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Abstract

The aim of this paper is to verify if a proper SVEC representation of
a standard Real Business Cycle model exists even when the capital stock
series is omitted. The argument is relevant as the common unavailability
of su¢ ciently long medium-frequency capital series prevent researchers
from including capital in the widespread structural VAR (SVAR) repre-
sentations of DSGE models - which is supposed to be the cause of the
SVAR biased estimates. Indeed, a large debate about the truncation
and small sample bias a¤ecting the SVAR performance in approximat-
ing DSGE models has been recently rising. In our view, it might be the
case of a smaller degree of estimates distorsions when the RBC dynamics
is approximated through a SVEC model as the information provided by
the cointegrating relations among some variables might compensate the
exclusion of the capital stock series from the empirical representation of
the model.

JEL CLASSIFICATION: E27, E32, C32, C52.
Keywords: RBC, SVAR, SVEC model, cointegration

1 Introduction

The purpose of this paper is to show that it is possible to overcome the limita-
tions exhibited by the Structuralized Vector Autoregressions (SVAR) approach
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in the identi�cation of the theoretical predictions of Dynamic Stochastic General
Equilibrium (DSGE) models by means of a Structuralized Vector Error Correc-
tion (SVEC) representation. Several literature contributions have focused on
the bias implied by the estimates of �nite-order SVARs(p) when theoretical
DSGE models are tested against empirical data, whereas little attention has
been paid so far to the potential of the SVEC based evidence.
Most of the literature we refer to argues that the long-run SVAR approach -

which implies an identi�cation strategy of the structural shocks consistent with
the economic theory for the long-run - may yield results which are only imperfect
approximations of the model predictions, when the long run e¤ects of a technol-
ogy or a monetary shock has to be represented within a standard Real Business
Cycle (RBC) framework. Chari et al. (2008), Erceg et al.(2004) and Ravenna
(2007) argue that, when a DSGE model has to be empirically represented, but
some model variables are unobservable and then omitted from the SVAR speci�-
cation, it may perform poorly when estimated over the sample periods normally
available. This is because, when the recursive dynamic equilibrium of a standard
DSGE model admits the following state-space representation:

yt = Pxt�1 +Qzt
xt = Rxt�1 + Szt
Z(L)zt = "t

where yt is the endogenous variable vector with dimension r x 1 , xt is
the observable state variables vector with dimension n x 1 , zt is the m x 1
exogenous state variables vector and "t is an m x 1 vector of stocastic variables
such that E("t) = 0, E("t"

0

t) = �, E("t"
0

j) = 0 for j 6= t and where � is a
diagonal matrix, if n < m , the only �nite order representation of the model is a
VARMA (p,q) representation1 . It is argued that if the number of the exogenous
variables exceeds the number of the observable state variables, the VARMA
(p,q) can still be approximated by a �nite order VAR (p), provided that the
VAR is characterized by a su¢ ciently high value of p.
Unfortunately, the short lenght sample data problem prevents economists

from including in the VAR a su¢ cient number of lags in order to obtain a
reliable model representation. The so-called truncation bias - due to the fact
that researchers are forced to estimate only truncated SVARs of small2 order
p - has been largely discussed by Chari et al. (2008) and Ravenna (2007),
whereas Faust and Leeper (1997) and Erceg et al. (2004) highlighted the small
sample bias as the major shortcut of the SVAR approach when applied to DSGE
models.
The aspect of the debate this paper focuses on comes from Fry and Pagan

(2005) which discuss the points of Chari et al. (2008) and Erceg et al. (2004)
regarding the SVAR limitations in approximating DSGE models. Fry and Pagan

1See Chari et al. (2008) and Ravenna (2007).
2Tipically, with existing data lengths, researchers are forced to deal with VAR(4).
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claim that the problems arising from the �nite order VAR (p) performance -
when it is only an approximation of the true VARMA representation of the
model - crucially depends on "which variables are retained in the VAR and
which are deleted". Indeed, within the DSGE class of models, if one wants
to model only a subset of the original variables dealing correctly with a �nite
order VAR (p), he has to ensure that: i) the omitted variable doesn�t Granger
causes the rest of the variables included; ii) the eliminated variables must be
connected to the retained variables through an identity which cannot contain
lagged expression of the dropped variable. Within a standard RBC framework,
these conditions are met when the capital stock variable is not ruled out from
the VAR variables set.
As a matter of fact, it might be di¢ cult to get or build data on the capital

stock even if Del Negro et al.(2005) show how to recover the capital stock series
out of model parameters and the investment data or Ireland (2004) shows how to
"take DSGE models to the data". Nonetheless, strong limitations of the Ireland
approach have been recentely highlighted by Juselius and Franchi (2007).
In this paper we want to enhance the potentiality of the SVEC approach

compared to the SVAR results when a technology shock e¤ects as predicted by a
standard RBC model have to be represented. We �nd also insightful to compare
the two approaches with respect to the capital stock series inclusion/exclusion
debate mentioned above. As within the RBC model permanent relations among
variables are driven by the technology dynamics, we argue that the SVEC rep-
resentation takes advantage of that by considering the role of cointegration,
whereas a SVAR model might be misspeci�ed when cointegration emerges3 .
In the spirit of Erceg et al.(2004) we run a RBC model and get the theoretical
predictions about the e¤ects of a technology shock upon output, consumption,
investment and capital stock. By doing that, we generate a 10,000 arti�cial ob-
servations series for each variable. Then, in a Monte Carlo fashion, we sample
999 subsamples - the typical amount chosen in this kind of experiments - 200
observations long each - that we consider as 200 quarters series - The sampled
arti�cial series are employed in order to estimate a SVAR and a SVEC model
from which we get the relative impulse response functions (IRFs) to a technol-
ogy shock which is identi�ed following a long run approach in both cases. In
order to address the argument by Fry and Pagan (2005), we re-estimate the
SVARs and SVEC models, omitting the capital stock series from the variables
set and get new di¤erent IRFs. The comparison between the theoretical and the
estimated SVEC and SVAR IRFs allows to assess the performances associated
with the di¤erent empirical representations of the model.
The paper is organized as follows. Section 2 outlines the RBC model and

its speci�cations. In the same section we also brie�y comment the theoretical
impulse response to a technology shock (2.2). Section 3 unveils the role of
cointegration within the RBC model and outlines the methodology employed
in order to build the arti�cial dataset and the sampling (3.2); the identi�cation

