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Block of c-myc Expression by Antisense Oligonucleotides Inhibits 
Proliferation of Human Thyroid Carcinoma Cell Lines 1 
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A B S T R A C T  
Although elevated c-myc expression seems to be related 

to an unfavorable prognosis of human thyroid neoplasias, 
the role of c-myc overexpression in the process of thyroid 
carcinogenesis is still unknown. We analyzed c-myc expres- 
sion in 7 human thyroid carcinoma cell lines, originating 
from different histotypes, and in 50 fresh thyroid tumors 
and found a higher level of c-myc mRNA in all the thyroid 
carcinoma cell lines and in several fresh thyroid tumors 
compared with normal thyroid. The highest increases oc- 
curred in the most malignant cell lines and in undifferenti- 
ated human thyroid carcinomas. The block of c-MYC pro- 
tein synthesis with myc-specific antisense oligonucleotides 
reduced the growth rate of the thyroid carcinoma cell lines 
significantly. Our results indicate that c-myc overexpression 
plays a critical role in the growth of thyroid cancer cells, 
which supports the hypothesis that the myc proto-oncogene 
might be involved in the neoplastic progression of thyroid 
carcinogenesis. 
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I N T R O D U C T I O N  
Elevated expression of MYC proteins can induce onco- 

genic transformation (1, 2) and apoptosis (3, 4) and can block 
cell differentiation (5, 6). The proteins belonging to the MYC 
protein family are localized in the nucleus (7-9) and can activate 
transcription when brought into contact with DNA by heterol- 
ogous DNA-binding domains (10-12). Recently, two proteins 
that form heterodimers with MYC proteins have been isolated: 
Max, a human protein; and Myn, its murine homologue (13, 14). 
The c-myc gene was found to be rearranged, amplified, and 
overexpressed in a wide variety of human cancers (15). It was 
also shown to be involved in the progression of various cancers 
(16, 17). In the thyroid systems, c-myc can cooperate with some 
viral oncogenes in inducing the neoplastic phenotype in the rat 
thyroid cell line PC C1 3 (18). Furthermore, there is a positive 
correlation between elevated levels of c-myc expression and the 
stages of human thyroid neoplasia (19). However, the role of 
c-myc overexpression in the process of thyroid carcinogenesis is 
still unknown. 

We have analyzed c-myc expression in 7 cell lines origi- 
nating from different histotypes of human thyroid carcinomas 
and in 50 fresh thyroid carcinomas. Levels of c-myc were 
observed in all thyroid carcinoma cell lines; the highest increase 
was detected in the more malignant, undifferentiated cell lines. 
Interference with c-MYC protein synthesis by antisense oligo- 
nucleotides inhibited the growth of thyroid carcinoma cell lines. 

M A T E R I A L S  AND M E T H O D S  

Cell Culture and Assay of the Transformed State. The 
human thyroid carcinoma cell lines studied were TPC-1 (20), 
WRO (21), NPA (22), ARO (22), FRO (23), NIM 1 (24), and 
B-CPAP (25). They were grown in DMEM containing 10% fetal 
bovine serum. HPCs 3 were established as described (26). Tu- 
morigenicity of the cell lines was tested by injecting 2 × 10 6 

cells into athymic mice. Soft-agar colony assays were performed 
as described elsewhere (27). 

RNA Isolation and Northern Blot Analysis. Thyroid 
tumors were obtained from the Laboratoire d'Histologie et de 
Cytologie, Centre Hospitalier (Lyon Sud, France). The tumor 
samples were frozen in liquid nitrogen and stored frozen until 
RNA was extracted. The procedures for total RNA extractions, 
Northern blots, and hybridizations have been described previ- 
ously (28). The c-myc probe used in this study was the 1.3-kb 
PstI-PstI fragment of the pRyc 7.4 plasmid, which is specific for 
the human myc gene (29). The probe for the max gene was 
obtained by PCR amplification using the max-specific primers 
(13) 5 ' -CCTGGGCCGTAGGAAATGAGCGATAAAC-3'  and 

3 The abbreviations used are: HPC, human primary culture; NFDM, 
nonfat dried milk; TBS, Tris-buffered saline. 
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3'-TGCCAGTGGCTTAGCTGGCCTCCA-5'. A mouse 13-ac- 
tin probe was used to ascertain the equal RNA loading (30). 

