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Summary. — Cellular Automata are highly nonlinear dynamical systems which
are suitable for simulating natural phenomena whose behaviour may be specified in
terms of local interactions. The Cellular Automata model SCIARA, developed for
the simulation of lava flows, demonstrated to be able to reproduce the behaviour of
Etnean events. However, in order to apply the model for the prediction of future sce-
narios, a thorough calibrating phase is required. This work presents the application
of Genetic Algorithms, general-purpose search algorithms inspired to natural selec-
tion and genetics, for the parameters optimisation of the model SCIARA. Difficulties
due to the elevated computational time suggested the adoption a Master-Slave Par-
allel Genetic Algorithm for the calibration of the model with respect to the 2001
Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in
terms of computing time and quality of performed simulations.

PACS 07.05.Tp – Computer modeling and simulation.
PACS 47.11.+j – Computational methods in fluid dynamics.
PACS 02.60.Pn – Numerical optimization.
PACS 91.40.Hw – Lava.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Lava flows may be physically described by fluid-dynamics equations, e.g., Navier-
Stokes equations for viscous fluids [1]. However, forecasting the development of real
events through approximate numerical methods may involve serious difficulties, as lava
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rheology can range (by cooling) from approximately Newtonian liquids to brittle
solids [2]. Technological advances in computing science allowed to considerably extend
the range of application for those classes of problems which may be expressed in terms of
differential equations systems. Meanwhile, innovative numerical methods emerged from
alternative computational paradigms. Among these, Cellular Automata (CA) are partic-
ularly suitable for capturing the peculiar characteristics of acentric systems, i.e. systems
whose evolution can be described by considering the local interactions among their con-
stituent elementary parts, that is typical of many fluid-dynamics phenomena [3,4].

Classical homogeneous CA [5] are space and time discrete dynamical systems; they are
based on a regular division of the space in regular cells, identified by integer coordinates
(an example of regular hexagonal tessellation for a two-dimensional CA is reported in
fig. 1, left). Time is subdivided in steps, which may be considered as constant time
intervals. Each cell embeds an identical finite automaton (fa), whose state specifies the
cell condition throughout a computational step. By definition, the set Q of fa states
must be finite. In case a correspondence is defined between the physical and cellular space
(i.e. the cell represents a portion of the physical space), examples of cell states may be
the values of temperature and altitude a.s.l. or the presence/absence of a particle and
its momentum.

The fa input of a cell c is given by the states ofm neighbouring cells, usually including
c. The neighbourhood conditions are defined by a geometrical relation, which is the same
for each cell and invariant in time. It is specified by a m-ple of coordinates, so that the
coordinates of the i-th neighbouring cell are simply obtained by adding the coordinates
of c to the i-th element of the m-ple (cf. subsect. 2.2). The fa have an identical state
transition function σ : Qm → Q, which is simultaneously applied to each cell. The
state transition function expresses the property of locality for the CA: changes in the fa
state are exclusively determined by the states of neighbouring cells. At step 0, fa are
in arbitrary states (initial conditions) and the CA evolves changing the state of all fa
simultaneously at each step, according to σ.

In the context of the growing CA application fields, an empirical method was de-
veloped by our research group Empedocles for modelling and simulating macroscopic
complex phenomena involving surface flows [6]. The method was successfully applied
to: lava flows simulations, concerning Etnean (Italy) events in 1986-1987, 1991, 2001
and 2002 [7-10]; debris/mud flows simulations, concerning the cases of the Tessina area
(1992, Italy) [11], Mount Ontake (1984, Japan) [12], the Sarno area (1998, Italy) [13]
and the Valle Caudina area (1999, Italy) [14]; pyroclastic flows simulations, concerning
the 1991 Mount Pinatubo (Philippines) eruption [15, 16]. Alternative CA models were
also proposed: Young and Wadge [17] presented a clever and fast CA simulation code,
applicable only to simple lava flow fronts; Miyamoto and Sasaki [18] developed a very
interesting CA method for modelling lava flows reducing the problem of the spurious
symmetries in CA; successful attempts of simulating flow-type landslides through CA
models were eventually devised by Segre and Deangeli [19] and Clerici and Perego [20].

