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Summary.— We present a series of classical meteor light curve profiles based upon
a set of simplified analytic atmospheric models. The model atmospheres specifically
express the density variation as a power law in atmospheric height, and are derived
under a variety of assumptions relating to the atmospheric temperature profile and
the variation of the acceleration due to gravity. We find that the light curve profiles
show only small differences with respect to any variation in the temperature profile
and the geometry imposed upon the atmospheres.

PACS 96.50.Kr – Meteors, meteoroids, and meteor streams.
PACS 94.10.Dy – Atmospheric structure, pressure, density, and temperature
(stratosphere, mesosphere, thermosphere, exosphere).

1. – Introduction

Useful pedagogical and physical insight may be gained through the construction of
simplified models that yield straightforward analytical expressions for otherwise complex
variable quantities. Here we look at a series of simplified atmospheric models that yield
analytic expressions for the variation of a classical meteor’s brightness with height. We
consider a range of atmospheric models, each allowing for varying degrees of physical
sophistication, and we consider the meteoroid to interact with the atmosphere under the
idealized, classical ablation condition that imposes constant meteoroid velocity.
The classical meteor light curve model was initially developed under the constraint

of numerous physical simplifications (see, e.g., [1]). It is assumed, for example, that a
meteoroid is a monolithic spherical grain that ablates in the Earth’s upper atmosphere
without deceleration. It is also implicitly assumed in the classical approximation that
the meteoroid adopts a constant shape factor (i.e., typically that of a sphere), and that
the meteoroid has a uniform composition. Likewise parameters such as the heat and
momentum transfer coefficients and the luminous efficiency are assumed to be constant
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during the ablation process. While all of the above assumptions may be questioned and
modified according to various levels of physical sophistication the classical model is still
useful since it provides a standard light curve against which more complex numerical
morphologies can be compared.
The classic meteor light curve may be described as being late peaked in the sense

that the rise time to maximum brightness is always greater than the fall time from
maximum brightness. Indeed, it can be shown that this characteristic of classical light
curves must hold true irrespective of the assumed mass, composition and initial velocity
of the meteoroid when an isothermal, exponential atmosphere model is employed [2]. In
addition, it has often been said and, indeed, it is often written that the shape of a classical
light curve is derived according to the multiplication of two competing exponential terms.
The two competing terms are related to the atmospheric density and the meteoroid
mass, with the latter term decreasing and the former term increasing exponentially with
decreasing atmospheric height. In this communication we show that the classic meteor
light curve can also be effectively described according to atmospheric models in which the
atmospheric density varies as a power law in height. In sect. 2 below we briefly describe
the ablation equations for the classical model, while in sect. 3 we turn our attention to
a very brief discussion of simplified model atmospheres. The classic light curve is then
described in sect. 4 and sect. 5 provides a final discussion.

2. – The classical ablation equations

The ablation mass loss and meteoroid deceleration equations may be derived according
to conservation of energy and conservation of momentum arguments [1]. Here we present
the equations in the parameterized form introduced by Beech and Murray [3]. According
we define the variables µ = ηm1/3 and U = εV 2, where m is the meteoroid mass, and
V is the meteoroid velocity. The variable µ has units of mass per unit area, while U
is dimensionless, and η and ε are constants relating to the physical characteristics of
the meteoroid (see Appendix A of Beech and Murray [3]). Under the constant velocity
condition the two equations for meteoroid ablation reduce to a differential equation of
the form dµ/dψ = U , where dψ = ρ(h)dh, and where ρ(h) is the atmospheric density at
height h. In the classical situation, the equation describing the variation of the meteoroids
mass per unit area is accordingly

µ(h) = µ0 + U

∫
ρ(h)dh ,(1)

where µ0 is the value of µ at h0 and where the integral on the r.h.s. of (1) is taken over
the height interval h < h0 to h0.

