; the higher-resolution one
(shown in fig. 1) is centered on Northern Italy.
LAMBO is a hydrostatic, primitive-equations model derived from the University

of Belgrade, National Meteorological Center-Washington model (UB/NMC, or ETA
MODEL). The variables are staggered according to the Arakawa “E” grid [18]. Ra-
diation parameterization is provided by the Geleyn scheme [23]; boundary layer fluxes
are computed with a second-order closure scheme; convective processes are parameterized
by Betts and Miller’s relaxation scheme [24,25].
The operating configuration includes two nested domains, with a horizontal grid step

of 20 km and 10 km, respectively. These grid steps are calculated taking into account
the Arakawa “E” staggering. The higher-resolution domain (shown in fig. 1) has an
extension of 1400× 1510 km, with 32 vertical levels, centered over Italy. Forecast timing
is the same as MM5.
The QBOLAM model is a version of the hydrostatic, primitive-equation model BO-

LAM running on a massively parallel computer (QUADRICS). It is part of the POSEI-
DON system, used to calculate surface winds over the Mediterranean Sea as an input
for the wave-height model WAM. For this reason also the highest-resolution domain has
a quite large extension (fig. 1). The grid staggering follows the Arakawa “C” scheme.
For computational reasons, due to the domain extension and the parallel structure of
the code, simplified parameterization schemes are adopted for radiation [26] and cu-
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Table I. – Inner integration domain characteristics for the selected limited area models.

Model # longitude points # latitude points Grid step (km)

MM5 85 64 ∼ 9
LAMBO 201 217 ∼ 10
QBOLAM 386 210 ∼ 11

mulus convection [27]. Turbulent fluxes parameterization is provided by a similarity
scheme [28].
The operating configuration includes two nested domains, with a horizontal step of

0.3 and 0.1 degrees, respectively (over the rotated grid). At the lower resolution, a 60 h
forecast is performed, starting at 12 UTC. The higher-resolution 48 h run starts at 00
UTC after 12 h spin-up time.

2.2. Forecast and observation data. – The verification data set include rain gauge
observed precipitations over the Italian regions of Piedmont and Liguria (represented
as a shaded box in fig. 1) and model forecast precipitation fields, for a 8 month time
interval (from 1/10/2000 to 31/5/2001). This interval is suitable for a statistical study
of precipitation as it corresponds to the Mediterranean wet season [9].
The model data are gridded forecast fields of total precipitation over the integra-

tion domains shown in fig. 1. The characteristics of the three domains are summarized
in table I. While the domain extension is quite variable, the horizontal resolution is
homogenous.

Fig. 2. – Distribution of the rain gauge stations over the Piedmont and Liguria Regions.
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Fig. 3. – Average number of the accepted gauges for the time interval October 2000-May 2001.

LAMBO and QBOLAM operational simulations, archived at SMR-ARPA and DSTN-
PCM, were used. As seen before, operational 9 km MM5 domain is not suitable for our
study. Thus, daily simulations were performed newly over the MAP domain, with no
other change with respect to the operational model configuration.
Daily precipitation forecast data are joined together to obtain for each model a contin-

uous time series. Daily data are considered starting from 00 UTC to 24 UTC of the day
after the initialization. These time series are cumulated up to 24 hours for the purposes
of this work. The same is done for observation series.
The observed data are provided by the recently built automatic rain gauge networks

of Liguria and Piedmont Regions. Data from 96 stations pertaining to the Rete Meteo-
Idrologica Ligure (OMIRL) and from 294 stations of the Piedmont network were acquired.
About 10% of the latter are snow sensors located at height above 1500 m; although these
measurements might have large errors, a score sensitivity study has shown that these
seem to not affect significantly the actual score values (not shown).
The distribution of the stations over the selected area is shown in fig. 2.
Not all the mentioned stations were active during the entire time interval considered.

