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Summary. — The characteristics of the waves generated by the falling of a rigid
mass or a landslide into a reservoir are simulated via the smoothed particle hy-
drodynamics (SPH) technique. Specific features are introduced to take care of the
dynamic equilibrium of the rigid mass and to deal with the non-Newtonian rheo-
logy of the landslide. The validation of the SPH technique, applied to this kind of
problems, is first carried out making a laboratory experiment of a circular cylinder
sinking into a 2D water tank, in order to ease the boundary problem. Then a more
general simulation, suitable to deal with masses with general shape, is applied to a
rectangular block falling in a tank filled by two liquids with different density and
viscosity. The last simulation reproduces the main characteristics of a landslide
occurred in Italy in 1959.

PACS 83.85.Pt – Computational fluid dynamics.
PACS 47.11.+j – Computational methods in fluid dynamics.
PACS 47.85.Dh – Hydrodynamics, hydraulics, hydrostatics.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

This study is related to the evaluation of the risk due to the falling of masses into a
reservoir.

Four stages can be identified in such event: the moving of the solid mass, its impact
with the liquid stored in the basin, the generation of a water wave and its propagation
in the reservoir.

The flow field produced by the displaced water depends on the typology of the sink-
ing mass (rigid block or landslide), on the volume and the energy of the mass, and in
particular on the depth of the water stored in the basin.

(∗) Paper presented at CAPI 2004, 8◦ Workshop sul calcolo ad alte prestazioni in Italia, Milan,
November 24-25, 2004.
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Fig. 1. – 1D kernel function and its derivative.

The motion of the water wave into the basin is the most dangerous effect of the
phenomenon. This wave can reach the coasts, damage the towns, and overflow the dam.

After the disasters occurred in the past (Vajont, Pontesei), in Italy a very conservative
behaviour is now adopted: the reservoirs under risk are kept almost “empty”, with heavy
“losses” in energy production, in order to reduce the effect of a possible wave.

Available tools hardly allow realistic estimations of the main characteristics of the
water wave to fix the maximum filling of the reservoir compatible with the safety.

Actually the numerical models are regarded as the more promising tools to depict
consistent quantitative scenarios relevant to the above risk situation. The numerical
model suited for this purpose must be able to deal with strongly unsteady free surface,
moving boundaries, interface, non-hydrostatic pressure distribution and non-Newtonian
rheology.

Our previous experience [1-3] led us to investigate the possibility of working with
the SPH Lagrangian method [4-7], originally developed for astronomical problems. This
technique has been recently applied to problems like the vertical sinking of a rectangular
block in a tank [8] or the gravity current descending a ramp in a stratified tank [9] and
to some non-Newtonian flow [10-12].

The main problems deal with the motion of the masses and their interaction with
the liquid volume. In the present paper we only get “in touch” with the question, with
the aim of focusing the numerical problems and evaluating the simulation response in
view of a deeper analysis. As a first approach the problem is reduced to the 2D vertical
Cartesian plane (x, z).

2. – Flow model

The flow generated by the mass displacement into the reservoir is simulated via the
SPH technique described in detail in literature [4-7]. As to the particular characteristics
of the code developed at HEED and employed for the present simulations reference is
made to [1-3]. Later on only the general principles allowing the simulation are recalled.

The SPH technique is based on the numerical approximation of the Navier-Stokes
equations on the vertical (x, z)-plane by a kernel interpolation of the variables and as-
suming a slight compressibility of the fluid.

The material continuum is represented by a distribution of interacting fictitious “parti-
cles” with characteristic spatial scale h and fixed mass m. The mass is distributed around
the particle centroid according to a kernel function W encompassing a unit volume and
with finite support. Figure 1 shows a typical 1D kernel function and its derivative.

Each particle carries velocity v, pressure p, density ρ and other quantities specific
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to the flow field. In a generic point of the domain the field variables are expressed as
interpolating summations involving the kernel function. For example, the density of a
particle i is recovered summing up the contributions of all the j particles belonging to
the circular region with radius 2h centered at the point:

(1) ρi =
∑

j

mj Wij ,

where Wij is

(2) Wij = W (rij , h) , rij = ri − rj .

Similarly, spatial derivatives at each particle position are evaluated by an interpolating
summation involving the derivatives of the kernel function.

With these basic rules and several computational skills not quoted here, the equation
of motion written in Lagrangian form [13],

(3)
Dv
Dt

= −1
ρ
∇p +

1
ρ
∇ · T + g ,

can be discretized for each particle as follows:

(4)
〈

Dv
Dt

〉
i

= −
∑

j

mj

ρiρj
(pi + pj)∇Wij +

∑
j

mj

ρj

(
Tj

ρj
− Ti

ρi

)
· ∇Wij + g ,

where T is the shear stress tensor.
For a Newtonian fluid the shear stress tensor is proportional to the rate of deformation

tensor S via the dynamic viscosity µ:

(5) T = 2µS .

