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Summary. — In the present paper we study the Gordon and Zarmi model (Am.
J. Phys., 57 (1989) 995) for dealing with the earth’s wind energy as a solar-driven
Carnot-like heat engine, incorporating the role of the greenhouse effect on the perfor-
mance of this heat engine model, following the De Vos approach. We find that when
the greenhouse effect is considered only at the low-temperature half part of the cycle,
the efficiency of the conversion of solar energy into wind energy strongly depends on
the greenhouse effect under both maximum-power and maximum-ecological-function
conditions. We also analyze the De Vos-van der Wel model corresponding to the
so-called two-reservoir case and find that the efficiency of conversion of solar energy
into wind energy under maximum ecological function reaches a reasonable value
within the interval of values reported in the literature.

PACS 92.70.Cp — Atmosphere.
PACS 44.40.+a — Thermal radiation.
PACS 44.90.+c — Other topics in heat transfer.

1. — Introduction

The problem of thermal balance between the planets of the solar system and the
Sun under a finite-time thermodynamics (FTT) approach has been treated by several
authors [1-7]. In some of these articles the question of the conversion of solar energy
into wind energy is also treated. As is well known [4], cosmic radiation, starlight, and
moonlight can be neglected for the thermal balance of any of the planets of the solar
system and only the following quantities have an influence: The incident solar influx
or solar constant .S, the planet’s albedo p, and the greenhouse effect of the planet’s
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atmosphere crudely evaluated by means of a coefficient . This coefficient can be taken as
the normalized greenhouse effect introduced by Raval and Ramanathan in ref. [8] which is
defined as the infrared radiation energy trapped by atmospheric gases and clouds. When
only the global thermal balance between the Sun and a planet is considered, one can
roughly obtain the planet’s surface temperature assumed as a uniform temperature Tp. If
the conversion of solar energy into wind energy is to be modeled, it is necessary to involve
at least two representative atmospheric temperatures for making the creation of work
possible; that is, to take the planet’s atmosphere as a working fluid that converts heat into
mechanical work. This permits to introduce in a natural way the concept of atmospheric
“heat engine”. In this context process variables as work rate, heat fluxes and efficiency for
instance, find a simple theoretical framework, where thermodynamical restrictions play a
major role. This is in contrast with disciplines as non-equilibrium thermodynamics and
hydrodynamics based on local differential equations where the transition from local to
global variables is not a trivial task [1]. In 1989, Gordon and Zarmi (GZ) [2] introduced
a FTT model taking the Sun-Earth-Wind system as a FTT-cyclic heat engine where the
heat input is solar radiation, the working fluid is the Earth’s atmosphere and the energy
in the winds is the work produced, the cold reservoir to which the engine rejects heat
is the 3 K surrounding universe. By means of this oversimplified model, Gordon and
Zarmi were able to obtain reasonable values for the annual average power in the Earth’s
winds and for the average maximum and minimum temperatures of the atmosphere,
without resorting to detailed dynamic models of the Earth’s atmosphere, and without
considering any other effect (such as Earth’s rotation, Earth’s traslation around the Sun,
ocean currents, etc.). Later, De Vos and Flater [3] extended the GZ model to take into
account the wind energy dissipation and obtained an upper bound for the conversion
efficiency of solar energy into wind energy given by wpa, = 8.3%, assuming that the
atmospheric “heat engine” works at maximum-power regime. This model, in turn, was
extended by De Vos and van der Wel [5] to obtain a new upper bound wpax = 10.23%.
These same authors [6] considerably improved their numerical results for wy.x by means
of a model based on convective Hadley cells. All the models used in refs. [1-6] are
endoreversible ones in the sense of FTT [9], that is, all irreversibilities are located in the
exchanges between the engine and the external world and the engine model is internally
reversible. In ref. [7], the GZ model was studied under a nonendoreversible approach
using a criterion of merit called ecological optimization criterion. This criterion [10]
consists of maximizing a function F that represents a good compromise between high-
power output and low-entropy production. The function E is given by

