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Summary. — Gamma-ray bursts (GRBs) have been inferred to arise in highly
collimated, ultrarelativistic jets that emanate from the vicinity of a solar-mass com-
pact object. Electromagnetic stresses are the most plausible candidate for extracting
rotational energy at the source and converting it into outflow kinetic energy. Two
questions that need to be answered in order for this process to be well understood
are: what determines the terminal Lorentz factor of the flow? What is the asymp-
totic value of the Poynting-to-matter energy flux ratio? We discuss the general
characteristics of the relativistic magnetohydrodynamic (MHD) solutions that, to-
gether with previously obtained exact results, help to shed light on these questions.

PACS 95.30.Qd – Magnetohydrodynamics and plasmas.
PACS 98.58.Fd – Jets, outflows and bipolar flows.
PACS 98.70.Rz – γ-ray sources; γ-ray bursts.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

According to the internal/external shock scenario the prompt GRB as well as the
afterglow energy is stored, just before the emission, as kinetic energy of a relativistically
moving outflow (see [1] for an alternative scenario in which the emitted energy comes
directly from a Poynting flux). In this picture, the Lorentz factor of the outflow should be
of the order of a few hundreds to avoid the compactness problem, and the baryonic mass
of the order of E/γc2 ∼ 10−6M�. A question arises on how this mass was accelerated
to such high velocities. One possible answer is related to a thermal fireball produced by
viscous dissipation inside an accretion disk and subsequent escape of neutrinos. However,
in this picture the photospheric emission in the outflow would have been detectable [2],
in contrast with the observations.

A plausible alternative is the case when the outflow near the disk is Poynting-dominated
and the Lorentz force transfers the energy from the electromagnetic field to the outflowing

(∗) Paper presented at the “4th Workshop on Gamma-Ray Burst in the Afterglow Era”, Rome,
October 18-22, 2004.
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matter. Furthermore, if the outflow is largely Poynting flux-dominated, then the implied
lower radiative luminosity near the origin could alleviate the baryon contamination prob-
lem. Another important aspect of magnetic driving is that in the case of neutron rich
outflows, contrary to the purely hydrodynamic flow, the neutrons decouple at a Lorentz
factor that is over an order of magnitude smaller than the γ∞ for the protons, (see [3]
and implications by [4]).

Assuming that all the ejected energy (E ∼ 1051ergs) is coming from a disk with sur-
face ∼ 1013 cm2 that lasts for ∼ 10 s, we find that a magnetic field of the order of 1014 G
is required (this value is somewhat larger when the energy is extracted from a black hole
via the Blandford and Znajek mechanism, because in that case the area is smaller). Since
typical rotation periods (∼ 10−4−10−3 s) are much shorter than typical burst durations,
steady-state is a safe assumption. From a different viewpoint, the ultrarelativistic ve-
locities make different parts of the outflow causally disconnected, allowing the study of
each part of the flow using steady-state MHD (frozen-pulse approximation, see [5]).

In the following sections we analyze the MHD equations and give analytical estimates
for the asymptotic Lorentz factor, the Poynting-to-matter energy flux ratio, and how
these depend on the conditions near the disk.

2. – Hydromagnetic equations

The system of equations of special relativistic, steady, ideal MHD, consist of the
Maxwell equations 0 = ∇ ·B = ∇×E = ∇×B − 4πJ/c = ∇ ·E − 4πJ0/c, Ohm’s law
E = B × V /c, the continuity ∇ · (ρ0γV ) = 0, and force-balance −γρ0 (V · ∇) (ξγV ) −
∇P +

(
J0E + J × B

)
/c = 0 equations. Here V is the velocity of the outflow, γ the

associated Lorentz factor, (E ,B) the electromagnetic field as measured in the central
object’s frame, J0/c ,J the charge and current density respectively, ρ0 the gas rest-mass
density in the comoving frame, and ξc2 = c2 + 4P/ρ0 the relativistic specific enthalpy.