For non-Newtonian fluids eqs. (4), (5) could stay formally unchanged providing that
an effective viscosity µeff is defined for each particle [10, 11]. This effective viscosity
must be evaluated in agreement with the rheological properties of the material and the
interpolated strain rate value of the particle as follows [14]:

(6) µeff =
τc√
I2(S)

+ K
(√

I2(S)

)n−1

,

where τc is the yield stress, K is the consistency, n the exponent of the rheological curve
and I2(s) is the second invariant of the rate of deformation tensor.

The continuity equation written in Lagrangian form [13],

(7)
Dρ

Dt
= −ρ ∇ · v ,

is discretized as follows:

(8)
〈

Dρ

Dt

〉
i

=
∑

j

mj (vi − vj) · ∇Wij .
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Assuming a slight compressibility of the fluid the pressure of each particle can be
evaluated by providing its equation of state in a simplified form [7]:

(9) pi = c2 (ρi − ρ0) ,

where ρ0 is the reference value for the density of the material continuum and c is the
speed of sound.

The continuum is discretized by a set of particles using a proper spatial scale h. At
the starting time position, mass, velocity, pressure and density are therefore fixed for
each particle according to the initial state of the system.

To reach the system configuration at following time steps we adopt an explicit stag-
gered scheme. This choice compels us to enforce the Courant and the Prandtl conditions
on the time step to get the numerical stability. The time step δt is related to the spatial
scale h by the equation

(10) δt � α min
{

h

c + |vmax| ,
h2 ρ

2µ

}
,

where α is a numerical coefficient and vmax is the maximum value of the velocity. The
sound speed must be chosen carefully to ensure an efficient and accurate solution of the
problem. In order to increase the time step it is possible to take the value of the sound
speed lower than the real one, but high enough so that the Mach number of the flow is
lower than 0.1 [6,7]. The effective viscosity in eq. (6) attains an infinite value when I2(s)
tends to be infinitesimal. Such large value of viscosity will strictly reduce the time step
and create numerical divergence. Thus the effective viscosity is numerically bounded by
a fixed high value usually 103 times larger than consistency K to ensure convergence and
a reasonable time step [11].

The proper boundary conditions should be applied on the borders of the domain
in order to mimic the absence of flux through the boundary and to control the slip of
the fluid. Via the image particle method the boundary effects are ensured creating an
image particle for each particle of the continuum whose distance from the borders is less
than 2h. The image particle is placed outside the domain reflecting the starting particle
position through the borders. This particle has the same density and pressure of the
continuum particle, while the normal component of the velocity has opposite direction.

Different slip conditions could be applied along the boundary. The choice of the
boundary condition depends on the number of particles used to describe the continuum,
the properties of the material and the geometrical shape of the boundaries. The physical
no-slip condition requires a spatial scale of the particles small enough to accurately
represent the velocity gradient in the boundary layer. This could require a great number
of particles to discretize the material continuum and so a high computational cost. In
such a situation it would be better to apply a controlled slip condition assigning the value
of local tangential stress, computed via the boundary-layer approximation.

The new problems worked out in the present study deal with the simulation of dy-
namics of the mass.

Two strategies have been implemented for the rigid masses.
In the first strategy, suitable for regular form of the falling mass, the block is sim-

ulated through its moving boundaries. The boundaries shape stays unchanged during
the simulation, while their positions are computed and updated at every time step via
the global dynamic equilibrium of the mass itself. This is obtained balancing the inertial
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force to the weight of the block and the force acted on the block by the fluid due to
pressure and tangential stresses. Such variables are computed at each time step on the
borders of the block and properly integrated to produce the required forces. The free-slip
boundary condition, enforced via the particle method, is applied.

In the second strategy, useful for masses with general form, the sinking block is
discretized by a set of particles. The individual motion of the block particles is computed
according to the general strategy presented above, summing up the contributions of all
the particles, either the ones of the block and the ones of fluid, belonging to the circular
region with radius 2h.

Moreover a rigidity constraint is applied to the block particle through inner forces,
controlled by the local deformation, in order to reproduce the non-deformability of the
mass. Because of the mutual interactions of the block and the water particles no addi-
tional boundary condition is needed on the borders of the block itself.

The last problem deals with the landslide simulation. We represent the landslide by
a set a particles with proper mass and density and a proper constitutive equation that
defines a stress-strain rate relation for the material.

Also for each landslide particle the discretized flow equations must be solved summing
up the contributions of all the particles, both the landslide and the water ones, belonging
to the circular region with radius 2h.