A quality check was performed, discarding as outliers the rainfall observations exceeding
25 mm in 5 minutes. The discarded values are considered missing values. After that, only
stations with more than 10% of missing values (with respect to the cumulation interval)
were discarded. This was done to preserve both an adequate number of included stations
and a low time sampling error.
The number of accepted stations is variable and is depicted in fig. 3 as a function of

time. Selected stations were associated with the respective nearest grid point in each

Table II. – Precipitation thresholds for 24 h cumulation time.

Cumulation time (h) Thresholds (mm)

24 2.4 24.0 40.0 60.0 90.0
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Fig. 4. – Subdivision of Piedmont and Liguria Regions into four subregions to study spatial
correlations of forecast errors.

model’s grid. Only grid points associated to one or more gauges were considered. For
the points associated to more than one gauge, the mean precipitation value over such
gauges was considered for the comparison.
The thresholds used in this study for the 24 h cumulation time are presented in

table II.
Such kind of work may be considered incomplete without considering the possible

time-space correlations of forecast errors.
First of all, the domain of study has been divided into four subregions as shown in

fig. 4, in order to assess possible spatial correlation of forecast errors. The subdivision
has been performed taking care of having roughly a comparable number of rain gauges
in each subarea.
A Spearman rank correlation is performed between all possible couples of ETS score,

each calculated over a subregion for the 24 h cumulation time. For each correlation
coefficient, a two-side significance of its deviation from zero is computed. This value,
called p value, ranges between 0 and 1. A rank correlation associated with a p value
close to zero is significant. On the opposite, a p value close to one means that rank
correlation is not meaningful.
Table III shows the results for 24 h cumulation time. A dash sign indicates that was

impossible to determine a particular correlation for the above-mentioned reason. Non-
negligible correlations (negative or positive) exist in the considered sample for all model
forecasts. Hence, all grid points on a given day must be treated as a single sample.
The lag 1 Spearman correlations of ETS and BIA score series are calculated for

the selected models, in order to determine the time correlation of forecast errors. The
Spearman correlation is calculated using data from 1st to 30th November, 2000, since
climatologically November is the wettest month in the Mediterranean area. The results,
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Table III. – Spearman rank correlation of ETS score for 24 h cumulation time between two
subregions of Piedmont and Liguria. A p value is assigned for each rank correlation.

Threshold Subregions MM5 LAMBO QBOLAM
(mm) association

Rank p Rank p Rank p
correlation value correlation value correlation value

2.4 1 −→ 2 0.212 0.009 0.160 0.037 0.148 0.049
1 −→ 3 0.147 0.091 0.157 0.076 0.174 0.029
1 −→ 4 0.412 0.000 0.368 0.000 0.157 0.093
2 −→ 3 0.247 0.002 0.118 0.179 0.259 0.000
2 −→ 4 0.260 0.004 0.108 0.203 0.140 0.133
3 −→ 4 0.165 0.083 0.264 0.005 0.119 0.220

24.0 1 −→ 2 0.296 0.093 −0.309 0.041 0.456 0.000
1 −→ 3 0.286 0.086 0.180 0.273 0.415 0.000
1 −→ 4 0.125 0.447 0.017 0.897 0.244 0.124
2 −→ 3 0.181 0.329 0.342 0.043 0.300 0.014
2 −→ 4 0.426 0.069 0.375 0.037 0.455 0.011
3 −→ 4 0.434 0.038 −0.202 0.244 0.070 0.692

40.0 1 −→ 2 −0.380 0.313 0.061 0.804 −0.041 0.845
1 −→ 3 0.200 0.512 −0.179 0.450 0.358 0.048
1 −→ 4 0.069 0.766 0.286 0.107 0.068 0.782
2 −→ 3 −0.712 0.047 0.220 0.352 0.061 0.719
2 −→ 4 −0.512 0.130 −0.096 0.704 −0.048 0.865
3 −→ 4 0.517 0.085 −0.100 0.702 0.192 0.431

60.0 1 −→ 2 −0.816 0.183 0.161 0.637 −0.703 0.016
1 −→ 3 0.032 0.933 −0.225 0.481 0.280 0.312
1 −→ 4 0.437 0.178 0.559 0.016 0.210 0.536
2 −→ 3 −0.688 0.198 0.180 0.575 0.359 0.111
2 −→ 4 −0.866 0.333 −0.525 0.147 −0.580 0.079
3 −→ 4 −0.108 0.781 −0.460 0.154 0.000 1.000