The Empedocles empirical approach introduces a set of parameters which may strongly
affect the behaviour of the system. As a consequence, besides input data (which define
the initial state of the system), even CA parameters have to be provided with the greatest
possible accuracy. The quality of input data is imposed by maps defining the region over
which the phenomenon evolves, while parameters can undergo an appropriate calibration
phase. Until recently [8,21], calibration was performed manually, by visually comparing
the outcomes of the simulations with the real event. An alternative solution is provided by
automated search techniques, which are able to find satisfactory solutions in a reasonable
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amount of time. Genetic Algorithms (GAs) [22,23] are general-purpose search algorithms,
inspired from genetics and natural selection. Even if they are able to find good solutions
in a fair time for certain problems, they might take a long time for others. Nonetheless,
Parallel Computing can be adopted with success to strongly increase the search in a GA
execution.

As in a previous work concerning debris flow simulation [24], the application of a
Master-Slave GA to the calibration of the CA model SCIARA [7] for lava flow simulation
is presented. The paper is organized as follows: sect. 2 shows the empirical method for
modelling complex macroscopic surface flows together with its application to lava flows,
by defining the model SCIARA (in particular, the release SCIARA-hex1 [8]). Genetic
Algorithms are illustrated in sect. 3, while sect. 4 describes shortly the 2001 Mt. Etna
event, used as a case-study for parameter optimization, and shows results and comments
of the carried out experiments. Conclusions are reported at the end.

2. – Extended CA notion for surface flows and application to lava flows

Modelling spatially extended macroscopic surface flows needs more specifications
for permitting a correspondence between the system with its evolution in the physi-
cal space/time, on the one hand, and the model with the simulations in the cellular
space/time, on the other.

A = 〈R,X,Q, P, σ,G, γ〉
is the extended CA definition for modelling complex macroscopic surface flows: R, the
cellular space, X, the neighbourhood, Q, the set of states, P , the set of global parameters,
σ, the transition function, G and γ, respectively, cells with input external to cellular space
and their supplementary transition function. In the next subsection, each element of the
septuple is defined, commented and applied to the specification of the CA model for lava
flows SCIARA (Simulation by Cellular Interactive Automata of the Rheology of Aetnean
lava flows; sciara means the solidified lava path in Sicilian).

2.1. The cellular space R. – R = {(x, y) ∈ Z,−lx ≤ x ≤ lx,−ly ≤ y ≤ ly} is the set
of points, with integer coordinates, of the finite region where the phenomenon evolves.
Each point typically identifies a hexagonal cell, instead of a square cell in order to reduce
the effects of the spurious symmetries (fig. 1). Z is the set of integer numbers.

The precise correspondence between the real and cellular space implies that the cell
dimension must be fixed. It is specified by the cell apothem a ∈ P .

2.2. The neighbourhood X. –X={(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (−1,−1)}
is the hexagonal neighbourhood; the coordinates of the neighbour cells of a cell c are
obtained adding its coordinates to the X couples; neighbourhood includes the cell itself
(called central cell) with index 0 and the six adjacent cell with indexes 1, . . . ,6 (fig. 1).

2.3. The set of states Q. – The state of the cell must account for all the characteristics,
relative to the space portion corresponding to the cell, which are assumed to be relevant
to the evolution of the system. Each characteristic corresponds to a substate; permitted
values for a substate must form a finite set: Q = Q1 × Q2 × . . . × Qn is the set of
the possible values of a cell state, given by the Cartesian product of the values of the
substates Q1, Q2, . . . , Qn. The substate value is considered always constant inside the
cell.
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Fig. 1. – The SCIARA hexagonal neighbourhood. Left: the coordinates of the neighbouring
cells with respect to the central one. Right: the relative indexes.

The cellular space should be three dimensional, but a reduction to two dimensions
is allowed when quantities concerning the third dimension (the height) may be included
among the substates of the cell in a phenomenon concerning the earth surface.