Landslides exhibit non-Newtonian behaviour; this implies that a rheological model
should be chosen according to the material properties. As shown above the discretized
Navier-Stokes equations could stay unchanged providing the definition of an effective
viscosity for each particle in agreement with the rheological properties of the material
and the interpolated strain rate value.

3. – Vertical sinking of a cylinder in a water tank

The following case is a simulation of an experiment carried out at the HEED Labo-
ratory. We applied here the first strategy of rigid mass-water interaction.

In the experiment the aluminium block of circular shape is forced to sink along the
center line of the tank. The tank is built connecting two plexiglas walls on a frame 0.03 m
thick to ensure in any case the main 2D characteristics of the flow field. The structure is
provided by vertical grooves along which two pins connected with the cylinder can slide
thus assuring the absence of rotation. The cylinder is instantaneously released from its
initial position and the whole flow field is recorded by digital videocamera at 25 frames
per second. The test is repeated several times and the images are then processed to get
the instantaneous water profile of every frame.

The experimental setting can be seen in the first frame of fig. 2: the tank is 0.5 m
long, the water depth is Ht = 0.28 m, and the circular aluminium block has a diameter
of 0.155 m.

The main characteristics of the phenomenon are summarized in the record of first and
third row of fig. 2.

The initial rest field has been schematized by a set of particles placed according to a
regular grid with a step equal to 0.0033 m, with a corresponding number of particles of
∼ 11000. The kernel scale h = 0.004125 m is adopted. A free-slip boundary condition is
adopted for the walls and bottom of the tank and for the sinking block. The computation
time step is ∼ 10−4 s in order to fulfill the stability conditions.

Starting from the initial state the block accelerates toward the bottom thus displacing
laterally and upward the water that meets along its path. The two lateral streams meet in
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initial state t=0.00 s t=0.12 s t=0.20 s block stopped t=0.28 s

t=0.36 s t=0.52 s t=0.60 s t=0.76 s
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Fig. 2. – Recorded frames and corresponding simulation pictures.

the rear part of the cylinder forming a wave with maximum at the center line of the tank.
The wave propagates toward the walls, reflects and gives rise to a stationary wave. When
impacts of the two streams or against walls occur, air entrapment and perturbations at
a scale lower than the tank thickness take place and the liquid mass eventually breaks in
drops and splashes: we expect that such highly nonlinear and multiphysics phenomena
are not captured by the simulation, strictly based on a 2D schematization of the liquid.

The comparison between computed and observed fields shows that the main charac-
teristics of the flow are captured regarding both the free-surface shape and at the sinking
times and velocity.

The simulation performed with a PowerPC G4 867 MHz desktop computer took about
8 h.

4. – Free sinking of a rectangular block in a tank

Similar results of those above described are achieved with the second strategy.
To show the ability of the code in dealing with very complex phenomenon we present

here the simulation of a rectangular sinking block starting with a given spin at t = 0 s,
falling into water overlying a layer of high-density fluid.

The fluid in the lower side of the tank (5m long) has density 1800 kg/m3 and viscosity
µb = 10−2 Pa· s. The depth of this fluid is Hb = 0.3 m, while the thickness of the water
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initial state t=0.00 s t=0.26 s t=0.53 s t=0.82 s

t=1.14 s t=1.48 s t=1.81 s t=2.15 s

t=2.49 s t=2.82 s t=3.16 s t=3.50 s

Fig. 3. – Simulation pictures.

layer is Hw = 1 m. The rectangular block has width Lr = 0.5 m, height Hr = 1 m
and density 1500 kg/m3. The horizontal and vertical components of the initial speed are
3 m/s and 1 m/s, while the initial spin is 5 rad/s.

The initial field is represented by a set of particles regularly placed on a square grid
of step 0.033 m, with a corresponding number of particles of ∼ 6000. The kernel scale
h = 0.0375 m is adopted.

Free-slip boundary conditions are assumed for the walls and bottom of the tank.
The computation time step is ∼ 10−3 s in order to fulfill the stability conditions.
The main characteristics of the simulation are displayed in fig. 3.
Starting from the initial state the block moves according with the initial conditions

and the gravity acceleration. Two asymmetrical waves are generated in the tank by the
impact of the block on the water surface. These waves spread all over the domain, and
are reflected by the lateral surfaces of the tank.

The block moves through the liquid in the tank generating pressure waves that deform
the high-density fluid before the reaching of the block itself. Carrying on the simulation
the waves interact reducing their amplitudes, while the block reaches the bottom of the
tank and then stops in a sloping position because of the higher density of the fluid below.

Looking at the images above, we think that the obtained results should agree with the
real phenomenon, even though a comparison between the simulation and an experiment
is not available.

The simulation, performed with a PowerPC G4 867 MHz desktop computer, took
about 1 h, completing ∼ 2000 steps with a CPU time of ∼ 1.8 s for each step.