90.0 1 −→ 2 – – −0.258 0.742 −0.516 0.236
1 −→ 3 – – 0.229 0.710 −0.500 0.391
1 −→ 4 1.000 0.000 −0.076 0.871 – –
2 −→ 3 – – 0.459 0.437 0.456 0.159
2 −→ 4 – – – – – –
3 −→ 4 – – −0.889 0.111 – –

presented in table IV, show little time correlations for all the considered models. HK
and ORSS scores also have lag 1 Spearman rank correlation significantly close to zero
(not shown).

3. – Verification measures

Verification of precipitation forecasts can be treated in many different ways. For de-
termining the quality of non-probabilistic dichotomous forecasts, verification measures
are computed using a contingency table (table V). A daily contingency table is generated
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Table IV. – Lag 1 Spearman rank correlation of ETS and BIA scores for 24 h cumulation time.

Score Threshold MM5 LAMBO QBOLAM
(mm)

Rank p Rank p Rank p
correlation value correlation value correlation value

ETS 2.4 −0.10305 0.59478 0.04060 0.83438 0.24852 0.19361
24.0 0.14762 0.44476 0.16429 0.39444 −0.06685 0.73043
40.0 −0.11498 0.55257 −0.37328 0.04610 0.07857 0.68538
60.0 −0.07398 0.70291 −0.07398 0.70291 −0.03973 0.83788
90.0 −0.03572 0.85407 −0.07398 0.70291 −0.11498 0.55257

BIA 2.4 0.19726 0.87829 0.02974 0.30505 0.16091 0.40436
24.0 0.12063 0.53306 0.14048 0.46733 0.21740 0.25728
40.0 −0.11498 0.55257 0.19646 0.30704 0.12698 0.51156
60.0 −0.07398 0.70291 −0.07398 0.70291 −0.15890 0.41032
90.0 −0.03572 0.85407 −0.07398 0.70291 −0.11498 0.55257

from comparison between forecast and observed precipitation data sets for each selected
threshold. The table elements define the absolute frequencies of the four possible combi-
nations, that are hits, false alarms, misses and correct non-rain forecasts (respectively,
a, b, c and d in table V).
The BIA [1] is the ratio between the frequency of yes forecast and the frequency of

yes observed:

BIA =
a+ b

a+ c
.(1)

A bias score equal to 1 means that forecast is unbiased, i.e. forecasts and observations
have a value above a given threshold the same number of times. A BIA greater than
one means that the model overestimates the frequency of the precipitations above the
selected threshold (“wet” model). On the other hand, a BIA lower than one shows that
the model underestimates the frequency of events (“dry” model).
The ETS skill score used in this study is a modification of the critical success index

(CSI) [1] that takes into account the random forecast (see a r in (2)) [2]. Despite this
correction, the model BIA influence is not completely removed. The a r tends to zero

Table V. – Contingency table for categorical forecast verification.

Observed

Yes No

Yes a b
Forecast

No c d
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while increasing the threshold value [29]. This score is defined as

ETS =
a − a r

a+ b+ c − a r
, where a r =

(a+ b)(a+ c)
a+ b+ c+ d

.(2)

A perfect forecast has an ETS equal to 1. A score value equal or lower than 0 shows that
model is unable to produce a significant forecast.
Another score for determining the forecast accuracy is the Hanssen-Kuipers score [3].