(1) E =P —TAS,,

where P is the power output of the cycle, AS, the total entropy production (system plus
surroundings) per cycle, and T is the temperature of the cold reservoir. This optimization
criterion for the case of the so-called Curzon-Ahlborn cycle [11], for instance, leads to a
cycle configuration such that for maximum F it produces around 75% of the maximum
power and only about 25% of the entropy produced in the maximum-power regime [12].
By means of employing this criterion in a nonendoreversible GZ model, the authors of
ref. [7] also found reasonable values for the annual average power of the winds and for the
extreme temperatures of the Earth’s atmosphere. In the present paper we again study
the GZ model but including the planet’s greenhouse factor. It is convenient to remark
that the GZ-type models are based on annual average quantities and thus they do not
represent actual convective cells, but a kind of annual virtual cells that take into account
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Fig. 1. — Scheme of a simplified solar-driven heat engine (taken from ref. [1]).

the global thermodynamic restrictions over the convection as dominant energy transfer
phenomenon in the air (which has a big Rayleigh number). Besides, this kind of models
must be only taken as the ones producing better upper bounds than those calculated
by means of classical equilibrium thermodynamics (CET), which is the main purpose of
FTT. As De Vos and Flater [3] assert, no mechanism guarantees that the atmosphere
maximizes the wind’s power; thus, we include also an analysis based on the ecological
criterion. The paper is organized as follows: In sect. 2, we discuss the GZ model under
both maximum-power and maximum-FE criteria including the planet’s albedo p and the
greenhouse factor . For the case of the maximum-power regime we recover the expression
for the solar energy efficiency w, given by De Vos in refs. [3] and [4]. Nevertheless, we
find that both the power output P and the solar energy efficiency w may depend on the
greenhouse effect. In sect. 3, we study the two-reservoir model of De Vos and van der
Wel [5] under the ecological criterion and we find a value for the solar energy efficiency
w within the reported values [13-18]. Finally, we present our conclusions in sect. 4.

2. — GZ model including greenhouse effect

2'1. The maximum-power regime. — In fig. 1, a schematic view of a simplified Sun-
Earth-Winds system as a heat engine cycle is depicted. This cycle consists of four
branches:
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a) two isothermal branches, one in which the atmosphere absorbs solar radiation at
low altitudes and one in which the atmosphere rejects heat at high altitudes to the
universe, and

b) two intermediate instantaneous adiabats with rising and falling air currents [9,19].

According to GZ, this oversimplified Carnot-like engine corresponds very approxi-
mately to the global scale motion of wind in convective cells. In what follows, we use
all of GZ-model’s assumptions. For instance, the work performed by the working fluid
in one cycle W, the internal energy of the working fluid U, and the yearly average so-
lar radiation flux g5 are expressed per unit area of earth surface. The temperatures of
the four-branches cycle are taken as follows: 77 is the working fluid temperature in the
isothermal branch at lowest altitude, where the working fluid absorbs solar radiation for
half the cycle, during the second half of the cycle heat is rejected via black-body radia-
tion from the working fluid at temperature T5 (highest altitude of the cell) to the cold
reservoir at temperature Toy (the 3 K surrounding universe). In the GZ model the objec-
tive is to maximize the work per cycle (average power) subject to the endoreversibility
constraint [9], that is

to — 0 4 74
@ mm:A Gw> §$>7Mm>&za

where ASj,¢ is the change in entropy per unit area, tq is the time of one cycle, o is the
Stefan-Boltzmann constant (5.67 x 10_8\2\7/11121(4)7 and g5, T and T, are functions of
time ¢, taken as [2]

_ Tla OStStO/Q
T(t){ Ty, to)2<t<to }

Tex:3Ka 0<t<ty
0 to/2<t<tg }

s(t) = I (1 -
m>{_47ﬁoggm

with I the yearly average solar constant (1373 W/m?) and p ~ 0.35 [2], the effective
average albedo of the earth’s atmosphere. The GZ model maximizes the work per cycle
W, taken from the first law of thermodynamics for one cycle,

(4) AU = -W + /Oto (gs(t) — o [T*(t) — T (1)]) dt = 0,

by means of the Euler-Lagrange formalism and denoting average values as

—_ T T:
T — 1-2F 27
n n
(5) -
0>
q_s:Isc p-
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From egs. (4) and (5) and taking into account the constraint given by eq. (2), GZ con-
struct the following Lagrangian L:

(6) L=T%(t)+ A [‘,}g)) - 0T3(t)] ,

where A is a Lagrange multiplier. By finding the extremum of L by means of 0L/9T(t) =
0, GZ found for the Earth’s atmosphere the following values: T} = 277 K, T, = 192 K
and Ppax = Whax/to = 17.1 W/ m?. These numerical values are not so far from “actual”
values, which are P ~ 7 W/m” [15], T} ~ 290 K (at ground level) and T, ~ 195 K (at
an altitude of around 75-90 km). However, as GZ assert, their power calculation must
be taken as an upper bound due to several idealizations in their model.