The SCIARA substates are: Qa, the cell altitude; Qth, the thickness of lava inside
the cell; QT is the lava temperature inside the cell; Q6

of , the six possible outflows from
the central cell toward the adjacent cells; Q6

if , the six possible inflows from the adjacent
cells toward the central cell. Outflows and inflows are expressed in terms of thickness.

2.4. The set of global parameters P. – The set of the global parameters P in SCIARA
is given by: a, the apothem of the cell; pt, the time correspondence of a step; cool, the
cooling parameter; TV , TS and TI, the lava temperature at the vent, at the solidification
and intermediate value, respectively; adhV , adhS and adhI the adherence (i.e. unmov-
able thickness of lava) at the emission temperature, at the solidification temperature and
at intermediate temperature, respectively [8].

2.5. The transition function σ. – The state transition function σ must account for
all the processes, which are assumed to be relevant to the system evolution, which is
specified in terms of changes in the states values of the CA space. As well as the state
of the cell can be decomposed in substates, the transition function σ may be split into
elementary processes, defined by the functions σ1, σ2, . . . , σp with p being the number of
the elementary processes.

The elementary processes are applied sequentially according a defined order. Each
elementary process involves the update of the states of the cells. The application of all
the elementary processes constitutes a CA step.

A precise time correspondence pt ∈ P for a CA step must be fixed in order to compare
the system evolution to the simulation steps.

σ : Q7 → Q is the deterministic transition function for SCIARA; it is composed by
the following elementary processes in order:

– σlf computes the lava outflows;

– σmix determines the mixing of the remaining lava inside the cell with inflows;

– σcool computes the lava cooling due to radiation and solidification effects.

Determination of the lava flows. Outflows must minimise the differences in height (alti-
tude plus lava thickness) in the neighbourhood after the lava distribution from the central
cell to the adjacent ones. The differences in height (h with indexes related to the cells)
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are computed according to the following formula [25]:

∑
i<j

| hi − hj |, 0 ≤ i < 6, 0 < j ≤ 6 .

The rheological resistance of lava increases as temperature decreases. Because of
complexities which are inherent in specifying lava rheology and its variation with tem-
perature [8], resistance was modelled in terms of an adherence effect, measured by adh,
which represents the amount of lava (expressed as a thickness) that cannot flow out of
a cell because of rheological resistance. adh is assumed to vary with temperature T ac-
cording to a simple inverse exponential relation adh = ce−kT , where c and k are positive
constants such that adhV = ce−kTV and adhS = ce−kTS .

The quantity of lava, that can be distributed from the central cell towards the adjacent
ones, is given by the lava thickness minus the adherence.

Lava mixing inside the cell . Lava mixing inside the cell determines:

– the new lava thickness inside the cell, by just adding inflows and subtracting out-
flows to the previous lava thickness;

– the new temperature of the mixed lava, by computing the weighted average of the
temperatures of inflows and remaining lava in the cells over their thicknesses.

Lava cooling and solidification. The following approximated physical formula for cooling
by radiation is applied [7]:

nT = T/ 3
√

1 + (T 3 · cool · pt/th) ,

where th is lava thickness inside the cell, T and nT are the old and the new tempera-
ture, respectively. The solidification process depends on lava temperature; it is trivially
modelled by adding solidified lava thickness to the cell altitude, when the solidification
temperature is reached.

2.6. Cells in G with external input to the cellular space. – Sometimes, a kind of
input from the external world to the cells of the CA must be considered; it accounts for
describing an external influence which cannot straightforwardly be described in terms
of local rules (e.g., the lava alimentation at the vents) or for some kind of probabilistic
approach to the phenomenon.

G = G1 ∪G2 ∪ . . . ∪Gs is the set of cells, which undergo to the influences of the
external world; s external influences are here considered, each one defines a subregion Gi

(1 ≤ i ≤ s) of the cellular space, where the influence is active. The situation is simple
for SCIARA: the lava emission at the vents is the unique external influence; G1 ⊆ R is
the set of cells corresponding to the vents.

