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Modeling turbulence perturbation in a laboratory boundary layer
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Summary. — A second-order closure was used to investigate the effect of a gentle
slope hill on the second moments of velocity. An approximated equation system was
solved in streamlines coordinates and the mean flow was obtained by means of a
linearized model. Results are tested on a very rich data set of two experiments with
different slopes.

PACS 92.60.Ek – Convection, turbulence, and diffusion.
PACS 92.60.Fm – Boundary layer structure and processes.
PACS 47.85.-g – Applied fluid mechanics.

1. – Introduction

The atmospheric boundary layer (ABL) turbulence deserves a large attention both
as a typical case of shear flow, often affected by density effects, and for the many envi-
ronmental applications, like evaluation of the effects on buildings and structures, wind
energy assessment, pollution dispersion modeling.

A large amount of work has been made to understand and quantitatively describe
the structure of ABL turbulence under conditions of horizontal homogeneity; the case of
spatial variations of the surface conditions still requires to be investigated also because
of its practical importance. In this work we shall address the problem of turbulence
perturbations, in the outer region of the ABL, induced by the presence of a gentle slope
hill. With the word outer we mean here that part of the ABL where the perturbations
induced in the flow are essentially inviscid, although the unperturbed ABL itself is driven
by turbulent transfer (namely, the unperturbed mean velocity profile is logarithmic under
neutral conditions). Typically, the outer region features may be recognised from a few
meters above the hill surface. This perturbed region extends up to heights of the order
of the horizontal scale length of the hill.

(∗) The authors of this paper have agreed to not receive the proofs for correction.

c© Società Italiana di Fisica 263



264 M. ANTONELLI and F. TAMPIERI

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
x/L

0.0

0.1

0.2

0.3

0.4

0.5

m

H=0.117 m
L=0.936 m
z0=0.000157 m
u*=0.178 m/s
H/L =1/8

Fig. 1. – The shape of the obstacle in the Rushil H8 experiment and the position of the measures
(vertical dashed lines).

The mean flow of the entire ABL over gentle slope hills is well described by linearized
models (see [1-3]). The turbulence modifications have been investigated at first by Britter
et al. [4], and are currently modelled using higher-order closure approaches, as done by
Anfossi et al. [5, 6, 2, 7]. Since Britter et al. [4] work, it is recognised that in the outer
region the perturbations affect the larger scale vortices through a distortion mechanism
described by the rapid distortion theory (RDT: see [8-10]), whereas the smaller ones
are influenced by eddy transport of momentum (see [11]). Accordingly, the seminal
paper by Zeeman and Jensen [12] interpreted the turbulence modifications measured
over Askervein Hill by a Reynolds stress model based on RDT.

In this paper we shall apply the RTD approach as a diagnostic tool for investigating
a wind tunnel experiment of flow over a two-dimensional hill. The experimental data
are described by Snyder et al. [13] and are known as RUSHIL data (see also [14]). A
short description of the experiment and of the relevant data is reported in sect. 2. The
linearized two-dimensional solution for the the mean flow in the outer region is compared
with the data in sect. 3. From this solution, the mean streamlines are derived, and the
solution of the equation system governing the Reynolds stresses are computed on the
streamline coordinate system, which represents the more natural way to deal with the
steady problem, according to Finnigan [15]. This system will be presented and discussed
in sect. 4, whereas in sect. 5 the results obtained are compared with the data.

2. – The data

Very detailed measurements of turbulence characteristics over complex terrain are
rarely available in the field. Wind tunnel experiments may provide useful information
and test cases for analysing most of the aspects of the problem.

The RUSHIL experiment [13] was designed to investigate in detail the boundary layer
perturbations induced by two-dimensional hills, of fixed heightH = 0.117 m and different
slopes. In this paper we shall consider the so-called H8 and H5 hills with half length (at
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the basis) L = 8H and L = 5H, respectively. The shape of the hill is described by the
parametric relation

x(ζ) =
1
2
ζ

[
1 +

L2

ζ2 +m2(L2 − ζ2)
]
,(1)

f̃(ζ) =
1
2
m(L2 − ζ2)1/2

[
1− L2

ζ2 +m2(L2 − ζ2)
]

for |ζ| ≤ L ,(2)

f̃(ζ) = 0 , |ζ| > L ,

m =
H

L
+

[(
H

L

)1/2

+ 1

]1/2

.