In ref. [7], the GZ model was used to maximize the ecological function given by
eq. (1). This was made for both an endoreversible and a nonendoreversible case. For
the endoreversible case (with a 3 K surrounding universe) the following values were
obtained: T7 = 294 K, 15 = 109.5 K and P,.x = 6.89 W/mz, which also are good
values, remarkably for 77 and P. Another endoreversible case was proposed, but using
as cold reservoir the tropopause shell with T, ~ 200 K. In this case the numerical
results were: T7 = 293.3 K, T = 239.2 K and Pya.x = 10.75 W/mZ, which also are
reasonable values for the troposphere characteristics. The nonendoreversible version of
the GZ model was accomplished by means of a lumped nonendoreversibility parameter R
which may be considered as a measure of the departure from an endoreversible regime,
due to internal losses. This parameter arises from Clausius’ inequality [20-24]. With
this approach, Ty, Ty and P also reach reasonable values [7]. When the endoreversibility
parameter R and the greenhouse factor v [4] are considered, the integral constraint given
by eq. (2) must be modified, becoming

- ASy— / <qs<t> —o(1- v)TJ(%tET%ﬂ 0] ) a—o.

while the first law of thermodynamics applied over one cycle becomes

(®) AU = W+ [ (0(6) = o1 =) [T~ T&(0)] e =

By using eqs. (3) into eq. (8), we obtain

9) P—Ezq?—

= (1—7) [T} + T3] + o(1 = 7)Ti,
0

o

2
For T, = 3 K, we take the appoximation g; > T2 (223 W/m” > 4.59x 10-5W/m?)

and eq. (9) becomes

(10) j

(1= [T + T3]

W
tO_QS

) Q

By using again eqs. (3) into eq. (7), we obtain

s OoR
(11) = - 1= (T8 + T3]
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Since our objective is the maximization of the average power output per cycle, subject
to the integral constraint, we construct the following Lagrangian:

2 ta=m-Ja-a @) - {E - Fa-n ),

A being a Lagrange multiplier. By means of L /0T(t) = 0, we obtain the following
equations:

For 6LR/3T1 = 0,

(13) —20(1 — YT} + A\ + @(1 — VAT =0;

2

for 0L /0T, = 0,

4
(14) A==
and for OLr /0N =0,
_ 1_
(15) s _ M (T13 4 T23) =0.

Ty 2

By the elimination of A, egs. (13)-(15) reduce to

25 1

16 5 — Tyt — - Ty=0
(16) ! 2 3 o(l—9)R 2 ’
and
(17) T — 2 _

! 2 s1-9)R

We numerically solve these equations and obtain, for example, the following results:
For the Earth with p = 0.33 [25], v = 0.3 [8], R = 1 and g; = 229.5 W/m” [25] we
get Ty = 305.2 K, Tp = 211.4 K [26] and Ppax = 17.5 W/m2; and for Venus, with
p = 07125, v = 0983, R =1 and g; = 188.5 W/m” [25] we get T} = 736.1 K,
Ty =509.7 K and P = 144 W/ m2, which are good values for the surface temperatures
of these planets [3].

From eq. (11) and taking the nonendoreversible Carnot efficiency [24] as

15
1 S
(18) M R
we obtain
2G5 1
1 TH = =X
(19) =2 e T
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and

4 205 RY (1 —n)!
(20) 75_77{RH+R%1—mﬂﬂ—w}'

By substituting egs. (19) and (20) into eq. (10) we get

_[EB-1)+ R —n
. P { U ma )