Protein Isolation and Western Immunoblot Analysis. 
The protein isolation procedure has been described elsewhere 
(31); 5 × 106 cells were washed twice with PBS, then lysed in 
a buffer containing 10 rnM sodium phosphate (pH 7.4), 0.1 M 
NaC1, 1% Triton X-100, 0.1% SDS, sodium deoxycholate, 1 rnM 
phenylmethylsulfonyl fluoride, 10 mg aprotinin/ml, 10 mg leu- 
peptin/ml, and 10 mg pepstatin/ml. Extracts were clarified by 
sedimentation in a microcentrifuge at low speed for 5 min at 
40C. The sample of normal thyroid tissue was ground to a fine 
powder in a mortar with a pestle and sand. The powdered tissue 
was then resuspended in an equal volume of ice-cold protein 
extraction buffer. Thereafter, the proteins were extracted using 
the procedure used for the cell lines. The protein concentration 
of the supernatant was determined by the Bio-Rad protein 
microassay as specified by the manufacturer (Bio-Rad, Warford, 
England). 

Western immunoblot analysis was performed according to 
a standard procedure (32). Briefly, protein fractionation was 
carried out by SDS-PAGE using 80 txg (or 40 Ixg) cell protein 
samples/lane of a 10% polyacrylamide gel. Before loading, 
proteins were diluted in loading buffer containing 10% glycerol, 
2% SDS, 62.5 mu Tris-HC1 (pH 6.8), 5% [3-mercaptoethanol, 
and 0.5% bromophenol blue. Gels were transferred to nitrocel- 
lulose in transfer buffer (390 rnM glycine, 480 n ~  Tris, 0.37% 
SDS, and 20% methanol). The filters were incubated for 1 h at 
room temperature in 1% NFDM and TBS buffer [200 mM 
Tris-HC1 (pH 7.9) and 1.5 M NaC1]. After washing, the filters 
were incubated for 1 h in TBS buffer with Tween 20 [200 rnM 
Tris-HC1 (pH 7.9), 1.5 M NaC1, and 0.5% Tween 20] plus 1% 
NFDM containing 10 Ixg/ml antibody c-myc (Ab-1; Oncogene 
Science, Inc., Uniondale, NY). After four washes, blots were 
incubated with antimouse antibodies conjugated with horserad- 
ish peroxidase diluted 1:1000 for 1 h in TBS buffer with Tween 
20 plus 1% NFDM. Parallel gels were run to ascertain that equal 
amounts of protein in fact had been loaded by staining with 
Coomassie blue. Revelation was performed with Enhanced 
Chemiluminescence (Western blot detection kit; Amersham, 
Amersham Place, United Kingdom). 

Effects of Antisense c-myc on c-MYC Protein Expres- 
sion and Cell Growth. The oligonucleotides used were iden- 
tical or complementary to sequences at the beginning of the 
coding region of c-myc in exon 2. The sense oligomer used was 
5'-ATGCCCCTCAACGTT-3'; the antisense oligomer was 
3'-TACGGGGAGTTGCAA-5'; the missense oligomer was 3'- 
AAGCTTGGAGGCGAT-5' (33). The missense oligonucleo- 
tide was complementary to only a few reading frames of human 
T-cell lymphotrophic virus, type I, and a portion of the neural 
cell adhesion molecule (34). Phosphorothioate oligonucleotides 
were purchased from Eurogentec (Liegi, Belgium). They were 
synthesized by a modification of the H-phosphonate procedure 
(35), purified by ion-exchange chromatography, and ethanol 
precipitated. 