In the following numerical computation, we shall need the shape f(x) computed on a
regular grid. This result is obtained by linear interpolation after computing (x, f̃) pairs
for a large number of ζ values.

The shape of the hill and the basic nomenclature is reported in fig. 1.
The EPA wind tunnel was set in order to produce a neutrally stratified BL about

1 m thick, with logarithmic wind profile characterised by u∗ = 0.178 m/s and z0 =
0.157 mm, leading to a free-stream velocity of 4 m/s. The vertical profiles of mean (U,W ),
variances (u2, w2) and covariance (uw) of the velocity are measured in 15 position from
2L upwind the hilltop to 5L downwind. Hereafter, the vector velocity will be indicated
as (U + u, v,W + w) according to the usual Reynolds decomposition. The absolute
error ∆U is about 0.05 m/s; the relative error on the second moments is about 10 %
(see [13]). Measurements in different positions along the wind tunnel without the hill
are also available, and allow to estimate the turbulence decay and more generally the
intrinsic inhomogeneity of this BL. Broadly speaking, the second-order moments decay
on a distance of about 5 m of 25 %. On the distances investigated in this work (less than
2 m) this decay results of the same magnitude or smaller than the estimated error and
this will be neglected in the model-data comparison.

3. – The mean flow

Jackson and Hunt [16] identified a scale of height, l, which is the thickness of the
surface layer where the eddy transfer affects the flow perturbations. At greater height,
namely in the outer region, the perturbations are essentially inviscid. Such scale is
defined by

(3)
l

L
ln

(
l

z0

)
= k2 .

Later authors [2] suggested a different expression for l, which gives a smaller value. We
note that this is perhaps of practical relevance but does not affect the physical meaning
of this scale.

In the inviscid outer region, the linearization of the Reynolds equations, for the two-
dimensional case, leads to the Scorer equation [17], that in the absence of stratification
reads

(4)
(
∇2 − Uzz

U

)
W = 0 ,
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Fig. 2. – Perturbation of the mean velocity with respect to the upstream flow (U(x = −2L)) for
the H8 experiment calculated by the model (line) and derived from the data (points) in some
different positions.



MODELING TURBULENCE PERTURBATION ETC. 267

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2

z(
m

)

 U(x)-U(-2L) (m/s)

x=-5/4L

model
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2
z(

m
)

 U(x)-U(-2L) (m/s)

x=-L

model
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2

z(
m

)

 U(x)-U(-2L) (m/s)

x=-3L/4

model
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2

z(
m

)

 U(x)-U(-2L) (m/s)

x=-L/2

model
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2

z(
m

)

 U(x)-U(-2L) (m/s)

x=-L/4

model
data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1.5-1 -0.50 0.5 1 1.5 2

z(
m

)

 U(x)-U(-2L) (m/s)

x=0

model
data

Fig. 3. – Perturbation of the mean velocity with respect to the upstream flow (U(x = −2L)) for
the H5 experiment calculated by the model (line) and derived from the data (points) in some
different positions.
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where

(5) ∇2 = ∂2
x + ∂2

z .

It is worth remembering that the linear theory is valid for “gentle slope” hills, that is for
obstacles with H/L ≤ 0.5.

Neglecting the shear term Uzz/U we obtain the potential flow solution

U = U0(z) +
H

L
U0(L)F−1(Û) ,(6)

W =
h

L
U0(L)F−1(Ŵ ) ,

where

(7) U0(z) =
u∗
κ

ln
z

z0

and

Û = |k|f̂ e−|k|z ,(8)

Ŵ = ikf̂e−|k|z .(9)

Here F is the Fourier transform operator, so that, for instance,

(10) f̂ = F (f) =
1
2π

∫ +∞

−∞
f(x)e−kxdx

is the Fourier transform of the topographic shape.
Hunt et al. [1] suggested that the solution turns out to be valid for

