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Summary. — We present the spectral analysis of 14 gamma-ray bursts (GRB)
X-ray afterglows in order to investigate the properties of interstellar matter (ISM)
along the line of sight of GRB. We carried out a simultaneous analysis of the NIR-
optical and X-band for those afterglows with an optical counterpart too, in order to
evaluate and strongly constrain the absorption effect on the spectral energy distri-
bution due to dust extinction from GRB environment. We evaluated the equivalent
hydrogen column density NH from X-ray spectroscopy and rest frame visual extinc-
tion AV by assuming different type of ISM composition and dust grain size distribu-
tion. From our analysis we obtained a distribution of the GRB rest frame consistent
with the one expected if GRB were embedded in a galactic-like molecular cloud.
Moreover, values of the visual extinction estimated from the simultaneous analysis
of NIR-to-X band favour an environment where small dust grains are destroyed by
the interaction with the X-ray and UV photons from GRB.

PACS 98.70.Rz – γ-ray sources; γ-ray bursts.
PACS 98.58.Ca – Interstellar dust grains; diffuse emission; infrared cirrus.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

It is now generally believed that long-duration GRB are associated with the collapse
of massive stars (e.g. [1]) and so a dense and dusty environment, typical of star-forming
regions, is expected in the nearby of the bursts. Up to now there are some observations
that are in good agreement with this molecular cloud-like scenario, like the emitting
and absorbing features observed in some X-ray afterglows (e.g. [2, 3]), the detection of
a large amount of dust obtained from the high-resolution spectroscopy of three optical
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c© Società Italiana di Fisica 487



488 M. L. CONCIATORE, L. A. ANTONELLI, G. STRATTA, ETC.

Table I. – X-ray afterglows sample. (a) Galactic coordinates (J2000), (b) Redshift, obtained
through optical spectroscopy when available; otherwise, the value z = 1 was adopted, being this
the peak value of GRB redshift distribution [11], (c) Optical Transient, (d) Galactic hydrogen
column density along the line of sight of each GRB (from Dickey and Lockman maps [10]).

GRB (a)RA (a) Dec (b)z (c)OT (d)Ngal
H

(h m s) ( ◦ ′ ′′) (1022cm−2)

991216 05 09 31 +11 16 50 1.02 yes 0.27
000210 01 59 13 −40 40 46 0.846 no 0.0223
000926 17 04 10 +51 46 32 2.0375 yes 0.0265
001025 08 36 36.5 −13 04 30.3 1 no 0.065
011211 11 15 16.4 −21 55 44.8 2.14 yes 0.0427
020322 18 00 53.0 +81 04 48.0 1 no 0.045
020405 13 57 54 −31 23 34 0.691 yes 0.0427
020813 19 46 41 −19 36 00 1.254 yes 0.075
021004 00 26 54 +18 55 50 2.328 yes 0.0427
030226 11 33 03 +25 54 20 1.986 yes 0.0181
030227 04 57 29.0 20 29 23.9 1.6 yes 0.218
031203 08 02 30.0 −39 50 48.0 1 no 0.621
040106 11 58 50.5 −46 47 14.0 1 no 0.0842
040223 16 39 34.0 −41 55 45.0 1 no 0.663

afterglows [4] and the high rest frame visual extinction inferred in some other optical
afterglows (e.g. [5]). Under this point of view, the non-detection of ∼ 40% of X-ray
afterglows at optical wavelengths (dark GRB) would be due to the dust absorption.
On the other hand, the spectral energy distribution of some GRB afterglows indicates
that dust reddening is very slow [6, 7]. Moreover, for the observed optical afterglows,
on average, the estimated rest frame visual extinction is a factor 10–100 lower than the
expected if an ISM with dust-to-gas ratio and an extinction curve similar to the galactic
one are assumed [8]. Also, some high redshift burst showed a larger amount of gas than
dust. In a recent work, Stratta et al. [9] already pointed out that absorption properties
derived from X-ray and optical afterglows spectral analysis may require a “non-standard”
extinction. A more careful study is required to probe the ISM of GRB environment. In
this work we present the results of a systematic multiwavelenght spectra analysis of a
sample of GRB afterglows in order to put some constraints on the properties of the
circumburst environment.

2. – X-ray data analysis

We selected from the XMM-Newton and Chandra archives all the X-ray afterglows
with a high signal-to-noise ratio (see table I) in order to perform a good spectral analysis.
Standard data reduction in the 0.1–10.0 keV energy range was performed using SAS 6.0
for the data of the XMM-Newton EPIC instrument and using CIAO 2.3 for the Chandra
ACIS-S instrument. All the spectra were analyzed with Xspec 11.2.0. In order to get
Gaussian statistics, thus so to ensure the applicability of the χ2 test to evaluate the good-
ness of our fits, the spectra were rebinned to obtain at least 20 counts per energy channel.
For the EPIC spectra we performed simultaneous PN, MOS1 and MOS2 spectral fitting.
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Fig. 1. – Left: The rest frame equivalent NH distribution obtained from the analysis in this work
compared with the expected Ngal

H distribution for GRB occurring in galactic-like molecular cloud
from Reichart and Price [12] (right).