To analyze the capability of the antisense oligonucleotides 
to block the abundance of the c-MYC protein, the cells were 
treated with 4 ~m oligonucleotide 24 h after cell plating. Pro- 
teins were extracted 48 and 72 h after oligonucleotide treatment, 

Table 1 Expression of the neoplastic phenotype of human thyroid 
carcinoma cell lines 

Colony-forming Tumorigenicity 
Carcinoma efficiency in in athymic 

Cell line histotype agar (%) mice 

TPC- 1 Papillary 0 NO 
WRO Follicular 8 YES 
NPA Papillary 18 YES ~ 
NIM 1 Papillary 0 YES" 
B-CPAP Papillary 0 NO 
ARt  Anaplastic 70 YES b 
FRO Anaplastic 38 YES b 

Small tumors appeared after about 2 months. 
b Large tumors appeared after 2 weeks. 

and the levels of the c-MYC protein were measured by Western 
blot (see above). 

Southern Blot Analysis. The Southern blot analysis was 
performed according to a standard procedure (28). 

DNA Synthesis Assay. To evaluate the effects of the 
oligonucleotides on the cell growth rate, l05 cells were plated, 
and 15 h later, they were treated with sense, missense, and 
antisense oligomers. After 24 and 72 h, DNA synthesis was 
measured by incorporation of [3H]thymidine (2 ~Ci/ml, 40 
Ci/mmol; Amersham) into trichloroacetic acid-insoluble mate- 
rial as described elsewhere (36). The results are expressed as 
percentage of inhibition of thymidine incorporation in compar- 
ison with the untreated cells. Each value is the mean of at least 
three experiments in duplicate. Thymidine uptake values were 
analyzed by one-way ANOVA. Differences were considered 
statistically significant at P < 0.05. 

Cellular Uptake of Oligonucleotide. Five × 105 HPC, 
FRO, and A R t  cells in 100 lxl culture medium with heat- 
inactivated fetal bovine serum were exposed to 5 I~M 5' end- 
labeled oligonucleotide for 16 h at 37°C. Fetal bovine serum 
was heated to 65°C for 30 rain to inactivate DNases. The cells 
were washed twice, and the supernatants were saved. The per- 
centage of uptake by the cells was the number of counts in the 
cell pellet/total number of counts in the supernatant. The results 
reported are the average of two duplicate experiments. 

R E S U L T S  

c-myc Expression in Human Thyroid Carcinoma Cell 
Lines. Seven thyroid carcinoma cell lines (four derived from 
papillary carcinomas, two from anaplastic carcinomas, and 1 
from a follicular carcinoma) were analyzed for c-myc expression 
by Northern blot. The origin of each cell line and their tumor- 
igenic properties are listed in Table 1. Levels of myc-specific 

transcripts were higher in the thyroid cell lines than in normal 
human thyroid primary culture cells (Fig. 1). There was a 5-fold 
increase in NIM1 and B-CPAP cells, a 10-fold increase in 
WRO, NPA, and TPC-1 carcinoma cell lines, and a very high 
increase (between 50- and 100-fold) in the A R t  and FRO cell 
lines that originated from anaplastic carcinomas. It is notewor- 
thy that the A R t  and FRO cell lines induced tumors in athymic 
mice and had the highest colony-forming efficiency in agar 
among the cell lines used in this study (Table 1). Because the 
myc gene product is known to form heterodimers with the 
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Fig. 2 Western blot analysis of MYC protein accumulation in normal 
and neoplastic thyroid cells and tissue. The monoclonal antibodies 
directed against the MYC protein were used for the Western blot 
analysis. The proteins were extracted from the following sources: Lane 
1, WRO cells; Lane 2, ARO cells; Lane 3, FRO cells; Lane 4, normal 
thyroid tissue; Lane 5, normal thyroid primary culture cells; Lane 6, 
B-CPAP cells; Lane 7, NPA cells; and Lane 8, NIM-1 cells. Eighty &g 
proteins were loaded for each sample. 