3A fundamental contribute to the argument is given by King et al. (1991) which made
evident as "vector error-correction models" represent an ideal environment for testing RBC
models.
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schemes of the SVAR (3.3) and the SVEC (3.4) are also presented. The results
obtained in terms of IRFs are presented and discussed in Section 4. Section 5
concludes.

2 The RBC model

2.1 The environment

In this section we layout our baseline Real Business Cycle (RBC) model which
is an extended version of the benchmark stochastic neoclassical growth model
in Uhlig (1999). We de�ne the fundamentals of the economic environment. For
the whole model analytical solution and loglinearization see Appendix B.
The preferences of the representative agent are as follows:

U = Et

1X
t=0

�teu
�
t

"
logCt � eu

N
t
N1+�
t

1 + �

#
(1)

where Ct is consumption, Nt is labour, 0 < � < 1 is the private discount
factor, � is the inverse of Frish labour supply elasticity . Agent�s preferences
are in�uenced by eu

�
t and eu

N
t whose dynamics is ruled by an I(1) stationary

stochastic processes eu
�
t = e��ut�1e�� and eu

N
t = e�Nut�1e�N where both the

error terms follow a white noise process. The �rst shock might be interpreted
as a shock a¤ecting the intertemporal consumption vs. saving choice, whereas
the second shock a¤ects the intratemporal labor-supply choice.
The technology is characterized as a standard Cobb-Douglas production

function:

Yt = eu
a
tK�

t�1N
1��
t where 0 < � < 1 (2)

where capital stock - Kt - and labour - Nt - are the input factors and �
stands for the capital share. Capital stock equation is given by:

Kt = It + (1� �)Kt�1 where 0 < � < 1 (3)

where � is the depreciation rate and where the investment is speci�ed by an
increasing and convex equation with capital adjustments costs which are subject
to a stationary I(1) shock (eu

K
t = e�Kut�1e�K ):

It = eu
K
t f

�
Kt

Kt�1

�
Kt�1 (4)

Output ( Yt) is absorbed completely by consumption, investment and by an
exogenous government spending component4 which follows the following sta-
tionary I(1) process: eu

G
t = e�Gut�1e�G :

4See Smets and Wouters (2007) for this aggregate resource constraint speci�cation. We
allow the government spending to be just a small persistent exogenous disturb.
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Yt = It + Ct + e
uGt (5)

In this paper, we assume that technology eu
a
t may evolve following two alter-

native stochastic processes5 . Given the general expression for an I(2) trending
non-stationary technology (in logarithms) :

uat = uat�1 + �adu
a
t�1 + �a

which is a unit-root I(2) process where duat�1 = uat�1 � uat�2 and �a �
i:i:d:(0; �2), we�re going to consider both the speci�cations where �a = 1 and
where �a = 0 which implies the pure random-walk case:

uat = uat�1 + �a.

2.2 Theoretical impulse responses

We look at the theoretical responses of output (y), consumption (c), invest-
ment (i), capital stock (k) and employment (n) to a technology shock in terms
of log-deviations from their steady state growth path, according to both the
speci�cations of the TFP. Our analysis will speci�cally aim at comparing the
theoretical responses of y; c; i and k to the those derived by SVAR and a SVEC
evidence.
As it is displayed in Appendix A (Figg.1 - 2) the IRFs obtained by our

RBC model cover 40 periods afterwards the occuring of the shock and are dis-
tinguished on the basis of the speci�cation of the technological process. It is
worth spending a few words on the alternative speci�cations for technology and
the di¤erent impulse responses obtained, as this aspect deals with the vivid
debate arisen after that Galì seminal paper challenged the prediction power of
RBC models6 . Later, several authors aimed both at supporting his results (e.g.
Basu, Fernald and Kimball (2001), Francis and Ramey (2003)) and at ques-
tioning them (e.g. Altig et al. (2002), Christiano, Eichenbaum and Vigfusson
(2003)), but here we address in particular to those contributions as Lindé (2004)
or Rotemberg (2003) which looked for the necessary conditions in order to rec-
oncile RBC models and empirical evidence. Indeed, according to them, if one
allows for a technical progress which di¤uses its e¤ects at su¢ cient slow rates
(i.e. a technological shock which is correlated over time in growth terms) the
RBC model provides results which satisfy the evidence pointed out by Galì as
far as labour productivity and hours worked responses are concerned. The same
does not hold if a stationary-in-di¤erences random walk process is chosen.
The I(2) results we present in Fig.2 (where a non stationary technology

growth rate is assumed), di¤erently from those achieved through the I(1) speci-
�cation, are in line with these arguments as it is shown that investment, capital

5The role played by an alternative speci�cation for technology will be cleari�ed in Subsec-
tion 2.4. Henceforth, we consider the I(1) and the I(2) TFP driven models, separately.