Then, for the solar energy efficiency w defined as w = P/q; [4], we obtain

_(R=1)+R'(1—n)?y
(22) USRI RO -0

which for R =1 (endoreversible case) reduces to

_ n(—mn?
. RS EIETD

which is the same result reported by De Vos [4]. By solving dw/dn = 0, De Vos found
that for a maximum-power regime, 7.67% of the solar energy g; can be converted into
wind energy. Besides, as De Vos remarks this value is independent of planet and yet of
solar system, given that eq. (23) does not involve p, v and the so-called dilution factor
f = R2%/r? [4], where R, is the radius of the Sun and r is the radius of Earth’s orbit
around the Sun. Our equation (22) suggests that w depends on the parameter R which
in principle embraces the internal losses of the working fluid. We also can approach to
the maximization of the power output of the GZ model by considering that the factor
(1 =) corresponding to the greenhouse effect [4] only participates in the low half of the
cycle depicted in fig. 1. Thus, by integrating eq. (8) with the approximation g; > T4,
the expression for the average power output becomes

(24) P=g— - [1-7T+Ty].

o
2

With the same previous assumptions for the greenhouse effect, the integral constraint
(eq. (7)) turns out to be

s OR
(25) 7" % (1 =NTP +T5].

For the maximization of the power output, we construct the following Lagrangian:

ocR

(@ =ri+z) - a{ 8 - -t 73]}

2 Ly=1—
(26) R=4 T 5

o
2
A being a Lagrange multiplier. From eq. (26), we obtain the following three equations:

3 qs
(27) Tj - SR} - )
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28 A=—T:
( ) 3R 25
and

1 27,

29 T — —— — u =0
29 a TR
which by the elimination of A reduce to

2qs

30 TP~ Tl — —— Ty =0
( ) 1 241 3UR(1 — ’Y) 2 )
and

1 2q,
(31) T4 — 3 = _y,

- 2 7GR

By numerically solving egs. (30) and (31) we find the following results: For the Earth
with p = 0.33 [25], R =1, g5 = 229.5 VV/m2 [25] and v = 0.3 [8] we get T7 = 299.3 K,
Tp, = 202.2 K [26] and Ppax = 22.8 VV/J[nQ7 and for Venus, p = 0.71 [25], R = 1,
7 = 188.5 W/m” [25] and v = 0.997 [22], we find Ty = 727.7 K, T» = 199.9 K and
Prax = 119.4 W/ m?. Both results are reasonable values for the surface temperatures of
these planets and improve the numerical results obtained in the previous calculations,
which consider the greenhouse effect in both isothermal branches of the Carnot-like cycle.
If in eq. (7) we do not use the appoximation g; > 0T, and we take Ty, = 200 K (the
tropopause temperature), egs. (30) and (31) become

T 27,
32 YTy —TiT5 + == (T7 = 13) — 715 =0
(32) 142 12+3(1 5) 30R(1—~) 2 )
and
. 1 . . 27, T
(33) Ty + —— Ty — |T, T, = 0.

) =t R T T

The numerical solution of these equations provides the following results: for v = 0
and R =1, T1 = 293.4 K and T» = 239.3 K (the same results obtained in [7]) and for
v=03[8 and R=1, T} =310.4 K and Ty = 244.2 K, which are not so good values. If
we take eq. (25) for the integral constraint and eq. (18) for the nonendoreversible Carnot
efficiency, we obtain

4 2Gs 1
34 h=5 {R[(lvHRS(ln)?’]}’

and

27; R3(1—n)*
(35) E=5 {[(1 B G —n>3]}'
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Fig. 2. — Solar-energy conversion efficiency w as a function of the thermal efficiency 7 for several
values of the greenhouse coefficient 7, under maximum-power conditions with R = 1.

By substitution of these equations into eq. (24) for the average power output, we get

(36) w(R,v,m) =

P _(Q-y)@ER-1D+R1-n)°[1-R1-n)
qs

R[(1 =)+ R3(1 = n)?] ’
w (y=0.3)[%]
12 ¢

o ———- R=0.96

- — - R=094
— — R=0.92
— — R=0.90
— - R=0.88

Fig. 3. — w behavior in terms of i for several values of the nonendoreversibility parameter R.
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which, for the endoreversible case R = 1, becomes

n(l—mn)?
L=+ 1 -n)3

(37) w(y,m) = (

That is, even in the endoreversible case the solar energy efficiency depends on the green-
house effect and therefore on the planet’s atmosphere. Equation (37) reproduces De
Vos’ equation (23) only in the case v = 0, but this situation does not correspond to a
realistic model. In fig. 2, we show w(y,n) for several values of v and R = 1. We can see
that w increases as v increases. That is, the efficiency of solar-to-wind energy conversion
strongly depends on the greenhouse factor. In fig. 3, we can see how the parameter R
affects the conversion efficiency w.