1 2 3 4 5 6  

8-actin 

Fig. 1 Expression of the c-myc and max genes in normal and neoplas- 
tic thyroid cells. Ten Ixg total RNA for each cell line were size frac- 
donated on a denaturing formaldehyde agarose gel, blotted onto nylon 
filters (Hybond-N; Amersham), and probed with a DNA for c-myc, max, 
and 13-actin, as indicated. RNA was extracted from the following sourc- 
es: Lane 1, normal thyroid primary culture cells; Lane 2, TPC-1 cells; 
Lane 3, NPA cells; Lane 4, WRO cells; Lane 5, ARO cells; Lane 6, FRO 
cells; Lane 7, NIM 1 cells; and Lane 8, B-CPAP cells. Actin was used 
as an internal control for uniform RNA loading. 

product of the max gene, we also analyzed max gene expression 

in the same cell lines. There was no difference in the abundance 
of c-max mRNA between tumor cell lines and normal thyroid 
(Fig. 1). 

To investigate whether the increased c-myc-specif ic 

mRNA expression was also associated with an increased level 
of the MYC protein in the thyroid carcinoma cell lines, we 
analyzed the MYC protein levels in six cell lines (ARO, FRO, 
B-CPAP, NPA, WRO, and NIM1) in HPCs and normal thyroid 
by Western blot. The levels of the MYC protein were higher in 

all six cell lines, particularly the ARO and FRO cell lines (see 
Fig. 2, Lanes 2 and 3) than in normal thyroid tissue or primary 

culture cells (Fig. 2). A parallel gel stained by Coomassie blue 

confirmed that the amounts of proteins loaded were equal (data 

not shown). 
The c-myc gene was amplified in the ARO and FRO cells 

(5-6-  and 3-4-fold,  respectively) compared with normal thy- 

roid cells (Fig. 3). The same Southern blot was hybridized with 
a 13-actin probe, and there was no difference among the same 
DNA. 

c-myc Proto-oncogene Expression in Thyroid Tumors. 
We analyzed 44 human thyroid neoplasias of different histolog- 
ical types (5 adenomas, 25 papillary carcinomas, 8 follicular 
carcinomas, and 6 anaplastic carcinomas) and 6 nodular goiters 

Fig. 3 Analysis of c-myc amplification in human thyroid carcinoma 
cell lines. Ten Ixg DNA were digested with EcoRI (Lanes 1, 3, and 5) 
and HindlII (Lanes 2, 4, and 6) and hybridized with a cDNA for human 
c-myc (the 1.3-kb PstI-PstI fragment of pRyc 7.4). The sources of DNA 
were: Lanes 1 and 2, ARO cells; Lanes 3 and 4, FRO cells; and Lanes 
5 and 6, HPC ceils. 

for c-myc proto-oncogene expression (see Table 2). No signif- 
icant increase in expression of c-myc was observed in adenomas 

or in follicular carcinomas; expression was increased slightly in 

4 of 25 papillary carcinomas. Five of the 6 anaplastic carcino- 
mas expressed very high amounts of c-myc mRNA. Some rep- 

resentative data are shown in Fig. 4. In four papillary carcino- 

mas, the levels of c-myc expression are comparable with those 
observed in normal thyroid, whereas 2 anaplastic carcinomas 

showed almost 50-fold increases in c-myc expression. The 
RNAs were normalized according to the levels of 13-actin ex- 
pression. 

Effect of Blockage of M Y C  Protein Synthesis on 
Growth of Thyroid Carcinoma Cell Lines. Next, we deter- 
mined the role of the enhanced c-myc expression in the process 
of cell transformation and growth by blocking the synthesis of 
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Table 2 Expression of c-myc proto-oncogene in human thyroid 
neoplasias 

Histological type of 
thyroid specimens 

No. of patients with 
elevated level of c-myc 

mRNA/no, of 
patients analyzed ~ 

Papillary carcinomas 4/25 
Follicular carcinomas 1/8 
Anaplastic carcinomas 5/6 
Adenomas 0/5 
Goiters 0/6 

a c-myc RNA levels were considered elevated when they were at 
least 3-fold higher versus the level found in normal thyroid. The ex- 
pression of the [3-actin gene was used to normalize the levels of RNA 
loaded on the gel. 