2.7. The supplementary function γ for cells in G. – γ : N×G×Q → G×Q expresses
the external influences to cells of G in the cellular space; it determines the variation of the
stateQ for the cells inG. N, the set of natural numbers, is here referred to the steps of CA.
γ is specified by the sequential applications of the s functions γ1 : N×G1×Q → G1×S1,
γ2 : N × G2 × Q → G2 × S2, . . . , γs : N × Gs × Q → Gs × Ss, where S1, S2, . . . , Ss
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are Cartesian products of elements of S = {Q1, Q2, . . . , Qn}. The function γ is applied
before σ.

The only external influence defined in SCIARA, γ1, accounts for the lava emissions
according to data of real events or data of hypothetical events for scenarios creation:
γ : N×G1×Qth×QT → G1×Qth×QT specifies the emitted lava at temperature TV from
each source (vents) cell c ∈ G1 at the CA step t ∈ N. γ1 determines a new lava thickness
inside the cell by just adding the emitted lava thickness to the previous lava thickness;
the new temperature is computed by the weighted average of the lava temperature inside
the cell and the emitted lava at TV temperature over their thicknesses.

Let us remark, after the model exhibition, that some parameters cannot be measured
(or carefully measured) due to their own nature, either for fundamental or for practical
reasons: their values must be determined by comparing the model outcome with a set
of experimental data. The apothem of the cell is the only prefixed parameter, as it
value is imposed by input maps detail. The time correspondence of a CA step, pt, is
tightly linked with the cell apothem and the rheology of the specific phenomenon to be
simulated. On this basis, it is possible to hypothesize an adequate variation range. The
lava temperature at the vent, TV , and at the solidification, TS, cannot be measured with
adequate precision: for instance, in general, different values may be provided by different
observers. The intermediate temperature, TI, is an empirical parameter, introduced in
order to better approximate the adherence computation with respect to previous versions
of the model [7]. It can experimentally be determined by evaluating the response of the
model with respect to different possible parameter values. As temperature parameters,
the three adherence ones, adhV , adhS and adhI, cannot be obviously determined by
laboratory experiments; however, a range of possible values may be deduced by field
observations. The cooling parameter, cool, has a precise physical meaning in the radiation
equation. However, the context where the radiation equation is applied is complex: in
general, lava determines a crust that lowers the cooling parameter. Moreover, crust
forming and fissuring is a chaotic process, so that the cooling parameter we used may
be considered as a kind of average value. Thus, for these considerations, the model
parameters need to be tailored by comparing model predictions with experimental data
and by modifying them in order to achieve a satisfactory agreement.

3. – Genetic algorithms

Diverse scientific fields, such as Physics, Biology and Economy, often have to deal with
the classical problem of optimization. Genetic Algorithms are a part of evolutionary com-
puting, which is a rapidly growing area of artificial intelligence. They may represent a
valid methodology for solving search problems for which standardised optimisation tech-
niques do not exist or are difficult to apply. GAs are general-purpose search algorithms
inspired by Darwin’s Theory of Evolution [22]. Problems are solved by an evolution-
ary process resulting in a best (i.e. fittest) solution (i.e. survivor); in other words, the
solution is said to be evolved. GAs were formally introduced in the United States in
the 1970s by John Holland at the University of Michigan. To use a genetic algorithm,
one must represent a solution to a problem as a genome (or chromosome). The genetic
algorithm then creates a population of solutions and applies simple random operators
to evolve a good solution. Accordingly, the GA must investigate the so-called search
space, defined as the set of all possible values that the genotype can assume. Evalua-
tion of individuals is executed by choosing a suitable fitness function, which determines
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the goodness of the individual. The selection operator, which represents a metaphor of
Darwinian Natural Selection, chooses individuals that undergo reproduction, by means
of genetic operators, to form a new population of offspring. Classic genetic operators
are crossover and mutation: they represent a metaphor of sexual reproduction and of
genetic mutation, respectively. Eventually, as stated by the fundamental theorem of ge-
netic algorithms [22], any change that actually increases the individual’s fitness will be
more likely to be preserved over the selection process, thus obtaining better generations.
The iterative process continues until one of the possible termination criteria is met: in
general, these include the attainment of a known optimal or acceptable solution level,
if a maximum number of generations have been performed (usually empirically deter-
mined) or if a given number of generations without fitness improvement occurs. A GA
is usually characterised by diverse parameters. The choice of the population size (i.e.
the constant number of individuals forming initial and evolved populations) is one of
the most important parameter, reflecting the size and complexity of the problem. Other
parameters include the maximum number of generations to be performed, a crossover
and a mutation probability. Furthermore, a selection method and a replacement strat-
egy (e.g., which and how many individuals of the old population must be replaced with
the new offspring) must be specified. One of the most utilised selection methods is the
tournament selection; one of the most adopted replacement strategies is the elitist one.
Such aspects, as they were adopted in the present work, will be explained in the following
section.