6Contrary to RBC predictions, Galì found that when a technology shock is the only source
of disturbance in the economy, according to data, the labour productivity rises and the hours
worked fall after a positive realization of it.
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and employment fall after a positive realization of the shock. The economic
intuition behind is that when it takes longer for the technological progress to
di¤use, for the representative agent the current marginal utility of wealth is
lower. Therefore, he will �nd more convenient to consume, to enjoy leisure and
to wait until labor e¤ort will become more e¤ective. This intuition is consis-
tent with the fall in investment that we found - see Fig. 2 - but also with the
results obtained in terms of diminishing hours worked and rising labor produc-
tivity provided by Lindé (2004) and Rotemberg (2003). Nonetheless, we found
also that investment, capital and hours worked come to positive values in the
steady-state in a very short run.
As far as the I(1) speci�cation is concerned, we �nd that all the variables

(y, c, i, k and n) share the same positive sign both at the impact and all along
the following pattern. Nonetheless, while output and investment reach the new
steady-state level a few periods after the shock, consumption, employment and
capital paths take longer. In particular, the capital stock shows a very little
log-deviation value at the impact, that seems to increase steadily until the 30th
period, after which it keeps on rising but at a decreasing rate. Investment and
employment are the only variables dropping after a positive impact reaction.

3 The SVAR and the SVEC speci�cation

Before evaluating the SVAR and the SVEC performances in terms of theoreti-
cal responses approximation, we want to discuss more extensively the intuition
according to which the SVEC approach might overcome the SVAR models lim-
itations even when the capital stock series is omitted from the empirical rep-
resentation, addressing the debate recalled above. Then, after having brie�y
recalled some theory about the SVAR and the SVEC models, we discuss the
shock identi�cation rationale employed to recover the empirical IRFs.

3.1 The CI space

Within the RBC model a not trivial source of information is represented by
the presence of the common trends induced by the technological dynamics 7

which implies the stationarity of the following great ratios: Ct=Yt and It=Yt.
From an econometric perspective, the existence of CI relations between y - c
and between y - i can be exploited in order to catch the permanent relations
established among y, c, i and k as well.
We address the argument of Fry and Pagan (2005) that discuss the contri-

butions by Chari et al. (2008) and Erceg et al. (2004) that pointed out the
limitations of the SVAR approach. Fry and Pagan state that the necessary
conditions to be ensured in order to deal with a correct �nite order VAR (p)

7The so-called "Common Trends" approach has been originally proposed by Stock and
Watson (1988).
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though modelling only a subset of the original model variables, imply that the
capital stock must not be ruled out from the VAR variables set, if the model
is a RBC model. According to them, the crucial role played by kt is due to
the fact that it sets the model dynamics being either the endogenous Granger
causal variable and being linked to the rest of the variables through its lagged
value. The empirical problem is that, as su¢ cient long medium-high frequency
time series for capital stock are normally scarcely available, economists are often
induced to omit it from the empirical representation of DSGE models.
Our point rests on the intuition that taking account of the CI relations the

SVEC representation should perform better than a SVAR even when the series
of k is omitted from the empirical representation of the RBC model, so that one
could even disregards the "necessary conditions" pointed out by Fry & Pagan8 .
The intuition comes from the RBC steady state solution9 which highlights

the relation linking y - i, y - c and i - k. The relationship between output,
investment and consumption derives directly from the resources contraint:

Yt = Ct + It

which in steady state, once having normalized with respect to Yt, results as:

C = 1� I

and symmetrically as:

I = 1� C (6)

(where C and I are stationary stochastic processes) and from the fact that
in steady state the allocation of time between work and leisure is kept constant.
Besides, from the capital accumulation equation we get the relationship between
capital stock and investment :

Kt = eu
K
t f

�
Kt

Kt�1

�
Kt�1 + (1� �)Kt�1

It = eu
K
t f

�
Kt

Kt�1

�
Kt�1

which in steady state results as:

K = (1� �)K + I (7)

I = �K

8Leaving aside our speci�c issue, the better performance of the SVEC models over the
SVAR in presence of CI relations is analitically described also in Pagan & Pesaran (2008).
Indeed, when a permanent/ transitory decomposition of the shock intervenes, the SVECM
provide useful information to restrict the structural identifying equations system which is
missed within a SVAR context.

9See Appendix for the complete steady state solution of the model.
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As the technology dynamics determines CI relations between y - c and y - i ,
it is evident that, holding (10), the relations between y - i and between y - k
are proportional. As a consequence, i and k result to be driven by the same
stochastic trend. Then, it might be reasonable to expect that a satisfying SVEC
approximation of the RBC dynamics can be obtained even excluding k from the
variables set since its dynamics is preserved through the presence of investment.
It now appears more evident the reason why the inclusion of the series for k

appears essential within a framework which cannot exploit the proportionality
that links k and i, as the SVAR framework is: if the dynamic endogenous
variable is dropped, the model dynamics cannot be recovered alternatively.

3.2 Methodology

The methodology we adopt to compare the SVAR to the SVEC approximating
performances of the true responses is in the spirit of Erceg et al. (2004) or Chari
et al. (2008) which perform a similar exercise but with di¤erent aims. We run
10 000 stochastic simulations of the RBC model for each TFP speci�cation, ob-
taining a 10 000 observations series for each variable in both cases.10 . Then, we
employ a Monte Carlo procedure by sampling 999 series, 200 observations long,
out of each variable arti�cial dataset. In the end, we obtain 999 subsamples,
200 quarters long for each variable, for both the TFP speci�cations.
We then, respectevely, estimate 999 four-variables (y, c, i, k) VARs and VEC

models employing the arti�cial series sampled out of the models simultaions11 .
Then, we identify the technology shock using a long run aproach in both the
SVAR and the SVEC framework and compare the IRFs with the theoretical
ones. We repeat the procedure omitting k from the variable set in order to
compare the SVAR and the SVEC di¤erent performances in terms of approx-
imation of the theoretical predictions. At last, the estimated IRFs12 and the
RBC theoretical responses are compared and their gap is measured by means
of the MAE and the RMSE statistics.