Assuming axisymmetry (∂/∂φ = 0, in cylindrical [z ,� , φ] coordinates), five conserved
quantities along the flow exist. If A = (1/2π)

∫ ∫
Bp · dS is the poloidal magnetic flux

function (with the inverse relation giving the poloidal magnetic field Bp = ∇A× φ̂/�),
these are (e.g., [5])(1): the field angular velocity

Vφ

�
− Vp

�

Bφ

Bp
=
c

�

E

Bp
= Ω(A) ,(1)

Michel’s magnetization parameter σM(A) which is related with the magnetic-to-mass
flux ratio Bp/γρ0Vp = (4πc3/AΩ2)σM, the total specific angular momentum ξγ�Vφ −
(σMc

3/AΩ2)�Bφ = L(A), the entropy P/ρ4/3
0 = Q(A), and the total energy-to-mass flux

ratio

ξγc2 − σMc
3

AΩ
�Bφ = µ(A)c2 .(2)

The left-hand side of eq. (2) consists of the matter energy-to-mass flux ratio ξγc2, and
the Poynting-to-mass flux ratio (µ−ξγ)c2. Note that since the Bφ component is negative
(required in order to have Vφ < c beyond the light cylinder; see eq. (1)) the contribution
of the electromagnetic field in eq. (2) is positive.

(1) The subscripts p/φ denote poloidal/azimuthal components.
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Using the above expressions of the five integrals of motion we may express all the flow
quantities as functions of γ and A. The two equations that give the remaining unknowns
γ and A are the Bernoulli and transfield force-balance equations (e.g., Appendix A in [5]).

3. – The asymptotic Lorentz factor

Equation (2) implies that the maximum value of the Lorentz factor is the constant
of motion µ. It also shows the two acceleration mechanisms causing an increase of γ:
(1) thermal, corresponding to a decreasing specific enthalpy ξc2 (thermal fireball phase),
and (2) magnetic, corresponding to a decline in the poloidal current I = (c/2)�Bφ. The
former works up to the point where ξ gets its minimum value (= 1), while the latter is the
result of the Lorentz force and its final outcome depends on the value of the asymptotic
current I∞.

We may re-write eq. (2) as ξγ/µ = 1 − σMc
3�|Bφ|/µAΩ = 1 − 2σM|I|/µAΩ. Down-

stream of the classical fast magnetosonic surface (where the poloidal flow speed equals
the phase speed of the fastest magnetosonic waves propagating along the flow) the mag-
netic field is mainly toroidal and, for a highly relativistic poloidal flow (Vφ 	 Vp), eq. (1)
gives Bφ ≈ −�BpΩ/c. As a result, the poloidal current is |I| ≈ Bp�

2Ω/2 and the
matter-to-total energy flux depends on the key function Bp�

2/A:

ξγ

µ
≈ 1 − σM

µ

Bp�
2

A
.(3)

For an initially Poynting-dominated flow the matter part of the energy flux is negligible,
ξiγi/µ 	 1(2). This continues to be the case in the neighborhood of the classical fast
magnetosonic surface (e.g., [6]). Suppose that the value of the function Bp�

2/A near
the classical fast surface is (Bp�

2/A)f . Since ξγ 	 µ at this point, eq. (3) implies that
the constant of motion σM/µ ≈ 1/(Bp�

2/A)f .
Denoting with δ�⊥ the distance between two neighboring poloidal field lines A and A+

δA, magnetic flux conservation implies 2πδA = Bp(2π�δ�⊥), or, Bp�
2 = (�/δ�⊥)δA.