More in-depth knowledge of GAs can be found in [23].

3.1. Parameter optimization of Cellular Automata through Genetic Algorithms. –
Calibration is an essential phase of the development of a model which can allow its
application for prediction purposes. Until recently, this phase was performed manually,
by simply assigning initial reasonable values to parameters and analyzing the results
provided by the model from a qualitative point of view. Subsequently, modifications to
one or more parameters were undertaken until a satisfying simulation was accomplished.
However, this method presented some problems as the lack of a quantitative evaluation
of the results or the subjectiveness of the simulation assessment. In order to overcome
these difficulties, an automated optimization method was devised, by adopting GAs. As
previously stated, an appropriate fitness function must be devised in order to evaluate
the goodness of a given simulation. In the present study, the fitness function e1 was taken
into account; it gives a measure of the overlapping (in terms of areal extent) between the
real and simulated event.

Definition 3.1 (Definition of fitness function e1). Let us denote with R and S the sets
of CA cells affected by the real and simulated event, respectively. Let m(R ∩ S) and
m(R ∪ S) be the measure of their intersection and union, respectively. We define the
fitness function e1 as follows:

e1 =

√
m(R ∩ S)
m(R ∪ S)

.

Note that the function e1 gives values belonging to the interval [0, 1]. Its value is 0 if
the actual and simulated events are completely disjoint, being m(R ∩ S) = 0; it is 1 in
case of a perfect overlap, being m(R ∩ S) = m(R ∪ S). As a consequence, the goal for
the GA is to find a set of CA parameters that maximise e1.
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4. – Implementation and calibration

In this work, GAs were adopted to optimize parameters of the CA model SCIARA,
by considering the lava event which occurred on Mt. Etna (Sicily) in 2001.

4.1. Optimization of the July 2001 Etnean eruption. – At 3.00 AM on July 18th, 2001,
an eruption started from the fracture of Mount Calcarazzi, on the southern flank of Mt.
Etna (Sicily), 2100 m a.s.l. The event was fed by a medium lava flow rate (ca. 7 m3/s)
and, due to the steep descent of the terrain in that area, pointed southwards creating the
main danger for the towns of Nicolosi and Belpasso: it was, in its maximum extension,
only 4 km away from Nicolosi.

Such event was considered as case of study for the model calibration. The CA pa-
rameters to be optimized were encoded into the GA genotype as bit strings. A total
of 100 individuals were considered to form the GA population and 8 bits were used to
encode each parameter. On the basis of previous empirical attempts on assigning values
to SCIARA parameters [6], initial ranges [ai, bi] (i = 1, 2, . . . , 8) within which the values
of the CA parameters pi are allowed to vary were individuated. Thus, the GA search
space became

S = [a1, b1]× [a2, b2]× . . .× [a8, b8] = [30, 120]× [1350, 1400]× [1050, 1200]×
×[1250, 1340]× [0.1, 1]× [7, 15]× [1.1, 3]× [10−18, 10−13]

At each step only the worst individuals (30) of the old population are replaced (i.e. the
model adopts a steady-state replacement scheme), while the remaining (70) individuals,
required to form the new population, are copied from the old one, choosing the best (i.e.
the model is elitist as, step after step, it preserves the best individuals). While classical
Holland’s crossover and mutation operators have been employed, with probability 0.8
and 1/64 respectively, a tournament operator was adopted as selection scheme instead of
the original proportional selection one [22]. The tournament selection consists of a series
of tournaments in which two individuals are randomly selected, and the winner is chosen
according to a prefixed probability, which must be greater for the fittest individual.
In this work, the tournament selection probability has been set to 0.6, on the basis of
previous experience on analogous experiments.