3. – Model atmospheres

By far the most commonly employed analytic atmosphere model is that corresponding
to an isothermal ideal gas with a constant pressure scale height. This is the model atmo-
sphere outlined in all introductory astronomy and planetary science texts, and indeed it
provides an analytically useful variation of the atmospheric density with height [4, 5].
Accordingly, the isothermal atmosphere has a density variation of the form ρ(h) =
ρ′0 exp[−h/H], where h is the atmospheric height, ρ′0 is a constant reference density,
and H is a constant atmospheric scale height. Various levels of sophistication may be
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imposed upon the isothermal approximation. If, for example, one allows for a constant
gradient scale height such that H = H0 + θh, where H0 is the pressure scale height at
h = 0, and θ = dH/dh, then the density variation may be written as a power law (see,
e.g., [4]),

ρ(h) = ρ0

(
1 +

θ h

H0

)−(1+θ)/θ

.(2)

In the limit that θ → 0, it can be seen that eq. (2) reduces to the “standard” ex-
ponential form of density variation. In terms of limiting approximation we note that if
θ ∼ 0, and H0 � h, then eq. (2) (and also for that matter the standard exponential
representation) reduces to a linear density approximation: ρ(h) = ρ0(1 − h/H0). This
being said, the condition that H0 � h does not apply in the region in which meteors
typically ablate.
As an alternative to the formalism introduced above we may alternative produce

power law representations of ρ(h) by allowing the atmospheric temperature and gravita-
tional acceleration to vary with height in the following form:

g/g0 = (h0/h)α ,(3)

T/T0 = (h0/h)β ,(4)

where T0 and g0 are the temperature and gravitational acceleration at some refer-
ence height h0 [6]. For an atmosphere in hydrostatic equilibrium the downward grav-
itational attraction term is counterbalanced by the upward pressure gradient so that
∂P/∂h + ρ(h)g(h) = 0. When variations in gravitational acceleration are assumed neg-
ligible (i.e., g(h) ≈ g = const) then, for an isothermal ideal gas, the height depen-
dency of the atmospheric pressure will be described by the familiar exponential variation:
P = P0 exp[−h/H], where H = (R/n)T/g is the pressure scale height, and where R is
the gas constant and n is the mean molecular weight of the atmospheric gas (assumed in
this analysis to be a single atomic species). In the discussion presented below, however,
we investigate some of the general analytic solutions to the equation of hydrostatic equi-
librium when both the acceleration due to gravity and temperature are allowed to vary
with height according to eqs. (3) and (4) above.
Formally, for a perfect gas in local thermal and hydrostatic equilibrium, the atmo-

spheric pressure P will vary with height according to the equations

dP/dh+ ρ(h)g(h) = 0 ,(5)

P = (R/n) ρ(h)T (h) .(6)

Combining eqs. (3) and (4) with eqs. (5) and (6), we find the following expression for
the atmospheric density variation:

dρ
ρ
=

[
β

x
− ϕ x(β−α)

]
dx ,(7)

where x = h/h0 and ϕ = h0/H0 and where H0 = (R/n)T0/g0 is the atmospheric scale
height at h0. In principle any number of atmospheric models may be generated according
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Fig. 1. – The schematic solution space to eq. (7). The “standard model” corresponds to the
exponential, isothermal model atmosphere. All models with β = 0 are isothermal, whereas
models with β > 0 have a temperature profile that decreases with increasing height. Models
with β < 0 have a temperature profile that increases with increasing height. Diagram based
upon Eshleman and Gurrola [6].

to the assumed parings of (α, β). In practice, however, only a restricted range of (α, β)
pairs are worthy of investigation.
The solution space to eq. (7) that we wish to study is shown schematically in fig. 1. As

the index α varies from 0, to 1 to 2, the gravitational acceleration term, as given by eq. (3),
corresponds, respectively, to flat, cylindrical and spherical geometry. When β = 0 the
atmosphere is isothermal. If β < 0 the atmospheric temperature increases with increasing
height—as indicated by eq. (4). In contrast, if β > 0 the atmospheric temperature
decreases with increasing height. The “standard” exponential, isothermal atmosphere
model corresponds to the combination (α, β) = (0, 0). It might, at first thought, seem
that a good choice for an atmospheric model would be the one corresponding to (α, β) =
(2, 0), to allow for “spherical” geometry, but the resultant analytic form for the density
variation with height is not well suited to analytic manipulation (see below).
In fig. 1 we identify two main regions (Regions II and III) and the boundary line be-

