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Summary. — The earliest BTA (SAO RAS 6-m telescope) spectroscopic observa-
tions of the GRB 030329 optical transient (OT) are presented, which almost coincide
in time with the “first break” (t ∼ 0.5 day after the GRB) of the OT light curve.
The beginning of spectral changes are seen as early as ∼ 10–12 hours after the GRB.
So, the onset of the spectral changes for t < 1 day indicates that the contribution
from Type Ic supernova (SN) into the OT optical flux can be detected earlier. The
properties of early spectra of GRB 030329/SN 2003dh can be consistent with a shock
moving into a stellar wind formed from the pre-SN. Such a behavior (similar to that
near the UV shock breakout in SNe) can be explained by the existence of a dense
matter in the immediate surroundings of massive stellar GRB/SN progenitor (see
Young et al., ApJ, 449 (1995) L51 and Imshennik and Nadyozhin, Usp. Fiz. Nauk, 5
(1988) 561). The urgency is emphasized of observation of early GRB/SN spectra for
solving a question that is essential for understanding GRB physical mechanism: Do
all long-duration gamma-ray bursts are caused by (or physically connected to) ordi-
nary core-collapse supernovae? If clear association of normal/ordinary core-collapse
SNe (SN Ib/c, and others SN types) and GRBs would be revealed in numbers of
cases, we may have strong observational limits for gamma-ray beaming and for real
energetics of the GRB sources.

PACS 95.75.Fg – Spectroscopy and spectrophotometry.
PACS 98.70.Rz – γ-ray sources; γ-ray bursts.
PACS 97.60.Bw – Supernovae.
PACS 01.30.Cc – Conference proceedings.

(∗) Paper presented at the “4th Workshop on Gamma-Ray Burst in the Afterglow Era”, Rome,
October 18-22, 2004.

c© Società Italiana di Fisica 521



522 V. G. KURT, V. V. SOKOLOV, T. A. FATKHULLIN ETC.

4000 4500 5000 5500 6000 6500 7000

Observed wavelength (Å)

13.6

13.8

14.0

14.2

14.4

14.6

14.8

-2
.5

lo
g(

ƒ λ)+
C

on
st

an
t

3500 4000 4500 5000 5500 6000

Restframe wavelength, Å

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ƒ λ·1
0-1

5 , e
rg

·s
-1

·c
m

-2
·Å

-1

10.8 hours

11.3 hours

11.5 hours

12.4 hours

Fig. 1 Fig. 2

Fig. 1. – The four BTA/MPFS spectra of GRB 030329 OT are presented in the order of flux de-
crease for 0.45 (10.h8), 0.47 (11.h3), 0.48 (11.h5) and 0.52 (12.h4) days after the burst, respectively.
The 10.h8, 11.h3, and 11.h5 spectra correspond to almost equal fλ.

Fig. 2. – The MPFS spectra (in restframe wavelengths) smoothed by a Gaussian with FWHM
equal to MPFS spectral resolution (12Å). The smoothed spectra of GRB 030329 OT were shifted
up the scale of fλ relative to the last (12.4 h) spectrum.

Spectroscopic observations of the GRB 030329 OT were performed on 29/30 March
2003 with the Multi-Pupil Fiber Spectrograph (MPFS) (see WWW-page at http://
www.sao.ru/~gafan/devices/mpfs/mpfs_main.htm) at the 6 meter telescope (BTA)
of SAO RAS starting 10.8 hours after the burst [12]. In order to control the absolute
flux calibration, the photometry and spectroscopy were compared. We used UV RcIc

photometric observations of the OT carried out with the Zeiss-1000 telescope at SAO
RAS on the same epoch as the BTA/MPFS spectroscopy was carried out (the magnitudes
and full UBV RcIc light curves are reported by [4] and [5]). For the B band we used the
Nordic Optical Telescope observations [1].