(11) z > hm = L
1√

ln(L/z0)
,

where hm represents the depth of a middle layer, that is inviscid but dominated by the
shear effect. By comparing the order of magnitude of the terms (at given height h) in
eq. (4) ∂2

x ∼ 1/L2 and Uzz

U ∼ u∗
κh2U(h) it results they are comparable if L2

h2 ln(h/z0)
∼ 1,

which is an implicit equation defining h (an estimate of middle layer depth). The height
hm given by eq. (11) is a slight understimate h. In the RUSHIL wind tunnel experiment
the ticknesses of the inner and middle layer result:

l ∼ 0.05m ,
hm ∼ 0.32m ,

for L = 8H and

l ∼ 0.03m ,
hm ∼ 0.20m
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for L = 5H .

For the sake of comparison, figs. 2 and 3 show the perturbations to the basic flow
derived from the data and those estimated from eq. (6), using the shape defined by eq. (1),
for some positions at different distances from the hill top (x = 0). The computations are
shown from z = l up to z ∼ 8H. The model shows good agreement with the observations
in the entire outer region (z > hm) and in the middle layer too (l < z < hm), in particular
upstream of the hill top. Downstream, on the other hand, especially at low heights we
have a worse agreement because of the turbulent wake effect which extends at heights
greater than l, and that this linear model cannot reproduce.

Thus it appears justified to assume that the mean flow field is well represented by the
inviscid linear solution, allowing in particular to compute the streamlines, necessary for
the application of the turbulence model, at least in the upstream part of the domain.

4. – The turbulence model in the streamline coordinate system

Streamlines represent in a steady flow the trajectories of fluid particles, so that the
streamline coordinate system appears to be the most appropriate to describe the dynam-
ics of turbulence transformation mainly due to vortex deformation (due to the mean flow
inhomogeneities) as occurs in the outer region.

The coordinate transformation from the standard Cartesian system (x, z) to the
streamline coordinate system (ψ, φ) has been widely described by Finnigan [15] and
Maurizi et al. [18] and is expressed by the following relationships:

∂ψ

∂x
= −W ,

∂φ

∂z
= U ,(12)

∂ψ

∂x
= ζU ,

∂φ

∂z
= ζW ,(13)

where ζ is an integrating factor. We also define the vorticity Ω = ∂U/∂z − ∂W/∂x in
the Cartesian coordinate system. Being a scalar in this 2D model, Ω is invariant with
respect to the change of coordinates.

Finnigan [15] wrote the Reynods equations in the streamline coordinate system; they
were used by Zeeman and Jensen [12] to model turbulence over Askervein hill and by
Maurizi et al. [19] to interpret the turbulence balance in the RUSHIL (and the companion
RUSVAL [20]) wind tunnel experiments.

The Reynolds equations for a two-dimensional neutrally stratified flow, in this new
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Fig. 4. – Initial profiles (x = −2L) of the second-order moments for the H8 experiment.
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Fig. 5. – Initial profiles (x = −2L) of the second-order moments for the H5 experiment.
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coordinate system, read

U
∂u2

∂x
= −2u2

∂U

∂x
+ 2uw

U

R
− 2uw

∂U

∂z
− π11 − 2

3
ε ,(14)

U
∂v2

∂x
= −π22 − 2

3
ε ,(15)

U
∂w2

∂x
= +2u2

∂U

∂x
− 4uw

U

R
− π33 − 2

3
ε ,(16)

U
∂uw

∂x
= −w2

∂U

∂z
+ (w2 − 2u2)

U

R
− π13 ,(17)

where, from now on, x and z are, respectively, the coordinates along a streamline and
normal to it, πij are the so-called pressure terms, ε is the dissipation and the radius of
curvature R of the ψ = const lines appears explicitly:

(18)
1
R

=
1
U

(
Ω+

∂U

∂z

)
.

Note that in this system W = 0, so mean advection is only described by the horizontal
component U .

In the equations the gradients of uiujuk have been neglected, consistently with the
assumption of negligible turbulent transport of momentum in the outer region. An order
of magnitude evaluation of the terms gives

(19)




∂uiujuk

∂z
∼ O

(
u3
∗
z

)
,

U
∂uiuj

∂x
∼ O

(
U0
u2
∗
L

)
,

thus

∂uiujuk

∂z
� U

∂uiuj

∂x
, if z � l ,

where

(20)
l

L
ln
l

z0
∼ k .