Thus, a decreasing Bp�
2 —and hence, from eq. (3), an accelerating flow— corresponds to

poloidal field lines expanding in a way such that their distance δ�⊥ increases faster than
�. How fast the field lines expand is determined by the transfield force balance equation;
thus, this equation indirectly determines the flow acceleration. Since the available solid
angle for expansion of the field lines is finite, there is a minimum value of the Bp�

2/A
function. The field lines asymptotically have a shape z ≈ z0(A) + �/ tanϑ(A), where
ϑ(A) is their opening angle [7]. Differentiating the latter equation we get a decreasing
function Bp�

2/A = (Aϑ′/ sinϑ−Az′0 sinϑ/�)−1, reaching a minimum value sinϑ/Aϑ′

at � � z′0 sin2 ϑ/ϑ′. Since the factor sinϑ/Aϑ′ is ∼ 1, the minimum value of the Bp�
2/A

function is ∼ 1, corresponding to

γ∞
µ

≈ 1 − σM

µ

(
Bp�

2

A

)
∞

≈ 1− (Bp�
2)∞

(Bp�2)f
∼ 1 − σM

µ
∼ 1 − 1

(Bp�2/A)f
.(4)

Equivalently, the asymptotic Lorentz factor is γ∞ ∼ µ−σM, and the asymptotic Poynting-
to-mass flux ratio is ∼ σMc

2.

(2) The subscript i denotes values at the origin of the flow.
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Another interesting connection with the boundary conditions near the source can
be found by using the relation between the poloidal current and the function Bp�

2/A:
|I| = Bp�

2Ω/2. Thus, (Bp�
2/A)f ≈ 2|I|f/AΩ, and since |I| remains practically a

constant of motion inside the force-free subfast regime, (Bp�
2/A)f ≈ 2|I|i/AΩ, and

µ/σM ≈ 2|I|i/AΩ. Hence, equation (4) implies a direct connection of the acceleration
efficiency and the asymptotic Lorentz factor to the ejection characteristics

γ∞
µ

≈ 1 − AΩ
2|I|i

(
Bp�

2

A

)
∞

∼ 1 − AΩ
2|I|i .(5)

4. – Methods to obtain solutions

Although the above analysis gives an analytical relation between the conditions near
the origin of the flow and the asymptotic flow speed, we need to solve the system of
the remaining equations (Bernoulli and transfield force-balance) in order to find the
Bp�

2/A function and thus how fast the Lorentz factor reaches its asymptotic value. In
the following we review known methods to obtain solutions.

4.1. Numerical methods. – The Bernoulli is an algebraic equation for γ. After sub-
stituting its solution (in terms of A and its derivatives) in the transfield force-balance
equation, we get a second order partial differential equation for the magnetic flux func-
tion A. Its solution determines the field-streamline shape on the poloidal plane. Due to
the fact that this equation is of mixed type, i.e., changes from elliptic to hyperbolic, it is
beyond the capability of existing numerical codes to solve this highly nonlinear problem,
and no solution has been obtained so far.

An alternative numerical approach is to solve the time-dependent problem (hyperbolic
in time). However, all existing codes fail to simulate relativistic magnetohydrodynamic
flows for more than a few rotational periods. On top of that, it is not easy at present to
construct a solution ranging from scales of the order of the light cylinder distance up to
the asymptotic regime.

A promising combination of the two above methods is followed by [8], who solves
the inner problem using time-dependent evolution (avoiding the elliptic to hyperbolic
transitions), and the outer problem using steady-state equations. The code is not yet
capable of solving the problem at large distances, though.

4.2. The force-free assumption. – In the force-free limit inertial terms are ignored
compared to the electromagnetic field terms. This assumption, however, brakes down in
the superfast regime, where the flow becomes hyperbolic and the back reaction of the
matter to the field cannot be neglected. Since at the classical fast surface the flow is still
Poynting-dominated the force-free method cannot be used for examining the efficiency
of the magnetic acceleration.

4.3. The prescribed field line shape assumption. – If one assumes a known magnetic
flux distribution, i.e., a known function Bp�

2/A = �|∇A|/A, then it is trivial to solve
the Bernoulli equation for the flow speed(3) (e.g., [9,10]). Thus, when we use this method,
practically we implicitly give the function γ. However, these solutions do not satisfy the
transfield force-balance equation; thus, they are not fully self-consistent.