Figure 1 presents the resulting spectra of the GRB 030329 OT. Broad spectral features
(figs. 1 and 2) detected in the spectra are confidently real. As can be seen in fig. 3, the
photometry and spectroscopy are in good agreement. The spectra showed an unsmooth
continuum with several broad spectral features at about 4000, 4450, 5900Å. From fig. 4
one can conclude that broad spectral features remained significant during the first three
nights. It is clearly seen from the figures that systematic deviation of V-band flux from
formal smooth power-law is due to real unsmooth OT spectra. Also fig. 4 shows that
there is some evidence of reddening in the OT broad-band spectrum of the first three
nights. Moreover it should be noted that during about a month after the burst the
colors of the OT are redder than during first three days, which is in turn consistent with
continuing reddening of the broad-band spectrum. Such a behavior of the broad-band
spectrum can be explained by an increase of a SN fraction in the GRB OT light.

We obtained our earlier BTA/MPFS spectra of the OT just during the most rapid
variations in the huge OT luminosity (∼ 1045 ergs s−1 at the moment ∼ 11 h) and physical
conditions in the source, which almost coincide in time with the first “break” (t ∼ 0.5
day after the GRB) of the OT light curve. This phase is like some SNe (1993J, 1997A)
observed during the first light curves UV peaks (or during the UV breakout phase),
specially by their similar fast luminosity variations, spectra, and bolometric luminosities.
The bolometric luminosities in the first SNe UV peaks can be also approximately of the
same values as in the GRB OTs.
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Fig. 3. – Comparison of spectroscopy and photometry. By horizontal bars the FWHM (full
width at half maximum) of corresponding filters are shown.

Fig. 4. – Evolution of the UBV RcIc broad-band spectra during the first three nights. The MPFS
spectra are also shown. As in fig. 3 by horizontal bars the FWHM of corresponding filters are
shown.

If SNe and GRBs are indeed produced by the same astrophysical cauldron [7], then
most probably the spectra of SN and the GRB afterglow can be mixed so closely that it
would be rather difficult to divide them in the earliest stages of the most rapid changes in
the source. It is natural to assume that at the very beginning of the GRB/SN explosion
(in the SN rise time or in the onset time) the contributions of early spectra of the SN
and the spectrum of the GRB afterglow can change quickly into the common (observ-
able) spectrum of the GRB OT. Thus, the relative SN/OT contribution to the earliest
integrated spectra might be rapidly variable. At some moment these contributions can
become even comparable in bolometric luminosities (as an example, see estimations of

Fig. 5. – The examples of earliest optical spectra SN 1993J and SN 1987A are given. Spec-
tra are taken from the database SUSPECT—The Online Supernova Spectrum Database
http://bruford.nhn.ou.edu/ suspect/ [10].
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bolometric luminosity in the first maximum of SN 1993J from [11]). This is reinforced by
the fact that the earliest spectra of SNe are very similar to the GRB afterglow spectra
in their powerful UV continuum. And especially since (as [8] note for SNe Ic) the rise
time (more exactly, the beginning/onset time of the explosion) of the majority of known
SNe are not well defined (see [9] for more detailed discussion of this problem.) As an
illustration, we show in fig. 5 the examples of such early spectra corresponding to the
UV shock breakout in two core collapse SNe (SN 1993J, SN 1987A), which have the most
exactly defined times of the explosion onset.

The SN 1993J was similar to a SN Ib, with a low-mass outer layer of hydrogen (that
gave the early impression of a SN II). It can be said that its emission comes from the
collision of supernova ejecta with circumstellar gas that was released by the progenitor
star prior to the explosion. Such a mass loss is consistent with the fact that the SN
properties indicate that most of the stellar H envelope is present at the time of the SN
explosion. SN 1987A is another core collapse supernova that exploded with a (massive)
H envelope. But the immediate surrounding of the progenitor star (the pre-SN is a blue
supergiant) was determined by the fast wind from that star. The variety of envelopes
surrounding pre-SNe is quite natural in the evolution of a massive star [2, 3].

It is very important to emphasize also that the bolometric luminosity of SN 1993J
can reach the first maximum (according to different model estimates) of order of ∼
1045 ergs s−1 4–5 hours after the core collapse or ≈ onset time of the SN [11]. This
luminosity is approximately equal to that of GRB 030329 OT at the moment when (at
∼ 11 h) we obtained spectra with the BTA.
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