2°2. The mazimum-ecological regime. — Now, our objective is the maximization of
the so-called ecological function given by eq. (1). First, we need to calculate the mean
entropy production per cycle of the thermodynamic universe, AS, /tg. Starting from
fig. 1, we have

(39) AS, / (—qs SRS [T4(0) ~ T (1) ) "

If we consider the greenhouse effect only in the first half of the cycle, by means of
egs. (3), we get

to/2 Ic(1—p) 1— R T4 o T4 to R T4 _ T4
(39) AS, = / < 7t DR[TY - T dt + / ok [~ 1ol dt,
0 t

Tl 0/2 Tex
and
AS, @ _oR s, Iy
40 =_B L7 (1 -)T
(40) e T LG EE o F

where we have used the approximation, g; > oT4.
Therefore, by substitution of egs. (24) and (40) into eq. (1), the ecological function
E becomes

_ o Tex@ JRTex
@) Beg-l[a-m+ )+ ok o

T4
1—T3 + 221,
o 0t ]

Tex
Then, we propose the following Lagrangian:

Tqu_S O—RTGX

T 2

{%—?[(1—7>T3+T5’}}7

(42)  Lg (1 =T+ T4 +

ol 9

T4
T — 1—)T2 + 22| -
q {( 20) 1+T€J

>
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A being a Lagrange multiplier. By solving the Euler-Lagrange equations for this La-
grangian, we obtain

3T,
(43) TP + { 4e

2qs (1 1 TexGs 1
_ qs LR - T2+ exq - :O,
3o R 1—7 20 1—7

1 2 [ 1
44 '+ —— Ty - —=(—— ) =0
@4 DR 03(17)
For To.x = 3 K and g; = 223 VV/m2 [25], the numerical solution of these equations
gives us for y =0 and R =1, 71 = 294.03 K and 75 = 109.95 K (same results obtained
in [7]); and for vy = 0.3 and R =1, T} = 319.86 K and T» = 118.897 K, which are not
so good values. If in eq. (38) we do not use the appoximation g; > 0T, and we take

Tox = 200 K (the tropopause temperature), we obtain the following three equations:

R — (1+R)Tz} T —

and

3R RTZ,

5 9 i G o )=
(45) TP+ (T = T = o a7 (Tox — A) + (Tox — A) = 0,
T4
(46) TS + RT5 — %)\TQ“— R4e")\:0
and
2qs
(47) (1= )T + T T3 — ( RN v)T;‘x) Ty - TT =0,
g

with A a Lagrange multiplier. The numerical solution of these equations gives us the
following results: For v =0 and R =1, A =~ 490.8 m2K5/W, T1 =~ 303 K and Ts =~ 219 K
(the same results obtained in [7]) and for v = 0.3 and R = 1, T3 = 321.3 K and
Ty = 227.5 K, which are not good values. Thus, we can conclude that the best numerical
values are given by the maximum power regime with greenhouse effect only in the first
half of the Carnot-like cycle depicted in fig. 1. However, we must have in mind that all
of these numerical results are only rough semi-ideal limits of actual values.

3. — The De Vos-Flater-van der Wel model

In 1991, De Vos and Flater [3] interpreted the GZ model for the conversion of solar
energy into wind energy as a Carnot-like endoreversible engine with the atmosphere as
the working fluid operating between the sunny side and the dark side of a planet (see
fig. 4a). By means of this simple model they found a solar energy efficiency given by
eq. (23), which under maximum-power conditions leads to 7.67%, independently of f, p
and 7. According to De Vos and Flater [3] this simple model has one important drawback;
it is only correct if the mechanical power W is either continuously stored or continuously
drained away from the planet. Thus, these authors proposed a correction to the GZ
model, by means of the consideration that wind energy W is dissipated as heat in the
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Fig. 4. — a) De Vos-Flater endoreversible model without wind energy dissipation. b) De Vos-
Flater endoreversible model with energy dissipation.
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Fig. 5. — Two-reservoir model of De Vos-van der Wel.
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same planet after a temporary storage in the atmosphere. This idea is accomplished by
means of the model depicted in fig. 4b. They assume that a fraction « of W is deposited
as heat on the illuminated side of the planet and the rest is deposited on the dark side.
With this model De Vos and Flater show that a maximum solar efficiency w, = 8.3% is
reached when a =1 for an engine efficiency n = 0.307, by means of the maximization of
the expression [3]

n(1 —n)?