This verification measure has a range between −1 and 1. Its expression is

HK =
ad − bc

(a+ c)(b+ d)
.(3)

The HK can be also written as a sum, normalized to one, of the probability of detection
(POD) and the non-events probability of detection (NPOD) [3]:

HK = POD+NPOD− 1 = a

a+ c
+

d

b+ d
− 1 .(4)

Unlike the ETS, this kind of skill score emphasizes in the same way forecast events and
non-events. Wilks [1] explains that the HK score is appropriate for verifying rare events
too. A perfect forecast receives a score equal to 1, a random forecast has skill zero, while
its value is −1 when a = d = 0.
In this study the odds ratio skill score (ORSS) has been considered for the forecast

verification too. This measure is constructed from the odds ratio (ODDS) [6], that it is
useful to measure the degree of association between observed and forecast precipitations,
i.e. it summarizes the association in the joint conditional distribution of a categorical
forecast. An event odds is calculated as the ratio between the probability that the event
occurs and the probability that the event does not occur. In other words, if p is the
probability that the event occurs, then the odds of the event is equal to p/(1− p). The
probability p h (5a) is the conditional probability associated to the observed yes given a
yes forecast. The probability pm (5b) is the same quantity, but for no forecast. These
probabilities are

p h =
a

a+ b
,(5a)

pm =
c

c+ d
.(5b)

The odds ratio is then defined as

ODDS =
p h

1− p h
·
(

pm

1− pm

)−1

=
a

b
·
( c

d

)−1

=
ad

bc
,(6)

the ODDS score is unity when observations and forecasts are independent, while a score
value larger than one means that forecasts and observations are associated variables. The
ORSS is obtained by the following transformation:

ORSS =
ODDS− 1
ODDS + 1

=
ad − bc

ad+ bc
,(7)
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that normalize the ODDS score between −1 (i.e. ODDS = 0) and 1 (i.e. ODDS −→ ∞).
This score has been introduced by Yule [7] as a measure of association. It depends on
the joint conditional probabilities and it is not influenced by the marginal probabilities,
hence “it strongly discriminates between the case with or without association” [6].
All the mentioned skill scores may be influenced by the BIA value. This effect cannot

be neglected when forecast comparison is performed [8, 9]. The main reason for taking
into account this effect is that it is important to discriminate the actual signals when
two models are compared.
Hamill [9] proposed a BIA adjustment method to compare competing forecasts pro-

duced by models with different bias scores. Contingency tables are calculated introducing
a new forecast threshold, that can be different from the observation threshold. An in-
dependent change of the forecast threshold can take into account the model tendency to
overestimate or underestimate precipitations. This BIA adjustment is then applied for
all selected thresholds independently.
This technique however does not remove the ambiguity that may still exist in model

intercomparison. The application of a hypothesis test may help to discriminate whether
the computed scores are different in a statistically significant way.
A preliminary simple model comparison was performed using a wide set of non-

parametric scores (not shown), including the aforementioned ones. This was done in
order to check the choice of the indexes and also to have a general description of the
model forecast behaviour over the different indexes.
Results are summarized as follows. The BIA score evidences a “wet” tendency for

QBOLAM and a “dry” one for MM5 as the threshold increases; while LAMBO exhibits
an intermediate behaviour. The POD and FAR (False-alarm rate [1]) values are quite
dependent on the BIA trend. The ETS differences over the three models are relatively
small, except for the higher thresholds, where the score of the drier model is sensibly
lower. The HK score seems to be more sensitive to the BIA differences among the
models. The ORSS seemingly displays best values for the higher thresholds and very
small differences among the models. The ODDS results reproduce the ORSS ones, as
evident from the definition (7).
Three degrees of freedom are needed to completely summarize 2× 2 categorical fore-

casts [6]. However, the score selection is not unique (dimensionality problem [1]). The
bootstrap method will be then applied on the triplet BIA, ETS and HK; while the ORSS
is included for a general evaluation.

4. – The bootstrap technique

The evaluation of the real differences in skill score of two competing forecasts can be
supported by the use of a hypothesis test. As already mentioned, a bootstrap technique
developed by Hamill [9] is applied in this study.
The existence of non-negligible space correlations among the elements of the sample

set and forecast errors has been shown. Hence, the scores have been calculated without
considering any geographical partition of the data. Data cumulated up to 24 hours
are considered non-correlated in time, although significant time correlations are likely if
data are cumulated at shorter time intervals. A particular application of the bootstrap
technique (moving-block bootstrap), to deal with correlated series, will be the object of
future studies.
The resampling technique needs the definition of a null hypothesis to be tested. In
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this case the test is applied to check whether the following statement is true or not:

H 0 : SM1 − SM2 = 0 ,(8)

where SM1 and SM2 are a general score S (e.g., BIA, or ETS, etc.) calculated on a sum
of contingency tables for two competing models M1 and M2. The alternative hypothesis
H A means that the equality statement (8) is not true.
For each model the elements of a daily contingency table can be expressed as a four-

elements vector:

xi,j = (a b c d)i,j , i = 1, 2 and j = 1, · · · , n ,(9)

where i is the model indicator, while j is the contingency table index and n is the number
of case days. Thus, the statistic test is performed computing the difference

(
ŜM1 − ŜM2

)
(10)

on the sum of the contingency tables

̂(a b c d)M1
=

n∑
j=1

x1,j ,(11a)

̂(a b c d)M2
=

n∑
j=1

x2,j .(11b)

The resampling method to build a statistics consistent with the null hypothesis (8) is
applied as follows. Let be Ij a random indicator that can be equal to 1 or 2, equivalent
to randomly choose model M1 or M2, respectively, with j = 1, · · · , n. Using the random
index Ij , the resampled test statistic is obtained summing the shuffled contingency table
vectors over the n available elements:

̂(a b c d)
∗
M1

=
n∑

j=1

xIj ,j ,(12a)

̂(a b c d)
∗
M2

=
n∑

j=1

x(3−Ij),j .(12b)

Then it is possible to generate NB (in our case NB = 10000) sample sums, defined by
eqs. (12a) and (12b), by selecting each time a new set of random indexes Ij . The new
NB contingency table sums are used to compute the resampled statistics of the score
difference (

Ŝ ∗
M1

− Ŝ ∗
M2

)
,(13)

that defines the sampling distribution consistent with the null hypothesis (8).
A confidence level α = 0.05 is assumed. A two-tailed test, the percentile method [1],

is applied to determine the (1 − α)% confidence interval, by finding the values of the



APPLICATION OF A STATISTICAL METHODOLOGY FOR LIMITED AREA MODEL ETC. 73

(a) (b)

Fig. 5. – Transpose symmetry of the bootstrap technique applied to the 24 h BIA score inter-
comparison. (a) LAMBO as “reference” model (dashed line) and MM5 as “competitor” model
(solid line). (b) MM5 as “reference” model (dashed line) and LAMBO as “competitor” model
(solid line).

score differences defining the largest and smallest NBα/2 of the NB bootstrap samples.
Thus, two values t̂L and t̂U are determined such that

¶ =
[(
Ŝ∗M1

− Ŝ∗M2

)
< t̂L

]
=

α

2
,(14a)

¶ =
[(
Ŝ∗M1

− Ŝ∗M2

)
< t̂U

]
= 1− α

2
,(14b)

then the null hypothesis H0 is refused if the observed statistic (10) is outside the interval
(t̂L, t̂U).

5. – Results and discussion

As previously discussed in the preliminary study, the score differences among the
models generally increase for higher thresholds. This observation should be assessed with
some caution, for the comparatively smaller sample size at higher thresholds. Moreover,
a skill scores comparison may be affected by the BIA difference among the models.
More in general, these results may be not suitable for a clear statement in model

intercomparison, since no kind of statistical measure of uncertainty is provided. Hence,
hypothesis test has been performed using the bootstrap methodology. This procedure
can be applied only between two models, so it is necessary to define a “reference” model
to evaluate the others, that are indicated as the “competitors”.
LAMBO has been chosen as the “reference” model since it has an intermediate BIA

trend among the three models. This choice does not compromise the analysis results. In
fact, the bootstrap is a transpose symmetric technique and it is invariant swapping the
“reference” and “competitor” role as shown in fig. 5.
The bootstrap methodology has been also used to evaluate the scores after the appli-

cation, over the “competitor” model, of the BIA adjustment technique (see sect. 3).
Figures 6 and 7 show the results of the comparison procedure for 24 h cumulation

time. In the left columns, the scores are compared without the application of the BIA
adjustment technique; while in the right columns, the same scores are presented after the
BIA difference reduction obtained by the BIA adjustment technique. The dashed line
indicates the “reference” model, while the solid line indicates the “competitor” model.
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(a) (b)

