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Summary. — In our atmosphere, most of the energy resides as internal energy,
U , and gravitational energy P , and the proportionality U/P = cV /R = 5/2 is
maintained in an air column provided there is hydrostatic equilibrium. In this
paper we show that this result is a consequence of the virial theorem.

PACS 05.70.-a – Thermodynamics.
PACS 92.60.-e – Meteorology.

1. – Introduction

As mentioned in the summary, in a planetary atmosphere most of the energy resides
as thermodynamic internal energy, U , and gravitational potential energy, P , and in
a hydrostatic column, the ratio U/P = cV /R [1] is maintained no matter what the
vertical profile of the temperature may be in the air column. R and cV are the gas
constant and specific heat at constant volume, respectively, of the molecules existing in
the atmosphere. In the case of the atmosphere of the earth, as most of the molecules
are diatomic, cV = (5/2)R. Qualitatively speaking, this constant ratio means that if the
internal energy of an air column is increased by some heating process, the air column
must expand vertically, thereby increasing its gravitational potential energy. These ideas
are at the basis of the important concept of available potential energy.

To check this ratio, we use the equation of hydrostatic equilibrium and the gas law:

dp = −gρdz ,(1)
p = ρRT .

Then, the internal energy of a vertical air column of section unity extending from the
surface up to the end of the atmosphere, i.e. up to a height where pressure and density
are nil is

U = cV

∞∫
0

Tρdz = (cV /R)

∞∫
0

p(z)dz ,(2)
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and the gravitational potential of the energy column is

P =

∞∫
0

zgρdz = −
∞∫
0

zdp .(3)

Integrating by parts and introducing the gas law

P = R

∞∫
0

ρTdz =

∞∫
0

p(z)dz .(4)

This shows the constant proportionality U/P = cV /R.
It is important to realise that in this calculation of U and P , we have adopted as

the state of minimum energy, or level of reference, that where T (z) = 0 for the whole
column, and consequently all the gas molecules are deposited at ground level, that is
U0 = P0 = 0.

The Virial Theorem (VT) when applied to a bound classical many-particle system
says [2] that the total kinetic energy, Ekin, is given by

2Ekin = I = −
〈∑

i

�ri · �Fi

〉
,(5)

where I is known as the virial of the system; �Fi denotes the force acting on the i-th particle
whose position is defined by �ri, and the brackets denote a time or spatial average. This
theorem is a fundamental result deduced by invoking only the equations of motion and
the assumption that all the coordinates remain finite. Depending on the nature of the
problem under consideration, the virial I is a sum of terms corresponding to the different
types of forces acting on the particles of the system. The VT is easily generalized to
quantum and relativistic physics.

Very likely the two areas in physics where the application of the VT has been most
fruitful are: i) the equation of state of non-ideal gases, where this theorem indicates the
systematic procedure [3] to compute the successive corrections to the equation of state
of the ideal gas, and ii) astrophysics, where the application of this theorem provides a
qualitative understanding of the evolution of a star [4].

In this paper, we deduce and discuss the implication of the VT for a planetary atmo-
sphere. In sect. 2 we identify the relevant forces acting in the atmosphere and deduce
the meaning of eq. (5) for this system. In sect. 3, we perform the same job for a vertical
column of air, under the simplifying hypothesis of dealing with a planar atmosphere.
As expected, the two results are equivalent. Finally, in sect. 4 we recognise the VT
implication for the atmosphere as the reason for the proportionality between U and P ,
commented on in this section.

2. – The virial theorem and the atmosphere

In the case of the atmosphere, the individual constituting particles are the molecules,
and the forces acting upon them are of three types. The first type is the long-range
gravitational force, which is vertically directed towards the centre of the planet. The
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second type is the contact repulsive force exerted by the planetary surface, which is
directed vertically outwards. The third type corresponds to the force exerted by the rest
of the molecules, by collisions. These inter-molecule short-range effects certainly exist
but in the first instance are not so important. Note that the atmospheric gas behaves
like an ideal gas.

For these reasons, the virial of the atmosphere, I, will contain just two terms,

I = Ig + Is ,(6)

which correspond to the gravitational attraction and to the contact effect with the surface,
respectively.

Locating our coordinate system in the centre of the planet and using polar spherical
coordinates, we find

Ig = −
〈
−

∑
i

ri
GMm

r2i

〉
= GMm

〈∑
i

1
ri

〉
= −Vg ,(7)

where m denotes the mean molecular mass in the atmosphere, M is the planetary mass,
and Vg the total gravitational energy of the atmosphere. Now, if a and p0 denote the
planetary radius and the value of the atmospheric pressure at surface, we obtain

Is = −
〈∑

i

a fc, i

〉
= −a(4πa2) p0 = −4πa3p0.(8)

This relation comes from the fact that the temporal average of the contact forces, fc,
exerted by the surface on the molecules is equal and opposite to the force exerted by the
molecules on the ground, and this is p0 times the area of the planet’s surface.