(48) w(y,n) = m7

which is also independent of f, p and 7. In a later paper [5], De Vos and van der Wel
extended the previous dissipative model to the one depicted in fig. 5. This model is an
extension of the De Vos-Flater model for the case in which the angle € is in the interval
0 < 6 < m/2, in contrast with the former one, where § = 7/2 only.

In the present section we take the two-reservoir model of De Vos and van der Wel
(DVVW) depicted in fig. 5 and analyze its operation under the maximum-ecological-
function regime. In the DVVW model the heat exchange between the planet and Sun
consists of four contributions [5]:

a) the hot cap receives

Hl(l - p)fO'T;l,

from the Sun with a surface temperature T;

b) the hot cap emits
¥ (1 - 7)0T147
c) the cold cap receives

IL,(1 - p)foT?,

and

d) the cold cap emits
Sa(1 =)o Ty

Thus the heat fluxes @1 and Q5 (see fig. 4b) are

(49) Q1 =1L(1—p)foT} — S1(1 —7)oT},
and
(50) Q2 =1 (1 = p)foTy — Sa(1 — 7)oTy,

the meaning of f, p and ~ are the same as in the previous section. The quantities ¥,
and Y, are the surface areas of the two spherical caps, whereas II; and Il, are the
cross-sections of the sunray beams incident on them. Therefore, 3; = 27 R?*(1 — cos ),
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Yo = 27 R%(1 + cosf), IT; = mR?sin?0 (§ < 7/2) and I, = nRcos? 6 (6 < 7/2). De Vos
and van der Wel rewrite Q1 and @2, given by egs. (49) and (50), as

(51) Q1 = gi(T5, = T),
and
(52) Q2 = g2(T, — T3),
where Ty and Ty are some effective sky temperatures given by
M1-p )1/4
53 To=(=2-—F T.,
(53) = (5
and
M1 p 1/4
54 To=(=2-—F T.,
(54) .= (g2 1=2)

and where ¢g; and go are some kind of heat conductances
g1 = E1(1 - 7)07
and

g2 = Xa2(1 = y)o.

With all these definitions and by means of the engine depicted in fig. 4b, these authors
found for the power output W [5]

(55)

n |: 7TR221

e el

:1—cm

which leads to a solar efficiency given by

(56) " w " [ TR?S, }

T ARX(1-p)foTd " 1—an | Bi+N(1-n)?

The maximum work is produced for the case « = 1 (see fig. 3 of [4]) and for the
case § = /2 assumed by De Vos and Flater in ref. [3], eq. (48) is immediately obtained.
Because w in eq. (56) is a function of «,  and 6, for a = 1, the maximum w was obtained
by means of dw/90 = 0 and dw/On = 0 resulting [5]: w = 9.64% for § = 77.8° and
n = 0.291. All the w’s calculated by De Vos et al. are smaller than CET calculations as
that reported by Peixoto and Oort, which is of the order of 10% [18]. As we said before,
our objective is the maximization of the DVVW model under the so-called ecological
criterion [10,12]. That is, the optimization of the function E given by eq. (1). For doing
this, we first need to calculate the average entropy production per cycle, AS,. From
fig. 4b, we obtain

Q1 Qi taW (- a)W Qr | Qo
(57) ASu = Ts * T N 15 15 * Teo
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(%)
0.02¢
0.0175f
0.015}
a=1
0.0125}
-------- a=0.9
0.01
---- a=0.8
0.0075} — — — a=0.65
0.005} — — a=05
0.0025}
0.3 0.6 0.7 0.8 |
Fig. 6. — Illustration of the maximum w-curve (¢ = 1) in terms of n under the maximum
ecological regimen.
By the application of the endoreversibility hypothesis,
Qi +aW  (1—a)W —Q
58 ASin, = =0,
(58) ’ T * Ty
into eq. (57), we get
Q: G
59 AS, = — > 0.
( ) “ Ts2 Tsl
Therefore, the ecological function £ = W — T AS,, becomes
1/4 2
n 1153, TR 4
60 E= -1} - =——————— | (1 =p)foT,,
(60) 1—an <H122> [ LS ) G

where we have used egs. (49) and (50) for Q1 and Qs, respectively. Now, we define an

ecological solar efficiency as

E
wWE Zv
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WE(O/O)
0.02 9*=8241O
-------- 06 =72°
0.015 =0
- — — 6 =60°
0.01
— — 0 =45%°
0.005 — — 0=120°