28S-  

c-Myc 
18S- 

1 2 3 4 5  6 7 8 9 1 0  

- - a c t i n  ~ . . . . .  ~: ..... ~ . . . . . . . .  

Fig. 4 Analysis of c-myc expression in normal and neoplastic thyroid 
tissues. Ten p,g total RNA for each sample were size fractionated on a 
denaturing formaldehyde agarose gel, blotted onto nylon filters (Hy- 
bond-N; Amersham), and probed with either c-myc or [3-actin cDNA, as 
indicated. RNA was extracted from the following sources: Lane 1, 
normal thyroid; Lanes 2, 7, 9, and 10, anaplastic carcinomas; Lanes 3, 
4, 5, and 6, papillary carcinomas; and Lane 8, a follicular carcinoma. 
Actin was used as an internal control for uniform RNA loading. 

the c-MYC protein with an antisense oligonucleotide against the 
translation initiation region of the c-myc mRNA located at the 
beginning of exon 2. The efficiency of this antisense oligonu- 
cleotide to block MYC protein synthesis was evaluated by 
treating the ARO cells with the oligonucleotides and measuring 
MYC protein levels by Western blot 48 and 72 h later. MYC 
protein levels were significantly (at least 5-fold) lower in the 
ARO cells treated with the myc antisense-specific oligonucleo- 
tide (Fig. 5A, Lanes 2 and 3) than in ARO cells (Lane 1) or in 
cells treated with a sense myc-specific oligonucleotide (Lane 4). 

To ascertain that equal amounts of protein had been loaded on 
the well, parallel gels were run and stained with Coomassie blue 
(Fig. 5B). Almost identical results were obtained with the FRO 
cell line (data not shown). 

The effects of the antisense myc oligonucleotide on the 
growth of the ARO, FRO, and NPA cells were analyzed by 
evaluating the DNA synthesis measured as [3H]thymidine in- 

A 

B 

1 2 3 4 

1 2 3 4 

Fig. 5 Western blot analysis of the MYC protein accumulation in 
ARO cells treated with sense and antisense myc-specific oligomers. A, 
the proteins were extracted from the following sources: Lane 1, un- 
treated ARO cells; Lane 2, ARO cells treated for 48 h with the antisense 
myc-specific oligomer (4 ~M/ml); Lane 3, ARO ceils treated for 72 h 
with the antisense myc-specific oligomer (4 txM/ml); Lane 4, ARO cells 
treated for 72 h with the sense myc-specific oligomer (4 ~M/ml). B, 
Coomassie blue staining of the parallel gel with the same samples as 
shown in A. Forty t-~g proteins were loaded for each sample. 

corporation after exposure to the oligonucleotides for 24 and 72 
h. ARO and FRO thyroid carcinoma cell lines were used for 
these experiments, because they express high levels of c-myc- 
specific mRNA and MYC protein (Table 1). 

Treatment with antisense myc oligonucleotides reduced the 
thymidine incorporation by the NPA, ARO, and FRO cells 
significantly (Table 3). The most striking inhibitory effect 
(about 80% compared with the untreated cells after 72 h) was 
exerted on the FRO cell line, which also had the highest ex- 
pression of the MYC protein. These effects were specific, be- 
cause no or only a very slight effect (inhibition of thymidine 
incorporation was not more than 10%) was detected in the 
experiments with sense or missense oligonucleotides. Moreover, 
inhibition of thymidine incorporation decreased with increasing 
concentrations of antisense c-myc oligonucleotides (data not 
shown), c-myc phosphorothioate antisense oligonucleotides ex- 
erted no inhibitory effect on a human thyroid primary culture 
(Table 3). These differences were not due to a different uptake 
of the antisense oligonucleotides by normal and neoplastic cells, 
because both cell types showed comparable uptake of the oli- 
gonucleotide (Table 4). 

