MAPPING RESOURCES.
INSTANCES FROM THE CARPATHIAN BASIN

1. Introduction

Since the early instances of mapping in the Roman period (Tóth 2001-2002; Balaton 2002; http://aquincum.info/blog/paq-fejlesztes/tabula-peuting-eriana.php) the production of maps and related information has always been of particular interest in Hungarian historical research (Fig. 1).

The first map with both archaeological and petroarchaeological information was compiled by Flóris Rómer on the occasion of the 8th International Congress of Prehistoric Archaeologists, held in Budapest, in 1876. It was the result of a cooperative effort, very much in the spirit of today’s Web 2.0 community pages. In a series of articles “letters”, Rómer, a pioneering personality in Hungarian archaeology, encouraged the learned public – lay persons and professionals – to help him collect evidence of prehistoric sites, occurrences of silex and obsidian tools (Rómer 1867, 1868). The results were published in the first obsidian distribution map, and has special scientific relevance for us as well (Rómer 1878; Biró 2005).

Maps have been a basic tool for archaeological and historical investigations ever since; through the use of geocoded open-access interactive mapping, there is a wide range of new possibilities ahead of us. In this paper a short summary of the current situation is given, with special regard to lithic analysis and the tasks in the near future.

2. Mapping resources on the Hungarian web

The starting point for map resources concerning Hungary could possibly be the server of the Department of Cartography and Geoinformatics (http://lazarus.elte.hu/index-e.html). The server is named after the cartographer of the first complete map of Hungary, Lázár deák (scribe Lazarus). The Department supplies a number of high-precision maps, including the aforementioned one (http://lazarus.elte.hu/hun/maps/lazar150.jpg) and keeps track of the most important map servers all over Hungary. FÖMI (Institute of Geodesy, Cartography and Remote Sensing: http://www.fomi.hu/honlap/angol/) also serves aerial photography, orthocorrected in high resolution – much in demand by modern tendencies in land-use. Of course we all use generally available maps from Google Maps and Google Earth as well as the vector-based maps of the US Geological Survey (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html).
Part of the maps are available in digital forms, but are not yet circulated freely on the web. Old cartographic data from the military surveys of the 18th-19th centuries are available on DVD (Tímár et al. 2006).

Special thematic maps are in circulation such as the Geological Map of Hungary in 1:100,000 scale (Gyalog et al. 2003) or the famous “puddle map” (Fig. 2, reproduced e.g. in Garam 2002), compiled after the military survey maps of the 18th-19th centuries, which attempt to reconstruct a “natural” landscape before the regulation of the rivers.

The vector-based digital maps are now available down to 1:10,000 from the complete territory of Hungary; however, they are very expensive and not allowed for public use.

3. Map-based archaeological and archaeometrical data resources from Hungary on the Internet

There are a great number of GIS based databases accumulated at various institutions, notably KŐH (Cultural Heritage Directorate) and the
Archaeological Institute of the HAS on topographical archaeological data. The problem with these applications is that they are restricted to intranet or even personal professional use (Tóth, in press; MRT series). This is partly due to copyright problems, and partly to the actual danger of misuse, both in terms of IPR and criminal cases (looters).

The pioneering effort of the Budapest Historical Museum to serve map-based documentation data on the Internet on Roman Heritage Monuments (with Ingres RDBMS data on Mapinfo platform, Szentirmai 1996) declined after the compulsory data service period of the underlying grant expired. The system, however, has remained in local use ever since.

At the Hungarian National Museum, we are mainly concerned with providing provenance related information on lithics (Biró et al. 2004; http://www.ace.hu/litot/indexe.html) and other archaeological material with provenance data (Biró et al. 2004; http://www.ace.hu/atlas/). In a joint international effort, this aspect was extended to a wider Central European perspective (Hovorka 2000; http://www.ace.hu/igcp442/); however, these efforts were also stopped by the termination of the related project. More
recently, we have been involved in a project locating historical quarries (Balak 2005; http://www.ace.hu/schaf/). All of these initiatives had a dedicated web-page with many cartographical elements and underlying database. However, so far we have been able to supply only a “static” solution with thematical maps individually saved for a possible (and far from complete!) range of quarries.

Up to now, we have come closer to the idea of a shared mapping environment in the course of the Vörs project, funded by the Hungarian National Scientific Grant (OTKA T-046297, Biró, Holl, in press; http://www.ace.hu/vors/; http://www.ace.hu/vors/vorsintra/). The program concerned the interdisciplinary elaboration of a multi-period site in the SW corner of lake Balaton. We were using a project webpage with an intranet part where all details of the project – site map(s), aerial photography maps, old cartographic data, etc. – were made available for all partners. However, the data provided were not interactive. We still must organise all evidence in a map-based simple system for data analysis. We are planning to do it on MapInfo platform.

4. Future plans

In a Web 2.0 environment, it is possible to share knowledge – information, images, maps, etc. – in a common platform, to be read and/or edited by various people, from closed working groups to a wide range of professionals, even the lay audience. In Hungary, as elsewhere, the technical conditions are available, but there is difficulty in getting people to cooperate.

Currently, some systems are running and initiated. Most of them are in a germinal state but probably they will be open and accessible in the near future. A very good example is the interactive map supported database on historical gardens (http://www.tortenetikertek.hu/). In a multilingual environment, description, photos and maps of the most prominent Hungarian historical gardens are presented.

From the field of petroarchaeological applications, the project “Miss Marble” is a shared international database for marble provenance data; partly public, under development with GIS support (Zöldföldi et al., in press; http://www.missmarble.info/).

In the framework of the Culture 2007 program of the EU, we are participating in the program on Historical Quarries. In this framework, we hope to convert in the near future our web-based data to an interactive geocoded map base.

Katalin T. Biró
Magyar Nemzeti Múzeum
REFERENCES


Gyalog L. et al. 2003, Magyarország 1:100,000-es földtani térképe (Geological map of Hungary in 1:100,000 scale), CD, Budapest, Magyar Állami Földtani Intézet.


Rómer F. 1867, Első obsidian-eszközök Magyarországon (First obsidian implements in Hungary), «Archeologie Közlemények», 7, 161-166.

Rómer F. 1868, Ő-kőkori eszközök Magyarországon, «Archeológiai Értesítő», 1, 3-8.


Tóth J.A. in press, HERMA; The Cultural Heritage Information System in Hungary, in On the Road to Reconstructing the Past. 36th CAA Conference (Budapest 2008).

Zentai L., Térképek a web magyar részén (http://lazarus.elte.hu/hun/moterkep.htm).

ABSTRACT

Publishing provenance data on the Internet requires the integration of various resources, some of them easily accessible, some of them costly and protected by various copyrights. Our work is based on thematical and archive maps, special fieldwork and research projects, data published in technical literature and stored in related databases. This paper will survey the accessible resources we use for creating an “Atlas” of prehistoric raw materials for the Carpathian Basin, both commercial and public domain elements and will concentrate on the additional new value as well as problems of continuous maintenance. New developments in supporting reference collections at the Hungarian National Museum will be discussed as well.