3.3 The long-run SVAR approach

Given the following reduced form Vector Moving Average (VMA) representation
recovered from the inversion of a stationary Vector Autoregressive Representa-
tion (VAR):

yt = A�1i (L)ut ut � N(0;�)

10Model simulation and arti�cial data generating process are obtained by using Dynare 4.02
for Matlab.
11For the AR(1) model speci�cation, we estimate a VAR (1) with di¤erentiated data and a

VECM (1) with non-di¤erentiated data, as suggested by the Schwarz Info Criterion . Similarly,
in the AR(2) case, we estimate a VAR(2) with di¤erentiated data and VECM(2) with non-
di¤erentiated data, according to the same criterion.
12 In particular, we calculate an average IRF for each group of 999 estimated IRFs to the

technology shock, for each SVAR and the SVEC estimation. The average IRFs - one for every
variable- are then compared with their respective RBC theoretical responses.
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where yt is the vector of the variables included in the model; A
�1
i (L) is

the inverted dynamic coe¢ cients matrix; ut is the vector of the reduced-form
error terms, we de�ne A�1(L) = �(L) and obtain a process expressed as a linear
combination of the past innovations in accordance with the Wold decomposition:

yt = �(L)ut =
1X
h=0

�hut�h

where �0 = Im (8)

But, in order to recover the unobservable relevant shocks ("t) out of the
observable reduced form innovations (ut), a structural VAR representation has
to be considered and a set of restrictions has to be imposed. Given the following
structural VAR form:

A0yt =

pX
i=1

A�i yt�i +B"t "t � N(0; Im) (9)

where Ao is the (m x m) contemporaneus e¤ects matrix; A�i is the (m x
m) lagged e¤ects matrix and B is the (m x m) structural shocks "short-run
response" matrix. What follows is the system of structural equations linking ut
to "t which we have to restrict in order to univocally identify them

ut = A�10 B"t (10)

Among the existent di¤erent identi�cation strategies - short-run restrictions
on B, Cholesky triangularization on A0, restrictions of both A0 and B ( Amisano
Giannini (1997)) - we choose the long-run SVAR approach (Blanchard-Quah
(1989)): the contemporaneous matrix is orthonormalized (A0 = Im), the short-
run B matrix is let totally unrestricted while some restrictions are imposed on
the long-run response matrix C(1)13 in accordance with the long-run theoretical
predictions about the e¤ects of the original economic shocks hitting the economy.
A growing recent literature estimates structural VARs by using this ap-

proach. Within the RBC framework a typical restriction is that only technology
shocks a¤ect labor productivity in the long run (Galí (1999); Francis and Ramey
(2003; 2005); Christiano, Eichenbaum, and Vigfusson (2003); Galí and Rabanal
(2004)); but there are also contributions dealing with di¤erent indenti�cation
schemes as the absence of a permanent technological e¤ect on hours (Shapiro-
Watson (1988); Gamber-Joutz (1997); Fleischman (2000); Francis and Ramey
(2003)), or with the absence of a permanent e¤ects of demand shocks - as gover-
ment spending, preferences shifting - on output, hours worked (Shapiro-Watson
(1988); Gamber-Joutz (1997); Fleischman (2000)) or real wages (Gamber-Joutz
(1997)).
The long-run structuralization we choose is in line with part of this liter-

ature. Indeed, we assume that the technology shock is the only shock having

13The long-run matrix is de�ned as the sum of the short-run cumulated responses. This is
a B-model approach.
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permanent e¤ects on all the variables. At �rst, we deal with a 4 variables SVAR
- output (yt), consumption (ct), investment (it) and capital-stock (kt) - which
are represented in the following vector of stationary series:

xt = [yt ct it kt]
0

On total, the number of restrictions we have to impose is: m (m� 1) =2 = 6
- since we deal with a 4 variables SVAR -which are imposed on the long-run
C(1) matrix, according to a Cholesky triangular factorization:

C(1) =

2664
c11 0 0 0
c21 c22 0 0
c31 c32 c33 0
c41 c42 c43 c44

3775
This recursive scheme is in line with the theoretical assumptions which are

relevant for our purpose i.e. that on the long-run output is a¤ected exclusively
by the technological shock which permanently in�uences also consumption, in-
vestment and capital. Accordingly, we set c12; c13; c14 = 0:which are the only
restrictions theoretically justi�ed as we want to identify only the technological
dynamics due to "at , i.e. the supply shock. The rest of the restrictions imposed -
c23; c24;c34 = 0 - are not pinned down economically: we need the related shocks
just in order to have a full identi�cation of the system.
When we remove kt from the variables set we have a 3 variables (yt, ct, it )

SVAR and only 3 restrictions to be imposed on the long-run C(1) matrix:

C(1) =

24 c11 0 0
c21 c22 0
c31 c32 c33

35
where the relevant theoretical predictions are the same as in the four variable

case and imply c12 = 0; c13 = 0.

3.4 The SVEC approach

3.4.1 VEC model

The basic concept of the VEC approach is cointegration among non-stationary
or I(1) series where a set of I(1) series driven by the same stochastic trend is said
to be cointegrated if there exists a linear combination of them which is stationary
or I(0). As shown by Granger (1981) and Engle and Granger (1987), the best
representation in a CI context is provided by the error correction models (ECM).
The VEC representation is obtained by a reparametrization of a VAR(p) which
yields a VEC (p-1):

�yt = �yt�1 �
p�1X
i=1

�i�yt�1 + ut ut � N(0;�u) (11)

where yt is a vector of m dependent variables, �i = �(Ai+1 + ::: + Ap)
refers to the short-run parameters, ut is an independent stochastic vector of the
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unobservable error terms and � = �(Im � A1 � :::: � Ap) is a matrix of rank
m which can be factorized (Johansen 1995)) as the product of a cointegration
matrix (�) and a loading coe¢ cient matrix (�) :