2.1. The spectral model . – According to the standard fireball model, the spectrum of
the X-ray afterglows emission is well described by a simple power law fX(E) ∝ E−βX . In
this analysis we adopted a spectral model that takes into account also for the photoelectric
absorption both galactic and extragalactic due to the metal-rich material along the line
of sight of GRB: fX ∝

(
E−βX × e−Ngal

H × e−NZ
H

)
, where Ngal

H is the is the equivalent
hydrogen galactic column density fixed according to the Dickey and Lockman map [10]
and NZ

H is the extragalactic contribution to the absorption, whose value was left free to
vary. The redshift values are derived from optical observation when available; otherwise,
the value z = 1 was adopted, being this the peak value of GRB redshift distribution [11].

2.2. Results. – We found an absorption larger than the galactic value in nine cases
(GRB000210,GRB001025, GRB020322, GRB020405, GRB020813, GRB030226,
GRB030227, GRB031203, GRB040223) with confidence level up to 4σ. The rest frame
equivalent hydrogen column density distribution obtained has a weighted average of
〈NZ

H〉 = (1.0 ± 0.1) × 1022cm−2, consistent with the theoretical peak expected if GRB
are embedded in a galactic-like molecular cloud (see fig. 1).

3. – Multiband analysis

For the eight afterglows of the sample with an optical counterpart (see table I) the
analysis was extended to the optical and NIR band, in order to better constrain extinc-
tion properties through a fit of spectra as wide as possible. Photometric data have been
taken from literature. To perform this wide-band analysis we applied some correction to
data. Firstly, being F (t) ∝ t−α we extrapolated magnitudes at the same time of X-ray
observation, adopting the measured optical-NIR decay index published in literature and
then we corrected them from galactic extinction along GRB line of sight using the IRAS
100 mµ E(B−V ) maps by Schlegel et al. [13] and by deriving the extinction at different
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Fig. 2. – The best-fit additional column density against best-fit visual extinction obtained using
Q2 curves.

wavelengths using the extinction curve parameterization taken from Cardelli et al. [14] as-
suming RV = AV /E(B−V ) = 3.1. Finally, the magnitudes have been converted in fluxes
using the effective wavelenghts and normalization fluxes given by Fukugita et al. [15].

3.1. The spectral model . – For the optical/NIR data we adopted a model composed by
a power law and an absorption component that takes into account the dust extinction:
fo(λ) = Cλ−2−βe(−A(λr)/AV r)AV r , where AV r is the visual extinction. Assuming the slow
cooling regime as the most probable one for the electron population at the observation
time, we assumed that the electron index p is twice the X-ray spectral index previously
obtained within 90% confidence level. We fitted the data using both the possibility
predicted for this regime: β = (p − 1)/2 if νopt/NIR < νc, β = p/2 if νopt/NIR > νc,
where νc is the cooling frequency. We tested different dust composition and dust-to-gas
ratio using different extinction curves, assuming that the dust grains distribution n(a) is
described by a simple power law dn(a) ∝ a−qda. The curves are: the Galactic-like (G)
from Cardelli et al. [14], for which q = −3.5, amin = 0.005 µm < a < amax = 0.25 µm;
the Small Magellanic Cloud-like (SMC) from Pei [16], that is the same model but with
1/8 of the solar metallicity; two extinction curves (Q1 and Q2) obtained by Maiolino et
al. [17], from simulation from study of a sample of AGN, for which q = −3.5, amin =
0.005 µm < a < amax = 10 µm and q = −2.5, amin = 0.005 µm < a < amax = 1 µm,
respectively. We have also tested an extinction curve (C) derived by Calzetti et al. [18]
for a sample of local starburst galaxies. For all this different ISM model the rest frame
visual extinction has been estimated for all the afterglows sample.

3.2. Results. – For GRB991216 and GRB011211 we have obtained only the galactic
contribution to extinction, a result consistent with the previously X-ray analysis.

For GRB000926, GRB020405, GRB020813, GRB030226 and GRB030227 the best fit
is obtained assuming an ISM with dust grain distribution skewed toward large grains (Q1
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curve for the first case, Q2 curve for the other four cases). We also compared the best-fit
additional NH density at GRB’s redshift with the best-fit AV obtained for the different
extinction curves. The NH/AV relations have been compared with the corresponding
theoretical one: Galactic, NH/AV = 0.18 × 1022 cm−2 [8]; Small Magellanic Cloud,
NH/AV = 1.6 × 1022 cm−2 [19]; Q1, NH/AV = 0.7 × 1022 cm−2 and Q2, NH/AV =
0.3×1022 cm−2 [17]. For the starburst galaxies no NH/AV relationship has been derived
due the complexity of this kind of ISM. Assuming a galactic-like and SMC ISM, this
ratio are well above the expected values, confirming previous studies (e.g. [7,9]). A good
agreement is obtained with an ISM with dust grain size distribution skewed toward large
grain (see fig. 2). Such a dust composition reconciles the typical low reddening observed
in the optical afterglows SEDs with the high amount of dust observed through optical
spectroscopy [4]. This kind of environment can be obtained in two ways: small dust grain
can coagulate into larger producing a dust distribution biased towards larger grains as
expected in high-density medium (e.g. [20]), or the physical state of the gas and dust are
modified by the intense X-ray and UV emission from GRB (e.g. [21]).

Such an uncertainty will be solved by monitoring the very early afterglows and the
possible evolution of the extinction effects. The SWIFT satellite and robotic telescopes,
such as REM, will be very useful to provide us with this information.

∗ ∗ ∗
For a more detailed analysis see Conciatore et al., in preparation (2005).
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