4.2. Parallel implementation. – It is quite straightforward to make a GA implementa-
tion able to efficiently exploit several CPUs simultaneously. Accordingly, Parallel Com-
puting represents a useful tool to speed up GAs executions [26]. Several examples of
Parallel Genetic Algorithms (PGAs) have been proposed in literature, such as Master-
Slave (Synchronous and Asynchronous), Static Subpopulation (with or without Migra-
tion), Dynamic Demes, and others. A PGAs’ Taxonomy can be found in [27]. One of
the simplest Parallel Genetic Algorithm is represented by the Synchronous Master-Slave
model (Master-Slave in the following), in which a processor (the master) executes the GA
steps (selection, population replacement, crossover and mutation), while several others
(the slaves) evaluate the individual’s fitness. The algorithm is synchronous as the master
waits to receive the fitness values of each individual of the population before generat-
ing the new one; it represents a merely parallelization of the classical Genetic Algorithm,
thus preserving the same dynamical behavior. In this work, calibration experiments were
performed on a Nec TX7 machine composed by 4 quadri-processors Itanium class nodes,
with an overall RAM memory of 32 GB and a performance of 64 GFLOPS.
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Fig. 2. – Experiments carried out in order to determine speed-up. Linear speed-up is obtained
starting from ft = 0.1 seconds.

In order to assess the GA performance, several experiments have been carried out
with the aim of supplying a possible linear speed-up trend. Linear speed-up permits to
reduce execution time of a factor equal to the number of processing nodes. In general,
speed-up is defined as the ratio of the sequential and parallel execution times. Thus if
Np processors are utilised, the ideal parallel time is Tp = Ts/Np, where Ts represents
the sequential execution time. As a consequence, the ideal speed-up is S = Ts/Tp = Np:
in such a case, the parallel program is linearly scalable. The tests were performed by
executing 100 generations of four classic Holland’s GA, respectively characterised by
population sizes n = 30, 60, 120 and 240. For each GA, a fictitious fitness function was
considered: it is simply idle for time intervals ft = 0.001, 0.01, 0.1 and 1 seconds. For
each n and ft combination, a GA run was executed considering Np = 1, 2, 5, 10, 15 slave
processors, and the sequential and parallel execution times were estimated in order to
determine the speed-up. Results demonstrated the linear scalability of the GA on the
considered parallel architecture practically for ft � 0.1 seconds (fig. 2).

Since typical times needed to evaluate a SCIARA candidate solution are generally
longer (of the order of tens of minutes), the adopted Master-Slave GA may guarantee
a quasi-linear speed-up. Achieving linear speed-up requires in fact (as in the previous
tests) a constant execution time for the fitness function for each individual within each
GA step. At the contrary, when the evaluation of the fitness function needs different
times for different candidate solutions, a typical bottle-neck effect may be present, as
the master processor has to wait for the slowest processor to finish its fitness evaluation.
An exact estimation of the bottle-neck effect for our optimization task would require too
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Table I. – Parameters of the model SCIARA. For each parameter, the table reports the number
of bits adopted for the encoding of the genotype, its GA variation range and the best evolved
value.