(3) In the superfast regime, this equation reduces to the much simpler eq. (3).
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Fig. 1. – Acceleration efficiency in (a) and the function Bp�2/A in (b) vs. distance. (c): Ef-
ficiency vs. Bp�2/A. In all plots solid , dotted , dot-dashed , dashed , and long-dashed lines
correspond to the solutions a, b, d from [5] and a, b from [14], respectively. The value of σM/µ
in these solutions is 0.49 , 0.50 , 0.47 , 0.30, and 0.33. The classical fast point is located near the
turning point in (c) and for the superfast part the results are in a very good agreement with
eq. (3).

4.4. The monopole approximation. – The assumption that the poloidal magnetic field
is quasi-monopolar is just a subcase of the prescribed field line case. This assumption,
with the help of eq. (3), is equivalent to the assumption that γ is constant. In fact,
a tiny acceleration is possible in the subfast regime, leading to γ∞ ∼ µ1/3 [11]. This
solution gave the erroneous impression to the community that relativistic MHD is in
general unable to give high acceleration efficiencies. However, the solution corresponds
to a special case of boundary conditions, and most importantly, it does not satisfy the
transfield force-balance equation.

Concluding, in order to solve the efficiency problem, one has to solve simultaneously
the Bernoulli and transfield force-balance equations.

4.5. The r self-similar special relativistic model . – The only known exact relativistic
MHD solution is the r self-similar special relativistic model, found independently by [12]
and [13] in the cold limit, and further generalized by [5] including thermal and radiation
effects. It corresponds to boundary conditions in a conical surface (θ = θi in spherical
coordinates [r, θ, φ]) of the form Br = C1r

F−2, Bφ = −C2r
F−2, Vr = C3, Vθ = −C4,

Vφ = C5, ρ0 = C6r
2(F−2), P = C7r

2(F−2), with constant C1, . . ., C7. The parameter of the
model F controls the initial current distribution (−�Bφ = C2 sin θi rF−1 is an increasing
or decreasing function of r for F > 1 or F < 1, respectively; see [5] for details). Despite
the assumed form of the boundary conditions, the assumption that gravity is negligible,
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and the absence of intrinsic scale, r self-similar remain the only self-consistent relativistic
MHD solutions.

Figure 1 shows the function Bp�
2/A and the acceleration efficiency for various r self-

similar solutions with application to GRB outflows. These exact solutions agree with
the previously outlined general analysis, and in particular: 1) the asymptotic value of
the function Bp�

2/A is close to 1; 2) the asymptotic value of ξγ/µ is close to 1− σM/µ;
3) in the superfast part of fig 1c the relation between ξγ/µ and Bp�

2/A is linear, and
almost identical with eq. (3).

5. – Discussion

Summarizing, it is important to note that in order to solve for the acceleration it
is absolutely necessary to solve for the poloidal field line shape as well. The Bernoulli
and transfield force-balance equations are interrelated and we cannot solve them sepa-
rately, especially in the super-classical-fast regime. Models that assume quasi-monopolar
magnetic field (Michel’s solution included), equivalently assume that the magnetic ac-
celeration is inefficient. For other line shapes various acceleration laws have been found,
however, further work is needed in order to check the validity of the prescribed field line
models, in terms of satisfying the transfield force-balance equation.

In principle, magnetic fields provide a viable mechanism to accelerate GRB outflows.
The acceleration efficiency is found to be of the order of ∼ 50% using self-similar solu-
tions. It is found analytically (and confirmed by the exact solutions) that the efficiency
depends on the current distribution on the surface of the disk and its relation to the an-
gular velocity of the field Ω and the magnetic flux A. Equivalently, the efficiency depends
on the important function Bp�

2/A, which is the solution of the transfield force-balance
equation. As the field lines expand and become close to uniformly distributed asymp-
totically (Bp�

2 ∼ A), the acceleration efficiency depends on how bunched the lines are
near the origin, i.e., how large is the quantity Bp�

2/A at the classical fast surface.
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