Sense and antisense oligonucleotides did not exert a sig- 
nificant toxic effect (<5%), measured by counting trypan blue- 
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Table 3 Inhibition of [3H]thymidine incorporation by c-myc 
antisense, sense, and missense oligonucleotides 

c-myc oligomer % inhibition % inhibition 
Cell type treatment" after 24 h b after 72 h 

HPC Sense 11 ___ 3 10 ___ 2 
HPC Antisense 12 ± 4 12 ± 2 
ARO Sense 8 + 2 7 + 2 
ARO Antisense 35 ± 5 c 50 ± 6 a 
ARO Missense 6 --- 3 8 ± 2 
FRO Sense 6 --- 2 9 --- 2 
FRO Antisense 65 ± 8 a 80 ___ 10 a 
FRO Missense 6 + 2 8 --- 4 
NPA Sense 9 ± 2 10 ± 3 
NPA Antisense 20 _+ 5 ~ 34 +_ 6 C 
NPA Missense 10 ± 3 12 ± 4 

a Subconfluent cells were treated with c-myc sense, antisense, and 
missense oligonucletides, then [3H]thymidine incorporation was as- 
sayed after 24 and 72 h as described in "Materials and Methods." 

o Each value is the mean _ SE of at least three independent exper- 
iments performed in duplicate. 

c p < 0.05 versus the respective values obtained using the c-myc 
sense and missense oligonucleotides. 

d p < 0.01 versus the respective values obtained using the c-myc 
sense and missense oligonucleotides. 

Table 4 Cellular uptake of labeled myc antisense oligonucleotide 

Cell type % oligonucleotide uptake a 

HPC 0.80 + 0.20 
ARO 0.70 _+ 0.23 
FRO 0.93 ± 0.27 
NPA 0.85 + 0.15 

a The percentage of the oligonucleotide uptake was calculated by 
the number of counts in the cell pellet/total number of counts in the 
culture medium supernatant. Each value is the mean _+ SE of three 
independent experiments performed in duplicate. 

viable cells after the oligonucleotide treatment, even at a con- 
centration of 40 tXM, i.e., 10-fold higher than the oligonucleotide 
concentration used in this study. The 40 IXM myc antisense 
oligonucleotide concentration has been shown to be nontoxic in 
other cell types (34). The inhibitory effect of the c-myc antisense 
oligonucleotides was confirmed by a growth curve of the ARO 
and FRO cells in the presense of the sense or antisense myc- 

specific oligonucleotides (Fig. 6). 
Moreover, colony-forming efficiency was evaluated for 

FRO and ARO cells treated with sense, missense, and antisense 
c-myc oligonucleotides; a significant reduction of the capability 

of both the cell lines to grow in a semisolid medium is induced 
by treatment with the antisense oligonucleotide (Fig. 7). 

D I S C U S S I O N  

It is well known that high expression of the c-myc proto- 
oncogene correlates with an undifferentiated phenotype. The 

expression of c-myc is down-modulated rapidly on induction of 
differentiation pathways in mouse erythroleukemia cells, human 
promyelocytic HL-60, monoblastic U-937, and proerythroid 
K-562 cells, murine primary keratinocytes, and F19 embryonal 
carcinoma cells (37). Moreover, repression of c-myc expression 
by antisense c-myc oligodeoxyribonucleotides induces differen- 

tiation of HL60 cells (33). Thyroid neoplasias are a useful model 
for studying whether c-myc expression is related to the expres- 
sion of an undifferentiated phenotype. In fact, they include a 
broad spectrum of tumors with different phenotypic character- 
istics and different biological and clinical behavior: from the 

benign colloid adenomas through the slowly progressive, dif- 
ferentiated papillary and follicular carcinomas to the fatal ana- 
plastic carcinomas (38). 