tween them (Line I). The boundary line corresponds to those models for which α − β = 1.
On this boundary line the solutions to eq. (7) are power laws in the normalized atmo-
spheric height x = h/h0, and the atmospheric density varies as ρ ∼ x(β−ϕ). In Region II
the solutions to eq. (7) are all of the form ρ ∼ xβ exp[−ϕx]. While in Region III the solu-
tions to eq. (7) are of the form ρ ∼ xβ exp[ϕ/x]. It is the form of the solutions to eq. (7)
in Region III that makes the (α, β) = (2, 0) model unwieldy to analytic manipulation.
The pressure scale height H is defined according to the equation HdP/dh+ P = 0, and
consequently substituting from eqs. (3) through (6), we find that the scale height varies
as H = H0x

(α−β) for the models under consideration. Since, however, we are primarily
interested in those atmospheres for which α − β = 1, it is revealed that we are dealing
with model atmospheres in which the pressure scale height varies linearly with height.
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Table I. – Model atmosphere characteristics. Note in column 5 that the reference density, ρ′
0,

for the “standard”, exponential isothermal atmosphere is not numerically equal to ρ0 applicable
in the other models. This follows since for the exponential atmosphere ρ′

0 = ρ(h0) exp[ϕ], while
for the power law atmosphere models ρ0 = ρ(h0). The vertical arrows indicate whether a quantity
is increasing or decreasing.

Model (α, β) Geometry Temperature Density Power

1 (0, 0) Flat Isothermal ρ′
0e

A A = −xϕ
2 (0, −1) Flat T ↑ as h ↑ ρ0x

B B = −(1 + ϕ)
3 (1, 0) Cylindrical Isothermal ρ0x

C C = −ϕ
4 (2, 1) Spherical T ↓ as h ↑ ρ0x

D D = 1− ϕ

There are approximate physical analogues to some of the (α, β) combinations falling
on Line I. Specifically, and with reference to table I, model 2 corresponds approximately
to the thermosphere, whereas models 1 and 3 approximate to the mesopause; model 4, in
turn, approximates the mesosphere. None of the model atmospheres described in table I
have a formal truncation where the density goes to zero and the atmosphere, as such,
physically ends. In addition, the “Line I” power law models have surface densities ρ(h
= 0) that are either singular if β < ϕ (which will, in fact, be the most likely situation
since in the typical small mass meteoroid ablation region ϕ ≈ 10), or zero if β � ϕ.
These boundary condition issues, however, are not our direct concern since we are only
interested in the behaviour of the atmosphere in the region where meteoroid ablation
actually takes place.

4. – Classical light curve models

If one assumes that the energy radiated at optical wavelengths is proportional to the
kinetic energy of the ablated meteoroid material [1], then the intensity I(h) of a classical
meteor will vary according to the meteoroid mass and the atmospheric density, such that

I(h) = I0U
5/2ρ(h)µ2 ,(8)

where I0 is a constant (see Appendix I of Beech and Murray [3] for an evaluation of this
term). It is the last two terms of eq. (8) that determine the classical light curve profile
as a function of height. Indeed, as the meteor descends through the atmosphere ρ(h)
will increase and since ablation is assumed to be taking place µ will decrease. It is these
latter two terms that are the competing expressions that produce the classical meteor
light curve profile.
Perhaps the simplest, although certainly not the most physically realistic, first exam-

ple application of eq. (8) is that when the atmospheric density is taken to be a constant.
In this case, we write ρ(h) = ρ0H(1− x), where H(1− x) is the Heaviside step function.
We introduce the step function, where H(1 − x) = 0 for x > 1, and H(1 − x) = 1 for
x < 1, to provide a “formal” reference height at which the atmosphere is deemed to
“begin”. For the constant density atmosphere we find from eq. (1) that