Parameter Number of bits Variation range Best value

p1 = pt k1 = 8 [a1, b1] = [30, 120] 117.5
p2 = TV k2 = 8 [a2, b2] = [1350, 1400] 1350.5
p3 = TS k3 = 8 [a3, b3] = [1050, 1200] 1088.8
p4 = TI k4 = 8 [a4, b4] = [1250, 1340] 1338.5
p5 = adhV k5 = 8 [a5, b5] = [0.1, 1] 0.9
p6 = adhS k6 = 8 [a6, b6] = [7, 15] 12.0
p7 = adhI k7 = 8 [a7, b7] = [1.1, 3] 2.8
p8 = cool k8 = 8 [a8, b8] = [10−18, 10−13] 10−17

much time since a typical SCIARA simulation, as stated above, requires tens of minutes.
However, an approximated worst-case speed-up evaluation can be derived by considering
that, during the optimization experiments (in which 2 individuals were evaluated for
each of the 15 slave processors), the execution times of the fastest individual, tf , was
about 14 minutes and the slowest, ts, was about 16 minutes, with a difference of about
td = ts− tf = 2 minutes. By supposing that at each GA step only one individual requires
a time ts for its evaluation, while all the others are evaluated in a time tf , and neglecting
communication times among processors, the speed-up can be written as

S =
Ts

Tp
=

G[(2Np − 1)tf + ts]
G(tf + ts)

=
2Nptf + td
2tf + td

,

where G is the number of GA steps and Np the number of slave processors (so that 2Np

represents the number of individuals to be evaluated at each generation). In our case,
since communication can be considered negligible for fitness execution times greater than
0.1 seconds (cf. fig. 2), S � 14 (in spite of 15 when td = 0), representing a good result
for our particular optimization task.

4.3. Experimental results. – By considering the 2001 Nicolosi case-study, four runs of
100 steps were carried out, each one with a different randomly generated initial popu-
lation. The overall GA optimisation experiment lasted less than 3 days. It is worth to
note that on a sequential machine, the same experiment would have lasted more than 2
months.

Table I illustrates the SCIARA parameters which were optimized using GAs, together
with their variation range and values obtained from the best evolved individual. The
corresponding CA simulation is shown in fig. 3. As the figure shows, the parameter-
optimised simulation did not differ significantly from the real case. As confirmed by
the value of the fitness function, e1 = 0.74, a significant improvement is achieved with
respect to the previously manually-obtained results, for which the value of e1 was at most
0.65. The goodness of the simulation is also confirmed in terms of run-out, as the travel
distance from the source of the simulated event is practically the same as the real one.

Even if only areal information is taken into account in this first study, further infor-
mation regarding other physical data like lava thickness and temperature, could improve
the overall GA search, by avoiding the GA to be stuck in possible local optima. This
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Fig. 3. – Comparison between the 2001 Mt. Etna event and the best SCIARA simulation, as
obtained by adopting the parameters listed in table I. Legend key: R specifies the area affected
by the real event; S specifies the area affected by the simulation; R&S specifies the area affected
by the intersection between real and simulated events.

occurs typically when, for instance, in relation with the particular adopted fitness func-
tion, different sets of CA parameters, whose values can be significantly diverse, produce
equivalent simulated phenomena. In the present study, such equivalence concerns the
areal extents of both simulated and real events. However, by introducing further infor-
mation on the real event in each cell, such as lava thickness or temperature throughout
its path, local optima could tend to diminish, favouring the GA convergence.

5. – Conclusions

We presented an application of a Master Slave Genetic Algorithm to the calibration
of the Cellular Automata model SCIARA for lava flows simulation, by considering the
2001 Nicolosi (Sicily, Italy) eruption case study. In general, calibration is needed in
order to reliably apply computational methods which depend on sets of parameters.
The adoption of a parallel model for parameter optimisation dramatically speeds up
computational times: nonetheless, the methodology can be applied to other natural
phenomena (e.g., landslides, forest fires, etc) and models (e.g., SCIDDICA for landslides
[24], by the same research group), when systematic parameter evaluation is needed.
Results demonstrated GAs reliability and, consequently, the SCIARA efficacy in the
simulation of Etnean lava flows. However, further improvements could be achieved. For
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instance, the adoption of a more reliable topographic map could sensibly improve the
model calibration. Besides this, other fitness functions which take into account also other
physical properties (e.g., lava thickness, temperature, etc.) might be useful for a better
parameter optimization. Among future developments, a thorough investigation of these
problems will be addressed.
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