We found higher expression of the c-myc proto-oncogene 
in seven human thyroid carcinoma cell lines than in normal 
thyroid cells or in normal thyroid tissue. This expression was 

much higher in the cell lines that expressed a higher degree of 
malignancy. Also, in fresh human tumors, c-myc overexpression 
was correlated closely with the anaplastic histotype. In contrast, 
c-myc expression was not enhanced in papillary and follicular 
carcinomas. The discrepancy between these data and those 

obtained from the carcinoma cell lines may be due to contam- 

ination of neoplastic tissue by normal thyroid tissue and tumor 
stroma and to the possibility that expression of c-myc transcripts 
might increase during their passages in culture. Moreover, the 
thyroid carcinoma cell lines were probably established from the 
most malignant thyroid carcinomas. Immunohistochemical 
analysis of paraffin blocks may reveal an increased level of 
MYC protein in papillary and follicular carcinomas, as has been 
demonstrated in 10 of 19 papillary thyroid carcinomas (39). 

If this nuclear proto-oncogene represents the final pathway 
of the regulation of cell proliferation and differentiation, inhi- 

bition of nuclear oncogene expression should influence these 
processes. The results obtained in this study indicate clearly that 

c-myc overexpression is a very important event in the growth 
regulation of thyroid carcinoma cell lines, because c-myc anti- 
sense oligonucleotides inhibited the proliferation of carcinoma 

thyroid cell lines significantly. Moreover, the introduction of a 
dominant negative myc reduces the doubling time of the FRO 
cell line. 4 Similarly, treatment of the CACO 320 cell line with 
c-myc antisense oligonucleotides inhibits their growth in semi- 
solid medium (34). All these results indicate that the increase in 
the expression of the product of c-myc is an important event in 
the process of transformation of thyroid cells. 

A number of mechanisms can be envisaged to explain the 
possible role of c-myc in thyroid cell transformation. It has been 
demonstrated that the protein coded for by the Rb gene and the 
c-MYC and N-MYC proteins can bind in vitro (40). Although 
such an association has not been demonstrated in vivo, the 
comicroinjection of c-myc and Rb suppresses the ability of Rb to 
arrest cell growth (40). Moreover, a dominant negative myc can 
block transformation by ABL oncogenes, indicating that myc 

overexpression is essential for the process of cell transformation 
induced by the v-ABL oncogene (41). Furthermore, the deple- 
tion of the c-'M~C protein with specific antisense sequences 

reverses the: t ransformed phenotype in ras oncogene-trans- 
formed N I H  3T3 cells, suggesting that a certain minimum level 
of c-myc is required to maintain ras transformation in NIH 3T3 

cells (42). Indeed, our group has demonstrated that the myc 

oncogene cooperates with polyoma middle T and v-ras onco- 

4 j. Cerutti, R. Visconti, M. Fedele, M. Santoro, and A. Fusco, manu- 
script in preparation. 
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genes in the neoplastic transformation of rat thyroid cells (43, 

44). Analogously, the overexpression of the c-myc  gene could 

be essential for the human thyroid cell transformation in- 

duced by some oncogenes activated in thyroid neoplasias, 
including the ras genes detected with high frequency in the 

follicular histotype of human thyroid carcinomas (45-47) 
and the R E T / P T C  oncogene, found activated in about 20% of 

the thyroid papillary carcinomas (48). The activation of ras 

and R E T / P T C  must be considered an early event in the 

process of thyroid carcinogenesis, because both were de- 

tected in benign adenomas (49) and in occult thyroid papil- 

lary carcinomas (50), whereas c-myc  gene overexpression 

might be involved in the progression stage of thyroid carci- 
nogenesis. 

The inhibition of the proliferation of human thyroid carci- 
noma cells lines by myc-specific antisense oligonucleotides in- 

dicates a role of c-myc overexpression in the process of human 
thyroid carcinogenesis strongly. 
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