(
µ

µ0

)
= 1− Gconst[1− x] ,(9)
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where Gconst = Uρ0h0/µ0. Equation (9) indicates an end height where µ = 0 (that is,
where the meteoroid mass goes to zero) at xend = 1 − 1/Gconst, and this also sets the
condition Gconst � 1. In this model case the light curves have a maximum intensity at
x = 1, and there is no competition, as such, between the mass term and the atmospheric
density. One might anticipate such light curve profiles to result when very small mass
grains (or fragments) are ejected from a meteoroid at heights below that which they
would normally have started ablative mass loss. During such “flare” events, vigorous
grain ablation will proceed over a very short atmospheric path, and the constant atmo-
spheric density model will approximately apply. A constant density model might also be
applicable in the rare cases of earth-grazing fireballs (such as the August 10, 1972 event
described by Jacchia [7] and Ceplecha [8].
The term Gconst is related to both the mass per unit area of the meteoroid (through

µ0), and the mass per unit area of the atmospheric column at the reference height
h0 (through the ρ0h0 term). And, as an “idealized” aside pertaining to this special
model atmosphere, we note that the condition to produce a meteorite on the ground
can be expressed as xend = 0 or Gconst = 1, which requires that µ0 = Uρ0h0. Hence to
produce a meteorite in the constant density atmosphere approximation the initial mass
per unit area of the meteoroid must be U times greater than the mass per unit area
of the atmospheric column through which it has to pass in order to reach the ground.
This approximation provides a lower bound on the minimum mass per unit area for a
meteoroid to produce a meteorite on the ground in the Earth’s actual atmosphere. An
upper bound on µ0 may be placed according to the argument that a meteoroid will be
appreciably decelerated if during its flight it has to displace more than its own body
mass of atmospheric gas. Hence, under the constant velocity condition imposed in this
analysis, we find that (ρ0h0)/4 > µ0 must hold true. This limit sets, in turn, an upper
bound on the value of U < 1/4. We find, therefore, that to produce a meteorite on
the ground under the constant density atmosphere, constant velocity approximation a
meteorite must have a diameter Dmet > 3(ρ0h0)/2δ, where δ is the meteoroid density.
By inserting the density expressions for model atmospheres 2, 3, and 4, as described

in table I, into eq. (1) and eq. (8) the general expression for the meteor intensity as a
function of normalized height becomes

I(x) = I00x
(β−ϕ)

[
1− Gαx(α−ϕ)

]2

,(10)

where I00 = I0ρ0µ
2
0U

5/2 and Gα is a constant such that

Gα = Gconst/(ϕ − α)(11)

and, as before, x = h/h0 and ϕ = h0/H0. The height of maximum brightness and the
end height at which µ = 0 are easily found from eqs. (1) and (10), and they are

xend = [Gα]1/(ϕ−α)(12)

and

xmax =
[
3(ϕ − α) + 1

ϕ − β

]1/(ϕ−α)

xend .(13)
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Table II. – End height and height of maximum brightness comparisons. In each calculation
the meteoroid has a mass of 10−6 kg and a velocity of 70 km/s. Columns four and five give
the end and maximum brightness heights in kilometers. The last column shows the F -value for
each of the light curves shown in fig. 2. The value of Gexp in model 1 (exponential, isothermal
atmosphere) is five orders of magnitude greater than the Gα values applicable in the other models
due to the difference between ρ′

0 and ρ0 (see text for details).