A comparison between eq. (20) and eq. (3) shows that the height l over which the third-
order gradients become negligible with respect to the advection term is l ∼ l, consistently
with the hypothesis made about the inviscid outer region dynamics.
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Fig. 6. – The two figures show a comparison of the streamwise acceleration (1/La) and the inverse
of curvature (1/R) obtained by the model (a) and recostructed by data of Rushil experiment (b).

Moreover, those terms have been evaluated as residuals in the analysis of turbulent
budget over a model valley in the same wind tunnel [19]. It results that the parame-
terization of third-order moments with a typical flux-gradient model provides a worse
description than a model which neglects third-order moments.

The pressure terms can be rewritten according to the model by Zeman and Ten-
nekes [21] as

(21) πij = πR
ij + π

D
ij ,

where

(22) πR
ij = Cq2bij

(
bij =

uiuj

q2
− δij

)
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Fig. 7. – Vertical profiles of u2 in some different positions for H8 experiment. The data (stars)
are compared with the model which includes the curvature effect (solid line) and the model
without curvature effect (pointed line).
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is Rotta’s term which describes the return to isotropy, and

πD
11 = −∂U

∂x

[
2
5
q2 +

4
3
α1(u2 − v2)

]
− 2

∂U

∂z
uw(α1/3 + α2)−(23)

−2U
R
uw(α1/3− α2) ,

πD
22 = −∂U

∂x

4
3
α1(u2 − w2) +

∂U

∂z

4
3
α1uw +

U

R

4
3
α1uw ,(24)

πD
33 = −∂U

∂x

[
2
5
q2 +

4
3
α1(w2 − v2)

]
− 2

∂U

∂z
uw(α1/3− α2)−(25)

−2U
R
uw(α1/3 + α2) ,

πD
13 = −∂U

∂z

[
1
5
q2 + α1

(
w2 + u2 − 2

3
q2

)
+ α2(w2 − u2)

]
−(26)

−U
R

[
1
5
q2 + α1

(
w2 − u2 − 2

3
q2

)
+ α2(u2 − w2)

]

are the so-called rapid distortion term in the streamline coordinate system; (1/2)q2 is
the turbulent kinetic energy and α1, α2 and C are constants to be determined from the
data. This closure results from the application of the RDT. The RDT approximation
corresponds, in the present problem, to limit the description to cases for which the
typical integral time scale of eddies (which is a measure of nonlinear interaction time
among eddies) Tt = kz/u∗ is larger than the mean flow distortion time TD = U/L:

TD � Tt ⇒ L
u∗
k ln(z/z0)

� kz

u∗
,(27)

⇒ z

L
ln
z

z0
� 1 ,(28)

therefore the RDT approximation is valid for z > l, that is in the outer region.
The three constants α1, α2, C in the pressure term model (eqs. (22)-(26)) can be

calculated for each particular partition of turbulent kinetic energy distrubution among
the component of the Reynolds stress tensor. From eqs. (14)-(17) applied over flat terrain,
using espressions (22)-(26) and assuming a local equilibrium to model the dissipation term
as ε = −uw ∂U

∂z , we obtain the following equation system with the three unknowns α1,
α2, C:

2
(
1− 1

3
α1 − α2

)
− b11C − 2/3 = 0 ,(29)

4
3
α1 − b22C − 2/3 = 0 ,(30)

−2
3
α1 + 2α2 − b33C − 2/3 = 0 ,(31)

−u
2
3

u2∗
− α2(b11 − b33) q

2

u2∗
+

1
5
q2

u2∗
− α1b22

q2

u2∗
+ C

u2
∗
q2

= 0 .(32)
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Fig. 8. – The same of fig. 7 for w2.
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Fig. 9. – The same of fig. 7 and fig. 8 for uw.
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The first three equations are not independent, so that we get a three-equations system
with three unknowns:

α1 =
1

10(b211 − 1
2b

2
22 + b11b22 +

u2∗
q2 )

+
1
2
,(33)

α2 = − 2b11 + b22
30(b211 − 1

2b
2
22 + b11b22 +

u2∗
q2 )

+
1
2
,(34)

C =
2/15

b211 − 1
2b

2
22 + b11b22 +

u2∗
q2

.(35)

For a given turbulent kinetic energy distribution, that is for each tern of values of u2
1/q

2,
u2

2/q
2 and u2

∗/q
2, it is possible to calculate the corresponding values of the constants of

the model. Since the values of u2
i are not constant with height (see fig. 4), the constants of

the model are calculated for each streamline assuming a local equilibrium which changes
with height.

In the present formulation the equations describing the Reynolds stresses dynamics
are ordinary differential equations instead of partial differential equations. This system
has been integrated along streamlines at different heights zn = nH/4 using a Runge-
Kutta method of fourth order. We integrated the equations from the position x = −2L
using as initial value for u2

i the experimental data in the same point (figs. 4, 5).

Although these profiles are far from ideal (in fact they show an inflection at z ∼ 3h)
they give the true initial condition for the present problem, and the discussion will
concentrate on the evolution for x > −2L, mainly due to the presence of the obstacle.

For experiment H5 we do not have a detailed profile for u2
i in x = −2L but only a

reconstruction from a few data near the ground and at the top of the boundary layer.

The experiments H5 and H8 do not provide measures of v2 so that we use a value
typical of the neutral boundary layer [22], v2/− uw = 3.24.

To evaluate the effects of the mean flow deformation on turbulent stresses we rewrite
the system (14)-(17) evidencing the crossflow shear ∂U/∂z the curvature U/R, and the



MODELING TURBULENCE PERTURBATION ETC. 279

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

z(
m

)

u2 (m/s)2

x=-5/4L

data
Q/R=0
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3
z(

m
)

u 2 (m/s)2

x=-L

data
Q/R=0
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

z(
m

)

u 2 (m/s)2

x=-3L/4

data
Q/R=0
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

z(
m

)

x=-L/2

data
Q/R=0
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

z(
m

)

x=-L/4

data
Q/R=0
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3

z(
m

)

x=0

data
Q/R=0
model

u2 (m/s)2

u2 (m/s)2 u2 (m/s)2

Fig. 10. – Vertical profiles of u2 in some different positions for H5 experiment. Data (stars) are
compared with the model which includes the curvature effect (solid line) and with the model
without curvature (pointed line).
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Fig. 11. – The same of fig. 10 for w2.
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streamwise acceleration ∂U/∂x:

U
∂u2

∂x
=
∂U

∂x

[
−2u2 + 2/5q2 + 4/3α1(u2 − v2)

]
+(36)

+
U

R
(2uw + 2uw(α1/3− α2)) +

+
∂U

∂z
2uw(α1/3− α2)− Cε

(
u2

q2
− 1

3

)
− 2

3
ε ,

U
∂v2

∂x
=
∂U

∂x
4/3α1(u2 − v2)− U

R
4/3α1uw − ∂U

∂z
4/3α1uw −(37)

− Cε

(
v2

q2
− 1

3

)
− 2

3
ε ,

U
∂w2

∂x
=
∂U

∂x

[
2u2 + 2/5q2 + 4/3α1(w2 − v2)

]
+(38)

+
U

R
(−4uw + 2uw(α1/3 + α2)) +

+
∂U

∂z
(2uw(α1/3− α2))− Cε

(
w2

q2
− 1

3

)
− 2

3
ε ,

U
∂uw

∂x
=
U

R

[
w2 − 2u2 +

1
5
q2 + α1

(
w2 − u2 − 2

3
q2

)
+ α2(u2 − 2w2)

]
+(39)

+
∂U

∂z

[
−w2 +

1
5
q2 + α1

(
w2 + u2 − 2

3
q2

)
+ α2(w2 − 2u2)

]
− Cεu

2

q2
.

The equation for −uw (eq. (39)) has the simplest form and can be used to estimate the
order of magnitude of the effect of curvature and of the shear.