(c) (d)

(f)(e)

(g) (h)

Fig. 6. – Bootstrap results between the “reference” LAMBO (dashed line) and the “competitor”
MM5 (solid line) for 24 h cumulation time. In the left column, BIA (a), ETS (c), HK (e) and
ORSS (g) are shown without the BIA adjustment. In the right column, BIA (b), ETS (d), HK
(f) and ORSS (h) are shown with the BIA adjustment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. – Bootstrap results between the “reference” LAMBO (dashed line) and the “competitor”
QBOLAM (solid line) for 24 h cumulation time. In the left column, BIA (a), ETS (c), HK (e)
and ORSS (g) are shown without the BIA adjustment. In the right column, BIA (b), ETS (d),
HK (f) and ORSS (h) are shown with the BIA adjustment.
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We first describe the results obtained without applying the BIA adjustment technique.
Significant differences in the BIA score, between the competing models, are found in
almost all cases. In other words, the hypothesis test shows that the aforementioned
differences in the “wetness” of the models are reliable. This is the only remarkable
difference among the models behaviour evidenced by applying the bootstrap technique.
For all the verification measures, with some exceptions, the confidence intervals tend

to increase for higher thresholds (also true after adjusting the BIA).
The score differences between the competing models are inside the confidence interval,

or very close to its bounds, for the ETS, HK and ORSS score. Differences close to the
bounds are found especially for the HK and ORSS score (as seen before, these measures
are the most sensitive to the BIA trend). A significant difference in skill scores is found
only between LAMBO and MM5 at the lowest threshold. We note that, for this threshold,
MM5 has a “wet” BIA, in opposite to its general “dry” trend.
As an effect of the BIA adjustment, the score differences between the competing

models are mostly reduced. This reduction is quite strong in most cases, making most of
the differences smaller than the confidence interval, though reduction of this one may also
occur. The correction is mostly effective when the BIA differences are larger and over the
skill scores which display a higher sensitivity to the BIA value (see, for example, fig. 7c
vs. fig. 7d). In particular, all the differences previously close to the confidence interval
bound (as in fig. 6e or in fig. 6g) loose any significance, except for the aforementioned
difference between LAMBO and MM5 at the lowest threshold (best evidenced in fig. 6).

6. – Conclusions

The application of the bootstrap method for score comparison over the Piedmont and
Liguria Regions shows a statistically significant BIA difference among the models, while
generally the selected skill scores appear to be statistically equivalent. This result is
true also after the BIA adjustment. The confidence interval width generally increases at
greater thresholds. Hence, the comparison is not particularly informative even when the
score differences are large. In fact the selection of high thresholds reduces the numbers
of successes, and the application of the bootstrap (with random swapping of daily tables
of two models) tends to increase the score differences, widening the confidence intervals.
The non-hydrostatic MM5 model shows a behavior that is statistically comparable to the
other two hydrostatic models. This characteristic of the MM5 model does not play here
a particularly important role, since MM5 results were used with a horizontal resolution
of 9 km and with parameterized convection.
The BIA difference existing between QBOLAM and LAMBO seems not to affect

strongly the simple ETS comparison (without considering confidence bars and without
BIA adjustment), while HK, that is sensitive to correct non-rain forecasts, is higher for
QBOLAM although not in a statistically different way.
The skill scores comparison between LAMBO and MM5 shows a more consistent BIA

dependence of skill scores. The application of the hypothesis test performing the BIA
adjustment confirms the statistical equivalence of the results. Moreover, the most evident
differences that appear in a simple skill score comparison are due to the BIA differences.
The ORSS score increases proportionally to threshold values, becoming less informa-

tive at higher thresholds, because it is dominated by the correct non-rain forecasts.
Future works will study the possibility of application of the bootstrap method to

shorter cumulation intervals (6 h, 12 h) time series. Some modifications of the methodol-
ogy will be probably required, to deal with possibly larger forecast errors autocorrelation
values of such time series.
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