5. – Simulation of Pontesei landslide

The third example deals with the simulation of the impact effect of a landslide in a
basin. It is scaled on a phenomenon occurred in Italy in March, 1959: a great landslide
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Fig. 4. – Basin plan.

Fig. 5. – Ground profiles measured in the different sections before and after the landslide.
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Fig. 6. – Medium ground profiles before and after the landslide.

fell into the hydroelectric basin of Maè in Pontesei, displacing a large volume of water
and creating a wave that overtopped the dam.

The plan of the basin is reproduced in fig. 4. The grey area represents the water surface
just before the landslide. The vertical lines identify the sections in which the ground
profile has been measured before and after the event. Separation line is represented with
a dotted line, while the landslide front after the event is represented by the continuous
line. Looking at this image it could be noticed that the solid mass flow did not show
significant lateral spreading.

The images in fig. 5 are the ground profiles measured before and after the event in
the different sections (2-6). Taking the average of the measured ground profiles it is
possible to identify a medium profile of the ground before and after the event as shown
in fig. 6. These medium profiles represent the initial geometrical configuration of the
landslide used as the input for the simulation, and the final situation, needed to check
the simulation results.

The similarity of the measured profile in the sections partially justifies the use of the
2D approach to this problem. We do not miss accuracy in the description of the landslide,
but, as evident, the water flow would need a 3D description because of the propagation
of the generated waves in all the directions.

The Bingham rheological model has been used to describe the landslide. The param-
eters of the model are set looking at the most common values used in literature [10,15].
We take 1500 Pa for the yield stress, 1000 Pa· s for the consistency and 2000 kg/m3 for
the density.

The water level is set at 787 m above the sea level. This was the real filling of the
basin before the event.

In the simulation the initial field is represented by a set of particles regularly placed
on a square grid of step 2.0 m, with a corresponding number of particles of ∼ 5600. The
kernel scale h = 3.0 m is adopted.

We impose a no-slip boundary condition for the landslide and a free-slip condition for
water.

The computation time step is ∼ 0.015 s in order to satisfy the stability conditions.
Figure 7 shows the simulation result from the original failure of the slope.
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Initial configuration t=0.0 s

 t=16.4 s

 t=34.4 s

 t=8.2 s

Max wave rising t=22.9 s

Reset state t=47.6 s

Fig. 7. – Different stages of the simulation.

The landslide flow displaces the water stored in the basin, generating a wave that
runs up the right slope. The maximum run up level is reached at 22.9 s. The water wave
goes back and partially overtop the landslide before the system comes to a rest state at
47.6 s.

In fig. 8 the final profile obtained from the simulation is compared with the measured
medium profile after the event, represented by the hatched line.

This image shows an acceptable agreement between the simulated and the observed
profile, while the run up level of the water wave is probably fairly overvalued, because of
the 2D approach.

Fig. 8. – Final profile of the simulation compared with the measured medium profile after the
event.
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Fig. 9. – Maximum run up height with two different fillings.

To exemplify the flexibility of the numerical methods in depicting different scenarios
we computed the maximum level reached by the wave with a different filling of the basin
(800 m above the sea level). The images in fig. 9 show how the maximum run up height
increases in a nonlinear way when increasing the water level in the basin.

The simulation, performed with a PowerPC G4 867 MHz desktop computer, took
about 3 h, completing ∼ 3200 step with a CPU time of ∼ 3.0 s for each step.

6. – Conclusions

The SPH model exhibits a remarkable aptitude for reproducing the phenomena con-
sidered in this paper, involving both a rigid body sinking in a tank and a landslide fall.
In all the situations analyzed the results obtained by the simulations are in reasonable
agreement with the laboratory data or the field observations. Even if in this paper we
only get in touch with this kind of problems and other validations are needed we regard
this technique as a very promising and flexible tool.

The parallelization of the code and the implementation of the 3D model will be the
next steps of the research.

The parallelization of the code will enable us to make the most from the super cal-
culators power, and so maintain short the computational time required by simulations
also increasing the number of particles to refine the accuracy of the results. Because of
the code structure, we think that the parallelization will be very efficient on a shared
memory calculator: the main operation required is the allocation of a fixed number of
particles to each processor. Otherwise using a distributed memory calculator the par-
allelization requires more operations like a dynamic domain decomposition to reach a
correct balancing of the different processors during the simulations.

The 3D scheme is necessary to simulate problems, like the propagation of the water
waves in Pontesei basin, that cannot be reduced to a 2D scheme. As shown above the
basic equations of the SPH technique are already written in a 3D form. The main prob-
lem is related to the high computation time required for a 3D simulation. In fact a great
number of particles is usually required for a 3D simulation, moreover the number of inter-
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acting particles increases. To have an acceptable computational time the parallelization
is required.
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