If one considers typical values of turbulent stresses in the ABL [14] and of the costants
α1 and α2 [21]

(40)




u2 = 6.25u2
∗ ,

w2 = 1.69u2
∗ ,

v2 = 3.24u2
∗ ,

−uw = u2
∗ ,

α1 = 0.31 ,
α2 = 0.2 ,

we find that

U
∂(−uw)
∂x

= A
∂U

∂z
+B

U

R
(41)
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with

(42)

{
A 
 0.2u2

∗ ,
B 
 12.u2

∗ ,

while for the along wind variance u2 results:

U
∂(u2)
∂x

= D
∂U

∂x
+ E

U

R
+ F

∂U

∂z
(43)

with

D 
 −7u2
∗ ,

E 
 −2u2
∗ ,

F 
 −1u2
∗ .

So the curvature effect is the dominant one in the equation for −uw and the less
important for u2.

Since the sign of the curvature is

U

R
> 0 in the upwind slope and behind the hill

U

R
< 0 over the hilltop

according to Kaimal and Finnigan [23], the effect is to reduce −uw and w2 on the top
and to increase them at the foots of the hill.

The streamlines resulting from the application of the linearized model to compute
the mean flow (see sect. 3) follow the shape of topography more stricly than in the real
case because the effect of nonlinearity would be to smooth strong variation of velocity in
particular at the hill foot. It results that the model tends to overestimate the streamline
curvature as we can see from a comparison (showed in figs. 6a, b) between curvature and
streamline of the model and those derived from experimental data [24]. In particular
it gives a quite unrealistic negative minimum of curvature at the hill foot, whereas the
positive maximum over the hill top is well reproduced.

So it results that the integration of eqs. (14)-(17) with the mean strain rate computed
from the linearized model produces a strong positive perturbation for −uw and w2 which
affects the results downstream.

To evaluate the curvature effect, in figs. 7, 8, 9, and figs. 10, 11, 12 we compare the
results of the full model with those obtained from the same system putting U/R = 0.

From the turbulent stress profiles showed in the figures, it is evident that the full
model with the curvature derived from the “linear” mean flow produces an excessive per-
turbation on −uw and w2 and this overestimation is advected along the streamlines until
the top. The model with U/R = 0, on the other hand, produces a correct perturbation
at the hill foot, whereas it overestimates these components of the stresses over the hill
top. From the analysis of the data it results that the curvature effect is almost negligible
at the hill foot, whereas it should reduce −uw and w2 over the hill top, consequently the
net effect over the hill top is a decrease of −uw and w2.
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Fig. 12. – The same of fig. 10 and fig. 11 for uw.
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Of course the nonlinear effects and consequently the overestimation of curvature are
more evident in the H5 experiment because of its greater slope. Also we can notice that
the model reproduces the vertical profiles of u2 very well in both the experiments. This
is consistent with the fact that the leading term in the equation for u2 is the streamwise
acceleration ∂U/∂x (which is well reproduced by the linear model) as is shown in the
previous analysis.

5. – Conclusions

In this work we applied a simplified method to solve the equation system for Reynolds
stresses over a low hill and we verified its validity over a very rich data set.

We focused our attention on the outer region of the flow, where the eddy viscosity
effect can be neglected.

The use of a linearized model for the mean velocity field produces a good description
of the mean flow perturbation over the obstacle (as well known from previous works).
This mean flow field has been used to compute the streamlines and the derivatives of the
mean velocity necessary to compute the Reynold stresses perturbation.

Some perturbation of the Reynolds stresses upwind and over the top are well captured
by the model, namely those of the along wind variance (u2); whereas others (w2 and uw)
are not. From the analysis of the governing equations it results that small inaccuracies,
which arise in the mean flow description, can have a large influence on (at least) some
components of the Reynold stresses. In particular the error associated to the curvature
radius (related to the shape of the obstacle which directly affects the streamline shape
as computed by linear model) affect the value of w2 and uw components at the upwind
foot of the hill and propagates up to the hill top.

So a first-order linear model, which well reproduces the perturbation of the mean flow
over a gentle slope hill is shown to produce an unrealistic perturbation on the turbulent
energy distribution on the top.
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