Model (α, β) G constant hend (km) hmax (km) F -value

1 (0, 0) 6.724× 104 90.0 98.9 0.56
2 (0, −1) 0.0851 91.8 99.2 0.60
3 (1, 0) 0.0919 91.0 98.9 0.58
4 (2, 1) 0.0998 90.1 98.7 0.57

The equivalent expressions for the height of maximum brightness and the end height
in the case of the exponential, isothermal atmosphere are

xend = (1/ϕ) ln(Gexp)(14)

and

xmax = (1/ϕ) ln(3Gexp) ,(15)

where Gexp = (Uρ′0h0/µ0)/ϕ = (ρ′0/ρ0) (Gconst/ϕ), and recall that ρ′0 �= ρ0. The equa-
tion for the intensity is accordingly

I(x) = I00′

(
µ

µ0

)2

exp[−xϕ](16)

with, upon substitution in eq. (1),

(
µ

µ0

)
= 1− Gexp exp[−xϕ] ;(17)

eqs. (16) and (17) express the statement that the profile of the classical meteor light
curve is the result of two competing exponential terms.

5. – Discussion

It has not been our intention in this paper to suggest that the power law approxi-
mations for the atmospheric density are necessarily superior to the standard isothermal
model. Nor are we advocating them as alternatives to rival the full numerical integration
of the ablation equations with a detailed atmospheric model. The latter calculations will
always be superior with respect to the “quality” of their results. This being said we do
advocate the use of such analytic models as useful guides to understanding what physical
processes are at play in the determination of meteor light curve morphology.
The classical light curve analysis will hold true to good approximation when the

meteoroid entry velocity is very high. For illustrative purposes only, therefore, we show
in fig. 2 a comparison of classical meteor light curves constructed for a 10−6 kg monolithic
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Fig. 2. – Comparison of classic light curves. The “standard model”, isothermal atmosphere
[(α, β) = (0, 0)], classic light curve is shown by the solid line. The light curves have been
constructed with the following atmospheric parameters: h0 = 110 km, ρ0 = 10−7 kg/m3, H
= 8.1 km (from [9]), which yields Gconst = 1.156, ϕ = 13.58, and ρ′

0 = 0.079 kg/m3. The
terms in Gconst assume a stone-like composition with a density of 3300 kg/m

3, a specific heat
of 1200 J/kg/K, and a specific latent heat of vaporization of 6× 106 J/kg. The momentum and
heat transfer coefficients are assumed to be unity and the initial velocity is taken to be 70 km/s.

meteoroid entering the Earth’s atmosphere at 70 km/s for each of the model atmospheres
1 through 4 (from table I). A comparison of end heights and heights of maximum
brightness values are further given in table II. The end height values differ by less than
2 km, while the heights of maximum brightness differ by 0.5 km. The magnitudes at
maximum brightness differ by less than 0.5 magnitude, and each light curve is late peaked
(i.e., the fall time from maximum is less than the rise time to maximum). Meteor light
curve profiles are often described in terms of the F -parameter which is defined such
F = (1 − xmax)/(1 − xend). Accordingly, 0 < F < 1, and a perfectly symmetric light
curve would have an F -value of 0.5. An F -value greater than 0.5 indicates that the
light curve is late peaked. The F -value for each atmospheric model is given in the last
column of table II. The classic light curves for models 2, 3 and 4 are all slightly, but not
significantly, later peaked than the light curve for the standard isothermal atmosphere
(model 1).
In general descriptive terms, for the isothermal models, going from flat to cylindrical
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geometry results in a slight brighter meteor at maximum but a slightly shorter trail
length over all. Both light curves follow a similar rise to maximum brightness, but
the brightness of the cylindrical geometry model falls off more rapidly than that of the
flat geometry model. After maximum brightness, the spherical geometry, temperature
decreasing with increasing height model “converges” with the flat geometry, isothermal
model. The temperature increasing with increasing height, flat geometry model produces
the shortest trail but the brightest meteor.
In conclusion, it would appear in general that variations in the atmospheric temper-

ature profile (i.e., whether it is constant, increasing or decreasing) and variations in the
imposed atmospheric geometry (i.e., flat, cylindrical or spherical) do not significantly ef-
fect the inherent shape of the classical meteor light curve. And, in addition, the classical
meteor light curve need not be thought of as resulting specifically or exclusively from
the competition of two competing exponential terms. Rather, as eq. (8) indicates, it is
the variation of the atmospheric density with height and the variation of the meteoroids
mass per unit area that determine the shape of the light curve.
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