Fig. 7. — wg behavior in terms of 7 for several values of the angle 6.

Z being the total amount of absorbed solar energy given by Z = mR?(1—p) foT2. Thus,

(61) ,0) = | —T— ¢ (ctgrot=C0 v 1| x
Wl ) = 1—an I oo
X |sin? @ — L = cosf

1+ cosf+ (1+cosf)(1—n)

Analogously to the case of the maximum-power regime [5], this function reaches its
maximum for « = 1 (see fig. 6), i.e. for the highest « physically meaningful, since
Owg/da > 0 for all a. Therefore, for o = 1, we numerically calculate Owg/dn = 0 and
Owpg /00 = 0, obtaining n* = 0.516 and 6* = 82.41° (see fig. 7). After substituting these
values into eq. (61), we get w}; ~ 0.02012 (w} ~ 2%), which is an excellent value for
the solar efficiency accordingly to the values reported in the literature [13-18], which are
in the interval [0.3%, 3%]. However, if we substitute the values of  (n* = 0.516) and
6 (6* = 82.41°) which maximize wg(orE) into eq. (56), we obtain w = 5.5%, yet larger
than the reported values for w [0.3%, 3%], but smaller than CET calculations [18].

4. — Concluding remarks

FTT models for studying the problem of the conversion of solar energy into winds
energy can be useful as a crude first approximation to this matter. In spite of its simplicity
these models provide reasonable values for the average power of the winds and for the
extreme temperatures of the atmosphere of a planet. In the FTT approach to this issue
a maximization criterion is usually involved. Several authors have used the hypothesis
that the atmospheric “heat engine” maximizes the power output, but as De Vos and
Flater assert no mechanism guarantees that the atmosphere maximizes the wind’s power.
Thus, we consider appropriate to essay with another optimization criterion, which is
the so-called ecological one. In fact, some authors [25,27, 28] have recognized that the
Earth’s atmosphere operates at nearly its maximum efficiency, thus, for endoreversible
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models it is possible that some kind of ecological regime would be more plausible than
a maximum-power regime. In the present paper, we have used the Gordon-Zarmi model
for the conversion of solar energy into wind energy but involving De Vos’ ideas about
the role of the greenhouse effect on the thermodynamical behavior of the atmosphere.
Our results suggest that if the greenhouse effect is included only in the first half of the
Carnot-like cycle of the Gordon-Zarmi model, the solar-energy conversion efficiency, w,
strongly depends on this effect (see fig. 3). When we take the parameter v as acting
in both branches of the cycle, we recover the first w-expression reported by De Vos
and Flater (eq. (23)). In our version of the GZ model, we also include the so-called
nonendoreversibility parameter, R, and see that this quantity may also influence the
solar-energy efficiency w (see fig. 4). In sect. 3, we have analyzed the two-reservoir De
Vos-van der Wel model under an ecological optimization, and we found a w-value within
the interval of values reported in the literature [13-18] referred by De Vos and van de
Wel [6]. Despite we used the simplest DVVW model, we have obtained wg ~ 2%, which
is a better number than that obtained by De Vos and van der Wel for their two-reservoir
model under a maximum-power criterion. However, when we maximize the conversion
efficiency w, by considering the power output W under maximum ecological regime, the
resulting value is w = 5.25% which is not a very good value (although is smaller than the
DVVW value). All these numerical values are smaller than the Carnot limits reported
by Piexoto and Oort [18], w, < 10%, such as it must be expected from FTT models
in comparison with CET models. In summary, by means of the models due to Gordon-
Zarmi, De Vos-Flater and De Vos-van der Wel we have found some simple insights on
the process of conversion of solar into wind energy.
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