Thus the VT implies

2Ekin + Vg + 4π a3p0 = 0 .(9)

Henceforth we will assume that all magnitudes of the gas such as the pressure, p,
temperature, T , and the mass density, ρ, depend only on the radial coordinate, r.

Considering the atmospheric gas as a continuum, Vg is expressed as

Vg = −
2π∫
0

π∫
0

∞∫
a

GM

r
ρ(r) d�r = −

2π∫
0

π∫
0

∞∫
a

(rg(r))ρ(r) d�r ,(10)

where g(r) = (GM/r2) stands for the gravity acceleration, and d�r = r2drdΩ (dΩ =
sin θ dθ dφ) is the differential of volume. Using the condition of hydrostatic equilibrium

dp(r) = −ρ(r)g(r)dr ,(11)

and integrating by parts, we obtain

Vg = −4π a3p0 − 3

2π∫
0

π∫
0

∞∫
a

p(r) d�r .(12)
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And thus eq. (9) leads to

Ekin =
3
2

2π∫
0

π∫
0

∞∫
a

p(r) d�r ,(13)

which is the VT implication for the spherical hydrostatic atmosphere. This result agrees
with the kinetic theory [3].

3. – The virial theorem in a planar atmosphere

The planar approximation is a good one for the atmosphere because the scale height,
H, for the vertical decrease in the air density is around 10 km, which is very small
compared to the planetary radius (a � H). Thus, we can suppose that the ground
surface is represented by the plane z = 0, and the air density is a decreasing function
of z > 0. It is implicitly assumed, as in sect. 2, that beyond a high enough value of
z, the gas density vanishes. For such a planar gaseous distribution, we now deduce the
consequences of eq. (5). Specifically we will focus on the air contained in a vertical
cylinder whose axis coincides with the OZ axis, and whose base is a circle of surface
unity lying on the ground. Thus, all the energy terms calculated in this section are per
surface unity. We will take the origin of coordinates in the centre of the circle.

For this system, the term Is accounting for the surface contact effect is nil because
the height of the ground is z = 0. With respect to the gravitational contribution to the
virial, Ig, we have

Ig = −
〈∑

i

−zimgi

〉
.(14)

Passing to the continuum, and assuming a constant value of the gravity acceleration
we find

Ig =

∞∫
0

zg0ρ(z)dz ,(15)

which coincides with the familiar form of the potential energy, P , of an arbitrary mass
distribution ρ, near the Earth’s surface if one takes the z = 0 plane as the level of
reference. Thus,

Ig = P .(16)

Using the hydrostatic condition, dp(z) = −g0ρ(z)dz we obtain

Ig = −
∞∫
0

zdp ,(17)
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and integrating by parts

Ig =

∞∫
0

p(z)dz .(18)

Thus, supposing that I = Ig we obtain

2Ekin =

∞∫
0

p(z)dz ,(19)

which disagrees with eq. (13) by a factor 3 and contradicts the kinetic theory. This
contradiction indicates that some dynamical effect, in the virial I, is missing in the
calculation. This is exactly the case; the pressure effect exerted by the molecules lying
just on the other side of the cylindrical border that defines our subsystem has not been
taken into account. For this reason, in this case of the planar atmosphere, the correct
virial is

I = Ig + Ib ,(20)

where Ig is the calculated gravitational effect and Ib comes from the above-mentioned
lateral border effect on the subsystem. Ib amounts to

Ib =

∞∫
0

bp(z)(2π bdz) ,(21)

where b represents the radius of the base of the cylinder. As the surface of the base is 1,
we have π b2 = 1, and thus

Ib = 2

∞∫
0

p(z)dz .(22)

Adding eq. (18) and eq. (21) we find the correct formula for the VT when it is applied
to a planar atmosphere:

2Ekin = 3

∞∫
0

p(z)dz .(23)

Thus, the previous contradiction with eq. (13) has disappeared.

4. – Discussion and conclusion

We have obtained

Ekin =
3
2

∞∫
0

p(z)dz ,(24)
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as the VT prediction for the atmospheric column. As the kinetic energy of the molecules
is not a thermodynamic function, we use the principle of equipartition of energy to pass
from Ekin to U , that is, to the internal energy. We will denote by ν the number of active
degrees of freedom in the gas, i.e. ν = 3 for the translational modes of monoatomic
molecules, ν = 5 for the 3 translational modes plus 2 rotational modes of diatomic
molecules, etc. In the atmosphere of the Earth, the N2 and O2 molecules are dominant
and therefore ν = 5. Thus, invoking the energy equipartition, from the proportion

U

ν
=

Ekin

3
,(25)

eq. (24) adopts the form

U =
ν

2

∞∫
0

p(z)dz =
ν

2
P .(26)

As in a perfect gas R(ν/2) = cV , eq. (26) is equivalent to

U

P
=

cV

R
,(27)

which is the ratio checked in sect. 1.
Therefore, we conclude that the result of the VT in the atmosphere is in itself the

proportionality between U and P . In this sense, note that the VT theorem leads to
eq. (27) without the necessity of adopting any particular level of reference for the energies
of the column, i.e. there is no ambiguity in the deduction.
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