�
m�m

= �
m�r

� �
0

r�m

where rk(�) = rk(�) = r. Assuming that the original series were I(1), the VEC
form obtained above contains only I(0) terms as �yt and �yt�1 are stationary
terms by de�nition and, even tough �yt�1 includes I(1) variables, it contains
also the CI relations which are stationary. The �yt�1 term identi�es the long-
run parametres.
As it is well known, if the matrix � is invertible - i.e. if rk(�) = m - it

means that all the m variables are stationary. Whereas if rk(�) = r < m,
then the I(1) variables are linked by r CI relations which are I(0) and which
represent the long-run equilibrium relations existing among the variables. The
whole statistical equilibrium would be driven by m� r = k stochastic trends.
As the fundamental contribution of King et al. (1991) proved, the VEC

framework is particularly suitable for the RBC environment which, in our case,
is characterized by the presence of four variables ( y, c, i and k ) and three CI
relations (y - c; y - i and y - k) as c, i and k are driven by the same technological
stochastic trend set by the TFP non-stationary dynamics.

3.4.2 Cointegration tests and CI space restrictions

We test for the presence of CI relations by running the Johansen test (Johansen
1995)) for each subsample which consists of 999 four-variable vectors14 : the
results we obtain con�rm at a con�dence level of 95% the presence of 3 CI
vectors for the groups including15 k and the presence of 2 CI vectors in both
the groups not including16 k;as we expected.
Provided that we need r2 = 9 restrictions in order to correctly identify

�, we consider the two CI vectors in �0 which de�ne the steady state relations
between output and, respectively, consumption (ct��11yt) and investment (it�
�21yt). The third CI vector de�ne the following kt � �11it ratio and rests on
the theoretical permanent relation:

I = �K

Having normalized accordingly three vectors, we impose the remaning 6
restrictions on � on the basis that each cointegrated variable (c, i and k) is not
included in the steady-state relations involving the other ones. Eventually we
obtain the following:

14We have 2 groups of sampled series generated by the alternative TFP models speci�ca-
tions. Each group is considered both with and without the series of K so that we have 4
subgroups of samples.
15For the 91% of the I(1) subsamples and for the 88% of the I(2) subsamples.
16For the 91% of the I(1) subsamples and for the 89% of the I(2) subsamples.
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�
rxm

0
yt�1
mx1

=

24 �11 1 0 0
�21 0 1 0
0 0 �33 1

35
2664
yt�1
ct�1
it�1
kt�1

3775
3.4.3 Identi�cation of the SVEC representation

When we consider a vector yt generated by a reduced form VECM (11), it can
be expressed in the followinfg VMA form (Johansen (1995)):

yt = C (1)
tX
i=1

ui + C
0 (L)ut + y0 (12)

where y0 depends on the initial conditions of non-stationary variables yt,
C (1) = �?(�

0

?(Im�
Pp�1

i=1 �i)�?)
�1�

0

?contains the permanent components and

C0 (L) = �(�
0
��)�1�

0
is the transitory component which contains the instan-

taneous coe¢ cients. We know that C (1) has rank m � r when this model is
characterized by r transitory and stationary components and by m� r perma-
nent and non-stationary components. In order to identify the structural shocks
hitting the system ("t) we have to switch from the reduced form to the structural
representation by replacing ut by A

�1
0 B"t as in the SVAR case:

yt = C (1)
tX
i=1

A�10 B"t + C
0 (L)A�10 B"t + y0 (13)

The long-run e¤ects of shocks are captured by the common trends in C (1)
Pt

i=1 ut.
Consistently with the long-run approach (King et al. 1991), we restrict C (1)A�10 B
which gives the long-run e¤ects of the structural innovations.
In order to fully structuralize the SVEC model we need to imposem(m�1)=2

= 6 restrictions as m = 4. Considering the CI relations and provided that C(1)
matrix can admit at most a rank equal to (m� r) = 1, we impose (m� r)r = 3
restrictions by setting the last three columns equal to zero, consistently with the
presence of the unique technology structural shock having permanent e¤ects:

C(1) =

2664
c11 0 0 0
c21 0 0 0
c31 0 0 0
c41 0 0 0

3775
where the relevant restrictions are imposed on the elements c12, c13 and c14

that are set equal to zero. These hypotesis are consistent to the popular theoret-
ical presumption that only supply shocks have permanent e¤ects on productivity
(Blanchard & Quah (1989), Galì (1999), Francis & Ramey (2005)).
The remaning three restrictions are imposed on the short-run impact matrix

B in order to exactly identify the transitory components, not relying exculsively
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on a recursive structure for C(1)17 (Stock and Watson (1988); King et al.(1991);
Warne (1993)). Indeed, as proved by Vlaar (2004), a more �exible identi�ca-
tion strategy implies one can successfully identify the common trend space by
imposing any set of (m� r)(m� r�1)=2 independent linear zero restrictions on
either the contemporaneous or the permanent impact matrix. In that spirit, we
restrict the B matrix by employing cross coe¢ cients restrictions recovered by
the calibrated policy functions generated by our model18 . We impose r(r�1)=2
= 3 cross-elements restrictions on the 4 x 4 B matrix which are implied by
the following steady state relationships: i) (1 � ')ct + 'it = yt which is the
log-linearized resources constraint where ' is the steady state value of the in-
vestment share of output which corresponds to ���

1��+�� ; ii) kt = �it+(1��)kt�1
which is the log linearized capital accumulation equation where � is the capital
depreciation rate.
If we consider the transitory component a¤ecting consumption the following

�rst two cross coe¢ cient proportionality restrictions - which �ow directly from
both the relationships stated above - are derived, whereas the third restriction
comes directly from the resources constraint and is obtained by considering the
transitory component a¤ecting the investment19 :

b32 � 0:022b42 = 0

b12 � 0:706b22 � 0:294b32 = 0

b13 � 0:706b23 � 0:294b33 = 0

When we exclude k from the variable set, our model is left with only three
variables (y, c and i) and two CI vectors (y � c and y � i) so that the number
of necessary restrictions drops to 3. Accordingly, the CI space is identi�ed as
follows:

�
rxm

0
yt�1
mx1

=

�
�11 1 0
�21 0 1

�24yt�1ct�1
it�1

35
The restrictions on C(1) become:

17 If one must distinguish temporary (common trends) from permanent (cointegrating) com-
ponents only through the long-run C(1) matrix restrictions, its recursive structure is neces-
sarily required. See Vlaar 2004.
18The cross-coe¢ cient restrictions approach is adopted in Vlaar (2004) where the existing

proportionality between the impact responses of infaltion and real money balances is exploited.
As far as we know, the "policy function approach" - which we adopt - is quite an original
one within the existing impact matrix restriction strategies.
19 It has been recognized that this identi�cation scheme doesn�t guarantee the theoretical

identi�cation of the transitory shocks, since the same cross restriction can be employed for
di¤erent shocks and that the theoretical constraints depend on the model calibration. How-
ever, as we only look for a structural identi�cation, this is not a problem for our analysis (see
also Tancioni Giuli 2009).
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C(1) =

24 c11 0 0
c21 0 0
c31 0 0

35
where the two restrictions implied by the cointegrated variables are imposed

on the elements c12, c13 = 0. And the linear restriction derived by the resources
constraint relation when a positive consumption shock is considered is imposed
on the 3 x 3 B matrix

b12 � 0:706b22 � 0:294b32 = 0:

4 Results

Now we comment the results found in terms of estimated IRFs to a technological
shock compared to the model responses. In particular we consider the mean of
the 999 estimated responses getting an average IRF for each SVAR and SVEC
speci�cation. Primarily, we review the results in terms of the graphs report-
ing the estimated and the true responses. Secondly, we discuss the results by
meansin terms of the MAE and the RMSE statistics which quantify numerically
the distance between the theoretical and the estimated responses.

4.1 Graphical analysis

In each graph, the green line represents the model response, the blue line stands
for the IRF gained by the SVAR estimation and the red one stands for the SVEC
estimated responses. On the X-axes we have the periods (20 quarters) after the
technological shock, while the Y-axes the values the IRFs are indicated.
Figures 3 and 4 both refer to the SVAR and SVEC estimations obtained

without the omission of the capital stock series, in particular they display, re-
spectively, the responses obtained by using the series generated by the I(1) and
the I(2)model.
Figure 3 suggests that the SVAR and the SVEC performances are quite

similar in terms of the true model representation. The y response is badly
reproduced by both, even if the SVEC, similarly to what happens in the c case,
is more precise both at the impact and for the �rst 3 quarters. SVEC display a
much higher precision along the pattern after the �rst �ve quarters both in the
i and in the k case, whereas by the same horizon onwards the SVAR performs
poorly. The k impact is well catched by both.
In the AR (2) case (Figure 4), the SVEC model predictions, compared to

the SVAR ones, are closer to each of the model variable responses both at the
impact and along their path. The impacts of the shock and the subsequent 5
periods are always perfectly catched by the SVEC which, di¤erentely from the
SVAR, also catches the negative reponse of k.
Figures 5 and 6 refer to the SVAR and SVEC predictions when the capital

stock series is omitted in their speci�cations. These are the results we are
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largerly interested in, as we want to assess the ability of the two econometric
models when the dynamic variable is not included in their speci�cations.
Figure 5 shows the I(1) results which provide evidence of a quite poor perfor-

mance of the SVAR which de�netely misses the impact variables responses and
predicts a �at pattern after only the �rst two periods following the shock. This
is in contrast with the true responses which returns to the steady state after at
least 8 periods after the shock. Similarly to the SVAR, the SVEC misses the
y response along its rising pattern but twith a smaller impact prediction error.
Concerning the c and the i the SVEC clearly performs better than the SVAR
which completely misses the impacts and whose IRFs, as in the y case, become
�at at horizon two after the shock.
The I(2) model predictions are compared to the IRFs derived by the omitting

capital stock estimations in Figure 6. Here, the SVEC is closer to the RBC
evidence in each case. In particular, the impacts ant the short run of the true
responses are better reproduced by the SVECM which, as in Fig.2, catches the
negative sign of the investment response. In this case, even if the SVAR gains
e¢ ciency on the long run, misses completely the sign of the responses at the
impact.
To sum up, the graphical inspection shows that the SVEC advantage over

the SVAR is more evident in the I(2) case and is reinforced especially when one
looks at the IRF gained by the estimations performed by omitting the capital
stock series. This result suggests that the lack of information related to that
omission is more crucial for the SVAR than for the SVEC ability of reproducing
the theoretical evidence.

4.2 MAE and RMSE statistics

The gap between the SVAR and the SVEC IRFs and our baseline model re-
sponses is measured by means of two commonly used statistics, the Mean Ab-
solute Error (MAE) and the Root Mean Squared Errors (RMSE). Both of them
are computed for each estimation we run and each model speci�cation.
As it is known, di¤erentely from statistics as the the Mean Error (ME) or

the Mean Percentage Error (MPE), the MAE typically measures the average
magnitude of the errors without considering their sign. Moreover, di¤erently
from the RMSE - which gives a relatively high weight to large errors, being a
quadratic scoring rule - the MAE is a linear score which assigns an equal weight
to each gap between the forecast and the true sample. In the present framework,
we consider both of them for the sake of completeness.
Technically, we compute an average IRF out of each group of variable im-

pulse responses, computed both through the SVAR and the SVEC estimation,
according to each model speci�cation. Then, we compare each average IRF to
the respective theoretical response: the MAE and the RMSE statistics are com-
puted on the basis of the �rst 20 periods20 of the two. The MAE is obtained

20Technically, we �rstly sum up the values each variable estimated response assumed in
each period for each of the four model estimations. Then the sum obtained in each model is
divided by 999 - the number of estimated subsamples IRF in each model speci�cation - which
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by dividing the sum up to 20 of the absolute value of the di¤erence between
the average and the true responses, by the length of the selected interval21 , i.e.
t = 20 in order to get the MAE:

MAE =

P20
i=1

���IRF i � gIRF i���
20

where IRF stands for the average response time-series and gIRF i represents the
theoretical response series. For the RMSE case, we consider the root of the
squared and averaged di¤erence between the average estimated responses and
the theoretical ones, over the same time horizon:

RMSE =
2

vuutP20
i=1

�
IRF i � gIRF i�2
20

Both the indicators measure the bias of the performed estimations with
respect to the true responses: larger values of the statistics mean a smaller
precision of the estimates. Tables reported in Appendix A display both the MAE
and RMSE values computed for each variable and for every SVAR and SVEC
performed estimation. We also report the di¤erences between the SVAR and the
SVEC statistics to get an immediate insight of their distance and comparison.
The overall indicators are then displayed, they result from the sum of the MAE
and the RMSE statistics calculated over all the variables in order to get a global
score of the estimations for every model speci�cation.
Table 1 and 2 refer to the estimates computed for the I(1) and the I(2) cases

when the SVAR and the SVEC speci�cations include the capital stock series.
Both tables enhance the better �tting performance of the SVEC over the SVAR
for each variable - with the exception of the response of output in the I(1) case -
as the MAE and the RMSE attached to the SVAR are always larger than those
ones attached to the SVEC.
In particular, Table 1 shows that the estimates performances are almost

equivalent in the y, c and k case, while the advantage of the SVEC over the
SVAR is enhanced especially in the i case (4% in terms of RMSE di¤erence and
almost 1% in terms of MAE di¤erence). Compared to that, Table 2 reports
proportionally higher results in favour of the SVEC �tting performance (the
distance is equal to 11% in the y case and to 5% in the c case, in terms of
RMSE and, respectevely, to 1% and 1.1% MAE).
Table 3 and 4 refer to the case of our larger concern which is the SVEC

and the SVAR estimates computed when the capital-stock series are omitted.
Both in the I(1) and in the I(2) case the SVEC �ts always better the model
(the apparent negative advantage of the SVAR in the I(1) y case is not relevant

provides an average estimated IRF for each variable and estimation.
21The analysis over the �rst 20 periods allows to focus on the model dynamics over a

short/medium-run as, given we deal with arti�cial quarterly data, the �rst 20 periods of
simulation captures ideally the �rst 5 years of observations which is the typical lenght of time
during which �uctuations are observed and measured.
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because both the models fail in catching the true response (see Fig.5)). The
distances in terms of RMSE range from 3% to 8% and, in terms of MAE they are
at least equal to 0.8%. The limited advantage of the SVECM in the investment
response in the I(2) case is quite misleading since, as Figure 6 shows, the SVAR
prediction completely fails in catching the negative impact of the response.
The overall statistics assess and con�rm the results gained from the indica-

tors computed for each single variable. The SVEC �ts on the whole better than
tha SVAR; its largest advantage over the SVAR is gained in the I(2) case when
capital is included, while its smallest result is veri�ed in the correspondent I(1)
case.
In general, the comparison between the models bias con�rm what is high-

lighted at graphical level. We are allowed to claim that, compared to a long-run
SVAR approach, taking account of the information contained in the CI relations
among variables by means of a SVEC model allows to obtain a more con�dent
representation of the RBC theoretical predictions, when a technology shock is
considered.

5 Conclusions

The aim of this paper is to shed a new light on the debate regarding the perfor-
mance of the long-run SVAR approach when a DSGE model has to be empiri-
cally tested and some variables are omitted. Given the debate about the SVAR
approach bias, we address to Fry-Pagan (2005) and their arguments according
to which the necessary conditions that must be satis�ed in order to overcome
the SVAR limitations in a RBC framework essentially imply the inclusion of
the capital-stock series in the SVAR variables set. We suggest to consider the
SVEC model as an emprical strategy alternative to the SVAR approach when
a standard RBC model has to be empirically replied as we want to verify if, in
such a framework, the omission of the capital stock series turns out to be not a
compromising problem.
What we learn from our results is that, within the RBC framework, the

SVEC empirical estimates of the economy responses to a technology shock are
quite more precise than the SVAR forecastings either when the capital stock
series is included and when it is omitted - which is more relevant for this paper
concern. By our perspective, this result is due to the fact that the SVEC
representation exploits the information implicit in the CI relations that crucially
links y to c and i respectevely, which is not wasted even when the capital stock
series is omitted. Indeed, the long run k and i proportional ratio implies that
information contained in the investment series is also informative of the long
run capital-stock evolution.
The fact that our results show the theoretical responses to be better approxi-

mated following a SVEC approach rather than a long-run SVAR, does not imply
that the SVEC represents a univoque solution to the debated bias a¤ecting the
long run SVAR approach. Nonetheless, it might be insightful to verify if the
degree of distorsion implied by the truncation or the small sample bias within
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the SVAR models is larger or smaller than, ceteris paribus, the distorsion that
emerge when the CI relations are ignored, i.e. when the SVAR rather than the
SVEC approach is employed. The statistics we provide should help in evalu-
ating the relative advantage of the SVEC approach over the SVAR which, in
our perspective, re�ects the importance of the role played by the CI relations
within the RBC models. In analogy with this way of proceeding, there might be
room for further research aiming at comparing directly the distorsion involved
by the truncation and the small sample bias with the loss of precision in terms
of model approximation when the SVEC speci�cation is disregarded.
As Ravenna (2007) has already pointed out, DSGE models mainly aim at

accounting for the correlations among macroeconomic variables and it is there-
fore crucial for them to be tested against data representations the more "model
consistent" as possible. Our results provide evidence that a SVEC approach
turns out to be a more reliable model-consistent representation compared to
the SVAR. In spite of that, there is still much to be said up to this concern,
since we are still far from being able to establish a ranking among the alternative
econometric procedures. This is why further research on this way is encouraged.
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A Appendix
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Figure 1 - Impulse Responses to an I(1) Technological Shock - RBC model
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Figure 2 - Impulse Responses to an I(2) Technological Shock - RBC model
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Figure 3: Estimated and theoretical IRFs - I(1) model - Capital stock series
included
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Table 1: I (1) speci�cation - capital-stock included (% values)
Y C

MAE RMSE MAE RMSE
SVAR 0.17 0.7 0.006 0.03
SVECM 0.11 0.5 0.01 0.06

TOTAL di¤erence 0.06 0.2 0.005 -0.03

I K
MAE RMSE MAE RMSE

SVAR 1,2 5 0.18 0.8
SVECM 0.03 1 0.004 0.1

TOTAL di¤erence 0.9 4 0.177 0.7
Table 2: I (2) speci�cation - capital-stock included (% values)

Y C
MAE RMSE MAE RMSE

SVAR 1.5 13 1.5 7
SVECM 0.5 2 0.4 2

TOTAL di¤erence 1 11 1.1 5

I K
MAE RMSE MAE RMSE

SVAR 2.5 11 0.4 1.7
SVECM 0.7 8 0.08 0.3

TOTAL di¤erence 1.8 3 0.32 1.4

Table 3: I (1) speci�cation - capital-stock omitted (% values)
Y C I

MAE RMSE MAE RMSE MAE RMSE
SVAR 0.08 0.3 0.9 4 2.3 10
SVECM 0.1 0.7 0.008 0.3 0.5 2

TOTAL di¤erence -0.02 -0.4 0.82 3.7 1.8 8
Table 4: I (2) speci�cation - capital-stock omitted (% values)

Y C I
MAE RMSE MAE RMSE MAE RMSE

SVAR 1.3 6 1.6 7.3 1.6 7
SVECM 0.6 2.9 0.5 2.1 1.4 6.5

TOTAL di¤erence 0.7 3.1 1.1 5.2 1.2 0.5
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Table 5: I (1) speci�cation - overall indicators (% values)
capital-stock included capital-stock omitted
MAE RMSE MAE RMSE

SVAR 1.55 6.53 3.28 14.3
SVECM 0.15 1.66 0.61 3

TOTAL di¤erence 1.4 4.87 2.67 11.3
Table 6: I (2) speci�cation - overall indicators (% values)

capital-stock included capital-stock omitted
MAE RMSE MAE RMSE

SVAR 5.9 32.7 4.5 14.9
SVECM 1.68 12.3 2.5 11.5

TOTAL di¤erence 4.22 20.4 2 3.4

B Appendix: RBC Model

B.1 The Social Planner problem and equilibrium solution

Max U = Et
P1
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Kt�1 + (1� �)Kt�1

It = eu
K
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Kt
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Kt�1

where f
�

Kt

Kt�1

�
is a positive, concave installation function with the following

steady state properties: f(K=K) = �, f 0(K=K) = 1, and f 00 (K=K) =  where
 > 0 denotes the degree of capital adjustment costs.
All the shocks follow a stationary I(1) process, i.e.:
eu

j
t = e�jut�1e�j where 0 < �j < 1 and �j � i:i:d:(0; �2) for j =

�; �;N;G;K
Setting the Lagrangian:
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The FOCs are the following:
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: �t =

eu
�
t

Ct
(14)

dL

dNt
: �eu

�
t eu

N
t N�

t + �t

h
(1� �)u

a
t K�

t�1N
��
t

i
= 0 (15)

28



dL

dKt
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Combining FOCs 1-2 provides:

eu
�
t eu

N
t N�

t =
eu

�
t

Ct

h
(1� �) eu

a
tK�

t�1N
��
t

i
Nt =

�
(1� �)Yt
Cteu

N
t

� 1
1+�

(18)

So that the resulting relevant equations are as follows:
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t (1.1)
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(1.6)

Table 7 - RBC calibrated parameters
� �22 � �
0:36 0:995 2 0; 022

22The discount rate � is set so that the annual real interest rate is 2% accordingly to a
quarterly data simulation.
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B.1.1 Steady state results

By normalizing the model by Y , we have:

Y = 1 (2.1)

From the resources constraint: Y = C + I then it is: C = 1 � I and
I = 1� C

From 1.3 we get the steady state equation: K=I+(1� �)K that is:

I = �K (2.2)

We can rewrite 1.4 as:

�te
uKt df

�
Kt

Kt�1

�
= ��Et�t+1

�
dIt
dKt

� dYt
dKt

�
�te

uKt df

�
Kt

Kt�1

�
= �Et�t+1

�
dYt
dKt

� dIt
dKt

�
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h
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dKt

� dIt
dKt

i
so that:

�t= ��t+1Rt+1

which in steady state implies:

R=
1

�
(2.3)

From the steady state value of 1.5 we obtain:

N =
h
(1� �)C�1

i 1
1+�

(2.4)

By the de�nition of Rt in steady state we get:

�
Y

K
+ [1� �] =R

which combined with 2.3 yields:

�
1

K
+ [1� �] =

1

�

K =
��

1� � + �� (2.5)
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and combined with 2.2 provides:

I = �

�
��

1� � + ��

�
(2.6)

Given the resources constraint, we get the expression for C :

C= 1�
�

���
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�
(2.7)

B.2 The loglinearized solution

For Y = euatK�
t N

1��
t :

yt = uat + �kt + (1� �)nt (3.1)

For Ct + It + eu
G
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we derive:
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nt =
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(yt � ct � unt ) (3.5)

For �t = eu
�
t

Ct
we have:

�t = u�t � ct (3.6)
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